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UNIT – I

LESSON – 1

Elements of Crystallography

Aim: To introduce elements of crystallography.

Objectives:

 To learn about the classification of solids based on order in the arrangement of atoms

or molecules.

 To gain insight on the concept of lattice and periodicity in lattices and the symmetry

considerations.

 To know about different types of unit cells of a crystal.

 To learn about Bravais lattices and classification of these in to crystal classes.
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1.1 Classification of Solid materials:

Matter is usually regarded to exist in the Solid State or in Fluid State. The fluid

state is further divided into liquid and gaseous states. However, on the basis of modern

concept, the matter is more conveniently divided into the condensed state and the gaseous

state. The former state is subdivided into solid and liquid states. The word ”Solid”

means any material whose constituent particles are relatively fixed in position. (Except

for thermal vibration). A solid appears as a continuous rigid body.

Experiments on solids proved they are composed of discrete basic units (atoms).

In some solids the atoms are not distributed randomly, but are arranged in a highly

ordered manner relative to each other. Such group of ordered atoms is known as

“crystal”. There are several types of crystalline structures, depending on the geometry of

the atomic arrangement. So, solids are classified on the basis of their degree and type of

order. There are 3 classes.

1. Crystalline

2. Semi-crystalline (poly-crystalline)

3. Non-crystalline (Amorphous).

1.2 Single and Poly crystalline materials: -

In general a solid is said to be crystal if the constituent particles (i.e. atoms, ions

(or) molecules) are arranged in a three dimensional periodic manner. The regularity in

the appearance of the crystal found in nature (or) grown in laboratory has led to believe

that crystals are formed by a regular repetition of identical building blocks in three

dimensional shape. Shown in fig (1.1, 1.2).

M N

Quartz

Fig 1.1 External forms of the
crystal found in nature Fig 1.2 Formation of crystals by regular

repetition of identical building
blocks
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Observations on crystals showed, that, it is bound by optically plane faces , sharp

straight edges and interfacial angles. In general the relation ship is expressed as,

f + c = e + 2 --------- (1.1)

Where “f” is the number of faces, “c” is the number of angles & “e” is the number of

edges.

Example: Determine the number of edges in a quartz crystal if there are 18 faces and

fourteen angles.

Solution: Given f = 18, c = 14; using equation 1.1, number of edges e= 18+14-2 = 30

Single Crystal: -

In a single crystal periodicity extends through out the material. Crystals that occur in

nature or grown from solution show regular faces and sharp edges and corners. Quartz,

diamond ,some gem stones and ice can be cited as natural crystals.In fact the word crystal

has its root from latin which means ‘ice like’. Common salt, alum, sugar and copper

sulphate are some materials which can be grown very easily from solution.

Single crystals of some compounds cannot be grown easily from solution. Some such

materials are grown from melt using methods like Bridgeman method. Other materials

which cannot be grown efficiently by these methods are grown using vapour deposition

techniques. The single crystals grown from melt or from vapour normally do not show

external crystalline features but have internal periodic arrangement. Crystals of

semiconducting matrials are grown using these methods.

A single crystal has a typical feature i.e. its anisotropy. It means the difference in its

physical properties in different directions. It has a sharp melting point.

900

900

900 251010 

251010 80780 

Fig. 1.3 Examples of monocrystals (single crystals).
(a) Common salt (b) Quartz crystal
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Fig 1.4 Polycrystalline aggregates
separated by well defined boundaries.

Poly crystalline (or) Semi crystalline solids: -

A solid consisting of many

crystallites grown together in the form of

an interlocking mass, oriented randomly,

and separated by well defined

boundaries is said to be a poly

crystalline solid. (Fig – 1.4)

Ex: rock, sand, metals, salts etc.

Due to random distribution of crystallites, a poly crystalline solid is isotropic, i.e. its

properties are same in all directions.

In case of amorphous solids the order is limited to a few molecular distances. Glass is

a good example for amorphous materials. It may be noted that glass has some other

features and all amorphous materials are not glasses.

Now we discuss the some important definitions regarding crystal physics.

We know that crystal consist of a microscopic particles arranged in a three

dimensional periodic manner. In order to describe the periodicity in crystals, in 1848

Bravais introduced the concept of space lattice.

In a perfect crystal, there is a regular arrangement of atoms. This periodicity in the

arrangement generally varies in different directions. It is very convenient to imagine

points in space about which these atoms are located. These imagined points in space are

called “lattice points”. The totality of such points forms a “crystal lattice” (or) “space

lattice”. The two dimensional (2d) lattice points are shown in fig 1.5.

1.3 Symmetry consideration:

The definite ordered arrangement of the faces and edges of a crystal is known as “crystal

symmetry”. It is a powerful tool for the study of the internal structure of crystal.

b
a

Fig 1.5 Two-Dimensional array of lattice points.
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A crystal possesses different symmetries (or) symmetry elements. They are

described by certain operations. A symmetry operation is one that leaves the crystal and

its environment invariant, i.e. the body becomes indistinguishable from its initial

configuration after symmetry operation. The geometrical locus about which a group of

finite operations act is known as “symmetry element”. A crystalline solid can have the

following symmetry elements.

(i) Pure translation

(ii) Proper rotation

(iii) Reflection

(iv) Inversion

(v) Improper rotation

(i) Pure translation: -

A two dimensional space lattice is shown in fig1.6(a) The distance between any two

nearest neighbours along the x direction is “a” and along the y direction is “b”. A perfect

crystal maintains this periodicity in both x and y directions from –  to  i.e. the

periodicity of atoms A, B and C are equivalent. In other words, to an observer located at

any of the atomic sites, the crystal appears exactly the same. From the above point we

can say that a crystal possesses a translation symmetry. If the crystal is translated by any

vector joining two atoms say R in fig.1.6 (a), the crystal appears exactly the same as

before the translation. Therefore crystal remains invariant under any translation. A

translation operation is a displacement vector represented in terms of the basis vectors a,

b and c as

T = n1a +n2b+n3c where n1, n2 and n3 are integers.

(ii) Proper rotation (through an angle  ): -

The proper rotation is shown in fig1.6(b). Let us imagine a line (or) axis passing through the

center & normal to the fig.1.6(b), so that the J’s are represented by a rotation through any angle

 = 2 /n about the axis of rotation, the axis is said to have n-fold symmetry.
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Because of reticular structure of crystals, only 1-,2-,3-,4- & 6- fold rotational symmetries are

possible. Crystalline solid cannot possess either 5-fold (or) any other rotational symmetry higher

than 6-fold.

(iii) Reflection: -

The proper reflection is shown in fig 1.6(d). In the fig, we find that a plane transforms

left-handed object into a right-handed one and vice-versa. The element of symmetry in

this case is known as a symmetry plane (or) a mirror plane and symbolically represented

by the letter “m”. i.e. A plane in a cell such that, when a mirror reflection in this plane is

performed, the cell remains invariant.

iv) Inversion center (center of symmetry):

The proper inversion is shown in fig 1.6(e). A cell has an inversion center if there is a

point at which the cell remains invariant when the mathematical transformation   -

 is performed on it. This is similar to reflection, with the difference that reflection

occurs in a plane of mirror, while inversion is equivalent to reflection through point

called inversion center (or) center of symmetry. The inversion center has the property of

inverting all space through points.

x

y

R

a

b

C

A B

Fig 1.6(a) Translation in two dimensional
lattice

J

J

J

J J

J

J

J
Fig 1.6(b) Rotation

Fig 1.6(c) Some Possible and Non-existent Symmetry axes
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Ex: All bravais lattices have inversion symmetry. A Non-bravais lattice may or may

not have an inversion center, depending on the symmetry of the basis.

1.4 Two dimensional crystalline lattices:

Introduction to Space lattice

In general infinite number of lattices are possible because there is no restriction

on the length a, b of the lattice translations and on angle  between them. Such a lattice

is known as oblique lattice and is shown in fig 1.7(a).

Oblique lattice is invariant under the rotation 2 /n (n= 1 & 2) about any lattice point.

However, this can also be invariant under the rotation 2 /n with n=3,4,6 (or) mirror

reflection if some suitable restrictions are imposed on a, b &  . These symmetry

elements in turn put restrictions on the shape of the lattice. The resulting lattices are

known as special lattices. They are

Fig 1.6(d) reflection Fig 1.6(e) Inversion

b
a 

Fig1.7(c) Hexagonal lattice

a1

b1

Fig 1.7 (b) square

a2

b2

Fig 1.7 (a) Obliqe

Fig1.7(d) Rectangular lattice

a3

b3

Fig 1.7(e) centered rectangle

a4

b4
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1.Square lattice a = b ,  (or)  = 900 2. Hexagonal lattice a = b ,  = 1200

3. Rectangular lattice a  b ,  = 900 4. Centered rectangular

Lattice axes are shown for both the primitive cell and the rectangular unit cell for which
090,  ba

Table 1.1 Bravais lattice in two dimensions

There are in all five Bravais lattices, ten point groups and seventeen space groups in

two-dimensions. Out of the five Bravais lattices, one is general and other four are

obtained by exhausting the feasible axial relationships between a and b and the relative

orientations of the two. The general lattice is termed as oblique lattice.

1.5 Three dimensional crystalline lattices:

In previous section, we observe that in two dimensions suitable restrictions on

lattice translations & angles allow only five types of lattices. By extending the same idea

to a 3-dimensional case and applying the similar restrictions on the lattice translations a,

b &c and angles  ,  and  we obtain a Bravais lattice.

A three-dimensional unit cell is defined by vectors a, b &c representing its edges

(or) crystal axes and the angles  ,  & . The numbers of Bravais lattices is 14 with 32

points groups and 230 space groups. Based on relationships between a, b & c in terms of

magnitude and relative orientations  ,  & , the 14 types of unit cells are grouped into

seven different classes of crystal lattices. They are Triclinic, monoclinic, orthorhombic,

S.No.

1.

2.

3.

4.

5.

Lattice type

Oblique

Square

Hexagonal

Primitive
rectangular
Centered
rectangular

Conventional
unit cell

Parallelogram

Square

Rhombus

Rectangle

Rectangle

Axes & angles

a  b;  (or)   900

a = b;  = 900

a = b;  = 1200

a  b;  = 900

a  b;  = 900

Point group
symmetry about

lattice point

2mm

4mm

6mm

2mm

2mm



9ACHARYA NAGARJUNA UNIVERSITY 9 CENTER FOR DISTANCE EDUCATION

tetragonal, cubic, trigonal & hexagonal. The table 1.2 gives the 7 classes of crystal

lattices.

Table 1.2 Crystal classes

Crystal system Restriction on

conventional cell,

axes & angles

Associate lattice Characteristic

symmetry

element

Number Symbol

Triclinic a  b  c;

      900

1 P None

Monoclinic a  b  c;

 = =900  

2 P, C One 2-fold-

rotation axis.

Orthorhombic a  b  c;

 =  = =900;

4 P, C, F,

I

Three 2-fold

rotation axis

Tetragonal a=b c;

 =  = =900;

2 P, I One 4-fold

rotation axis

Cubic a=b=c;

 =  = =900;

3 P, I, F Four 3-fold

rotation axis

Trigonal a=b=c;

 =  = <1200 900;

1 P One 3-fold

rotation axis

Hexagonal a=b c;  =  =900;

 =1200;

1 P One 6-fold-

rotation axis.

P stands for Primitive, C for Side centered (or) base centered, I for Body centered and

F for Face centered

1.6 Periodicity in crystals – Basic definitions:

The study of crystal physics aims to interpret the macroscopic properties in terms

of properties of the microscopic particles of which the solid is composed. The geometric

form & physical properties of crystalline solids can be determined by using X-rays,

electron beams & neutron beams.
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The main difference between the crystals & other solids is that there is a

arrangement of atoms, ions (or) molecule in three dimensional periodic manner in

crystals and this is absent in other solids. In order to explain this periodicity Bravais

introduced the concept of space lattice in 1848. Space lattice is obtained by simply

considering the translation of an object (J) to a finite distance (a) & when repeated

systematically along the three crystallographic directions i.e. x, y & z. The one-

dimensional periodic array of object is shown in below fig. 1.8a.

It is easy to represent this periodicity by replacing each object in the array with a

point. It should be remembered that a point is an imaginary infinitesimal spot in space

i.e. lattice points are imaginary i.e.Fig 1.8a represents real objects whereas Fig 1.8b

shows the same array interms of imaginary lattice points.

If translation “a” is combined with another non collinear translation “b” then a

two dimensional array is obtained as shown in 1.8 c and 1.8d

Similarly if “a” & “b” is combined with a third non-coplanar translation c, then a

three dimensional array is obtained, which is shown in fig1.9.

The characteristic feature of the space lattice is that the environment around any

one point is identical. The location of any lattice point can be defined as,

T=n1a+n2b+n3c. Where n1, n2, n3 are arbitrary integers.

J J J JJ

Fig 1.8(a) Fig 1.8(b)

JJ J

JJ J

JJ J

JJ J

a

b

(c)
(d)

Fig 1.8 Two dimensional array of: (c) Objects, (d) Points; a plane lattice
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Basis:

In preceding section we studied the periodicity & lattice points. Now it is

essential to distinguish a lattice from a crystal. A crystal structure is formed only when a

group of atoms (or) molecules are attached identically to each lattice points. This group

of atoms (or) molecules is called basis. Basis is identical in composition, arrangement

and orientation, which is repeated periodically in space to form the crystal structure.

 Lattice + Basis = crystal structure

1.7 Unit cell: -

The atomic order in crystalline solids indicates that the small groups of atoms form a

repetitive pattern. Thus, in describing crystal structure, it is often convenient to subdivide the

b

J

J

J
J

J

J
J

J

J

J

J

J
J

J

J
J

J

J

J

J

J
J

J

J
J

J

J

a

c

(a) (b)

Fig 1.9Three dimensional array of: (a) Objects, (b) Points; a space lattice

Fig 1.10(a) space lattice Fig 1.10 (b) Basis containing
two different atoms

lattice points

Fig 1.10 (c) Crystal structure (lattice + Basis)

Basis containing two
different atoms
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structure into small repeat entities called unit cells. I.e. in every crystal some fundamental

grouping of particles is repeated. Such collection of particles is called a “Unit Cell”. Unit cells

for most crystals are parallelopiped (or) cubes having 3 set of parallel faces.

It can be used to represent the crystal symmetry. It is a “building block” of the crystal

structure. The fig 1.11(a) shows a unit cell of a 3 dimensional crystal lattice. The lattice

is made-up of a repetition of unit cells, and a unit cell can be completely described by the

three vectors a, b, c & the angles between them ( ,  , ). If the values of these

intercepts & interfacial angles are known, we can easily determine the form & actual size

of the unit cell.

1.8 Seven Crystal Systems:

In 3 dimensional case by applying the restrictions on the lattice translations a, b, c and

angles  ,  , , one can verify that only 7 crystal groups (or) basic systems are possible.

They are collectively known as Bravais lattices. In order to specify the given

a

b
a

b

c

c




Fig 1.11(a) Lattice parameter of
a unit cell

Lattice type

Cubic
Orthorhombic
Tetragonal
Hexagonal
Rhombohedral

Monoclinic
Triclinic

Volume

a3

abc
a2c

c/2a3 2

a3  32 cos2cos31 

abc sin

abc  coscoscos2coscoscos1 

Table1.3 unit cell volume of different lattice types
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arrangement of points in a space lattice (or) of atoms in a crystal, it is customary to define

its co-ordinates with reference to a set of axes chosen with its origin at a lattice point.

The three axes & angles are defined as shown in fig 1.11(b). Each space lattice has a

convenient set of axes, however only seven different systems of axes have been found to

be sufficient for representing all Bravais lattices.

They are 1.Triclinic 2.Monoclinic 3.Orthorhombic 4.Tetragonal

5.Trigonal 6.Hexagonal 7.Cubic

Explanation of each crystal system is given below.

(1) Cubic crystal system: -

The crystal axes are perpendicular to

one another & the repetitive interval is

the same along all the 3 axes. Cubic

crystallites may be simple (or) body

centered (or) face centered.

a = b = c;  =  = =900;

(2) Tetragonal crystal system:-

The crystal axes are perpendicular to

one another. The repetitive intervals

along two axes are the same, but the

interval along the third axis is different.

Tetragonal lattices may be simple (or)

body centered.

a=b c;  =  = =900;







a
c

b

Fig 1.11(b) The crystallographic axes and the corresponding angles

a
b

x

y

z

c
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(3) Orthorhombic crystal system:-

The crystal axes are

perpendicular to one another, but the

repetitive intervals are different along all

the three axes. Orthorhombic lattices

may be simple, base centered, body

centered (or) face centered.

a  b  c;  =  = =900;

(4) Monoclinic Crystal system:-

Two of the crystal axes are

perpendicular to each other, but the third

is obliquely inclined. The repetitive

intervals are different along all the three

axes. Monoclinic lattices may be simple

(or) base centered.

a  b  c;  =  =900 

(5) Triclinic crystal system:-

None of the crystal axes is

perpendicular to any of the others, and

the repetitive intervals are different

along all the three axes.

a  b  c;       900

(6) Trigonal (or) rhombohedral crystal system:-

The three axes are equal in length and

are equally inclined to each other at an

angle other than 900.
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(7) Hexagonal crystal system:-

Two of the crystal axes are 600 apart

while the third is perpendicular to both

of them. The repetitive intervals are the

same along the axes that are 600 apart,

but the interval along the third axis is

different. The properties of seven are

shown in table 1.4.

1.9 The Fourteen Bravais Lattices:-
A three-dimensional unit cell is defined by vectors a, b, &c representing its edges (or) crystal

axes and the angles  ,  & defined as shown in fig 1.12

The number of bravais lattices is 14 with 32-point groups & 230 space groups. Based on the

relationship between a, b &c in terms of magnitude and relative orientation  ,  & . The 14

types are grouped into seven different classes of crystal lattices. A description of the 14 bravais

lattices of 3 dimensions along with the axial relationship for the class of crystal lattices to which

each belongs is entered in table 1.5.

S.

No.

Crystal

system

Axial length of

unit cell (a,b&c)

Inter axial angles

( ,  & )

Example

1 Cubic a=b=c  =  = =900 Au, Cu, NaCl

2 Tetragonal a=b c  =  = =900 TiO2, SnO2

3 Orthorhombic a  b  c  =  = =900 KNO3, BaSO4

4 Monoclinic a  b  c  =  =900  CaSO4,

2H2O,FeSO4

5 Triclinic a  b  c       900 K2Cr2O7

6 Trigonal a=b=c  =  =  900 As, Sb, Bi,

Calcite

7 Hexagonal a=b c  =  =900& =1200 SiO2, Zn, Mg, Cd

Table 1.4
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The simple cube (SC):-

The unit cell is cube having one atom (or) molecule at each corner. So there are eight atoms

(or) molecules at eight corners of the cube. Since each corner atom is shared by eight

surrounding cubes, share of each cube comes to one eighth of an atom, shown in fig 1.13a.

Total No. of atoms = 8
8

1
 = 1 atom.

The Body Centered cube (BCC):-

The unit cell of body centered cube structure is shown in fig 1.13(b). It has eight corner atoms &

one center atom. The number of atoms belonging to this cube are (a) One center atom &

(b) 8
8

1
 = 1 corner atom

Total No. of atoms per cube =1+1=2

The Face centered cube (FCC): -

The unit cell of face centered cube structure is shown in fig 1.13c. It has 6 face

centered and eight corner atoms. The six face centered atoms at six faces of the cube are

shared by their adjacent cubes. Hence, a total of 6/2=3 such atoms belong to the cube.

As each corner atom is shared by eight surrounding cubes, the share of each cube comes

to one eighth of an atom.

Total no. of atoms per cube =3 + 8
8

1
 =3+1=4.

Similarly monoclinic lattice has two types simple and base centered. Orthorhombic

has four types three as mentioned above for cubic and base centered, Tetragonal has two

types of lattices. These are shown in fig 1.14.

Fig 1.12 Notation for angles between
the crystal axis





 a

c

b

Fig 1.13(a) The simple cube

1/8th of an Atom
(corner atoms)
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Class Bravais lattice No. of lattices Unit cell
Characteristics

Triclinic Simple 1 a  b  c &
      900

Monoclinic Simple Base centered 2 a  b  c &
 =  =900 

Orthorhombic Simple base-centered
body-centered

4 a  b  c &
 =  = =900

Tetragonal Simple Body
centered

2 a = b c &
 =  = =900

Cubic Simple body-
centered face-
centered

3 a = b = c &
 =  = =900

Trigonal Simple 1 a = b = c &
 =  =  900

Hexagonal Simple 1 a = b  c &
 =  =900  =1200

Table 1.5

Fig 1.13(b) Body centered cube

Corner Atoms
1/8 th of the Atoms

Center Atom

Corner Atoms
1/8 th of the Atoms

Face centered
Atoms (1/2
Atom)

Fig 1.13(c) Face centered cube
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Triclinic Simple monoclinic Base-centered
monoclinic

Body-centered cubicSimple cubic

Simple orthorhombic Base-centered
orthorhombic

Body-centered
orthorhombic

Body-centered
tetragonal

Trigonal

Fig 1.10 The 14 Bravais lattices grouped into the 7 crystal systems

Face-centered
orthorhombic

Simple tetragonal

Face-centered cubic

a
b

c

Hexagonal
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1.10 Summary:

1. Crystal = Space lattice + Basis

Space lattice: An infinite periodic array of points in space

Basis: An atom or an identical group of atoms attached to every lattice point. It is

identical for every lattice point in terms of composition, relative orientation and

separation.

2. Lattice points are connected to each other by the translation vector t = n1a + n2a + n3c,

where n1, n2, n3 are integers and a, b, c are primitive translation vectors (the axes of a

primitive cell).

3. Primitive cell: A minimum volume unit cell having only one lattice point.

4. Crystal types Bravais lattices Point groups Space groups

Two-dimensional crystals 5 10 17

Three-dimensional crystals 14 32 230

5. Identical atoms may crystallize into the closest-packed structure either with HCP

or with FCC symmetry, having the pattern of layers as:

HCP: AB AB AB AB …..
FCC: ABC ABC ABC …..

For both the structures:(i) The number of nearest neighbors (coordination number) = 12.

(ii) The packing fraction = 0.743

1.11 Key words:

Crystal – Amorphous – polycrystalline – basis – lattice – Bravais lattice – space lattice –

lattice point – unit cell primitive unit cell – non primitive unit cell – crystal systems –

point group – space group – symmetry operations – translation – rotation – reflection –

inversion – center of symmetry – proper – rotation – improper rotation – Triclinic –

monoclinic – orthorhombic – tetragonal – rhombohedral –trigonal – hexagonal close

packed – cubic – simple – face centered – body centered – coordination number.

1.12 Review questions:

1.What are the essential differences between crystalline and non-crystalline materials’.

Explain the concepts of lattice, basis and crystal structure. How are they related?

2. Mention and explain with examples the types of lattices in cubic system. How many

lattice points are there in each of these lattices?
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3. Explain the following terms used in crystallography

a. Primitive cell

b. Unit cell

c. Packing factor

d. Coordination number.

4. Define space lattice. Name the seven types of crystal systems and give the relation of

length of axes and relation of angles between the axes of a unit cell in each type.

5. Explain the physical basis of classifying crystals into: (a) 14 Bravais lattice (b) 7

systems and (c) 32 point groups.

6. What is meant by ‘Symmetry elements’ in crystals? Discuss the various types of

symmetry elements present in a cube.

7. What are symmetry operations? Explain the meaning of a ‘n-fold rotation axis and a

‘n-fold screw axis’. Prove that five fold axis of rotation is not compatible with a lattice.

8. What is Bravais lattice? What is the maximum number of Bravais lattices possible?

How will you account for the existence of thousands of structures from these lattices?

9. The end-centered orthorhombic is one of the Bravais lattice but the end-centered

tetragonal is not. Give reasons.

10. The primitive cell of fcc lattice is rhombohedral. Why then is the rhombohedral

lattice included separately in the Bravais list?

11. What are point group and space group? Give their number for two and three

dimensional lattices. List all the point groups of a two-dimensional lattice.

12. Show that the base centered and face centered tetragonal does not give any new

Bravais lattice.

1.13 Text and Reference Books:

1. Elements of Solid state Physics by J.P.Srivatsava (PHI)
2. Elements of Solid state Physics by Ali Omar (Pearson Education)
3. Solid state Physics by S.L. Kakani and C. Hemrajani (S Chand)
4. Solid state Physics by M.A.Wahab (Narosa)
5. Solid state Physics by C.Kittel
6. Solid State Physics by C.J.Dekker
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UNIT – I
LESSON – 2

Elements of crystallography-II

Aim: To introduce the concept of point groups and space groups and space groups and

discuss about some common crystal structures.

Objectives:

 To acquaint with the nomenclature of crystal directions and planes.

 To acquaint with the concept of point groups and their nomenclature.

 To learn about the common crystal forms under cubic class.

Structure:

2.1 Nomenclature of crystal directions and planes

2.2 Miller indices

2.3 Spacing between planes of same Miller indices

2.4 Point groups

2.5 Space groups

2.6 Common crystal structures

2.7 Summary

2.8 Key words

2.9 Review questions

2.10 Text and reference books

2.1 Nomenclature of crystal directions and planes:-

In a crystal there exists directions and planes, which contain a large concentration of

atoms. For the crystal analysis, it is necessary locate these directions and planes.

Crystal directions:-

Consider the straight line passing through the lattice points A, B in fig.2.1(a).
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To specify the direction of straight line we proceed as follows. We choose one lattice

point on the line as an origin, the point A. Then we choose the lattice vector joining A to

any point on the line, say point B. This vector can be written as

R = n1a + n2b + n3c

Generally square brackets are used to indicate a direction. The direction is now

specified by the integral triplet [n1 n2 n3]. If the numbers n1, n2 & n3 have a common

factor, this factor is removed, i.e the triplet [n1 n2 n3] is the smallest integer of the same

relative ratios. In the above fig the direction shown is the [111] direction

When we speak of a direction, we do not mean one particular straight line, but a whole

set of parallel straight lines, which are completely equivalent by virtue of the translational

symmetry.

Crystal planes:-

The crystal plane may be regarded as

made-up of an aggregate of a set of

parallel equidistant planes, passing

through the lattice points. For example

for a given lattice, the lattice planes can

be chosen in different ways as shown in

fig 2.1(b).

2.2 Miller indices:-

It is difficult to designate the different planes in a crystal. To avoid this difficulty Miller

evolved a method to designate a set of parallel planes in a crystal by three numbers (h, k, l) know

as Miller indices.

Fig 2.1(b) Different crystal planes

Fig 2.1(a) The [111] direction is a cubic lattice.

A

B

c
a

b
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The steps for the determination of Miller indices of a set of parallel planes are illustrated as

follows

(1) Determine the intercepts made by the plane along the three

crystallographic axes (x, y, z)

i.e x y z

2a 3b c

pa qb rc

where p = 2; q = 3; r = 1;

(2) Express the intercepts as

multiples of the unit cell dimensions, (or) lattice parameters along the axes i.e.

c

c

b

b

a

a 32
 2 3 1

(3) Determine the reciprocals of these numbers i.e. 
1

1

3

1

2

1

(4) Reduce the reciprocals to the smallest set of integral number and enclose them in

brackets 
1

6

3

6

2

6
 (3 2 6)

Thus Miller indices may be defined as the reciprocal of the intercepts made by the plane on the

crystallographic axes when reduced to smallest number.

Important features of Miller indices of crystal planes are,

a) All the parallel equidistant planes have the same Miller indices.

b) A plane parallel to one of the Co-ordinate axes has an intercept of infinity.

c) If the Miller indices of two planes have the same ratio i.e.(844) and (422) or (211) then

the planes are parallel to each other.

d) If (h, k, l) are the Miller indices of a plane, then the plane cuts the axes into h, k & l equal

segments respectively.

The Miller indices define a set of parallel planes or a set of parallel planes. If (h, k, l) are the

Miller indices of a plane, then, the plane cuts the axes into h, k and l equal segments respectively.

If a plane cuts an axis on the negative side of the origin, the corresponding index is negative and

is indicated by placing a bar above the index; )( lkh . The cube faces of a cubic crystal are (100);

(010); (001); ).1(00and)010();001( Planes equivalent by symmetry are denoted by curly

y
c

2c
3c

b 2b3b4ba
2a

3a
x

z

Fig 2.2(a)
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brackets around miller indices; the cube faces are {100}. Regarding direction the x axis is the

[100] direction; the –y axis is the ]010[ direction. A full set of equivalent directions is denoted

this way: <uvw>. In cubic crystals a direction [uvw] is perpendicular to a plane (uvw) having

the same indices, but this is not generally true in other crystal systems.

The positions of points in a unit cell are specified in terms of lattice coordinates, in which

each coordinate is a fraction of the axial length, a, b or c, in the direction of the coordinate, with

the origin taken at the corner of unit cell. Thus the coordinates of the central point of a cell are

2

1

2

1

2

1
, and the face center positions are ;0

2

1

2

1
;

2

1

2

1
0 .0

2

1

2

1

2.3 Spacing between planes of same Miller indices: -

It is necessary to know the inter planar distance between planes labeled by the same Miller

indices for the x-ray diffraction from the crystal. Let us call this distance dhkl.

Now, we shall derive a formula for the spacing between two parallel planes in a given cell

with the help of figure shown in fig 2.3.

For convenience, we shall take a simple unit cell in which co-ordinate axes are orthogonal,

therefore they are mutually perpendicular (cubic, tetragonal and orthorhombic cells), for the

calculation of inter-planer spacing using cartesian co-ordinates.

In the fig ox, oy & oz are orthogonal axes the origin O is taken at any lattice point. Now we

consider any set of crystal planes defined by the Miller indices, (h, k, l). Suppose the reference

plane passes through the origin and the next plane makes intercepts a/h, b/k & c/l on x, y & z-

axes respectively.

x

y

z

A

B

C






O

c/e

a/h b/k

Normal to plane ABC

“d”

Fig 2.3
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A normal is drawn on to the plane ABC from the origin. The length “d” of this normal plane

will be the distance between the adjacent planes.

Now we have to find an expression for d in terms of a, b, c & h, k, l.

Since d is normal to the plane ABC, we write

Cos  = 








OA

ON
; Cos = 









OB

ON
; Cos  = 









OC

ON
;

Where  = NOA,  = NOB, &  = NOC

According to law of direction co-sines,

cos 2  + cos 2  + cos 2  = 1


2










OA

ON
+

2










OB

ON
+

2










OC

ON
= 1

 1
///

222




























lc

d

kb

d

ha

d

 d2 1
2

2

2

2

2

2











c

l

b

k

a

h

The above relation is applicable to the primitive lattice in cubic, orthorhombic & tetragonal

systems. For tetragonal crystal a = b

For cubic system a = b = c

Note:- In non-orthogonal lattice, calculation of inter planer spacing is more complex.

2.4 Point groups:-

In previous lesson we discussed the symmetry operations. We know that the symmetry

operation is one that takes the crystal into it self. There is a possibility that the symmetry

2

2

2

2

2

2

1

c

l

b

k

a

h
d







2/1

2

2

2

22 











c

l

a

kh
d

222

1

lkh
d



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elements may be combined with one another in different ways; but the symmetry elements in

each such combination are required to satisfy certain conditions.

For example, when one symmetry operation A is followed by another operation B, the

resultant effect is capable of being produced by a third symmetry operation C.

A x B = C.

where A, B & C are members of combination of certain symmetry elements permitted by the

symmetry of the concerned crystal lattice.

The symmetry elements in a combination should also satisfy the following mathematical

conditions.

(A x B) x C = A x (B x C) (The associative law)

A x I = A I is the Identity operator

A-1 x A = I Where A-1 is an operation which is the inverse of operation A.

Since A is also the inverse of A-1 we have the relation 1-1)A(  = A.

A set of symmetry elements that give the above condition is said to form a group commonly

known as the “Point group”. It can also be shown that if A and B are elements of a group (AB)–1

= B–1A–1
. If A is a symmetry operation that brings a framework into coincidence with itself and

B is some other such operation. The effect of applying first A followed by B may result in a

symmetry operation C that makes the framework to coincide with itself. This may be written as

BA = C. The operation AB need not be equal to C but may be equal to some other symmetry

operation D which is also a member of the same group in which A and B are members. If AB =

BA we say that the operations A and B commute. Thus for example, two successive rotations

about the same axis will commute since they result in a rotation about the same axis through an

angle, which is the sum of two separate angles of rotation. The result of two successive rotations

about different axes however does depend on the order in which they are performed.

In the case of a cube it can be shown that C4(z) C4(z) = C2(z)

C4(z) C4(y) = C3(about body diagonal).

All the operations contained in the group are performed at a point , which leave the body

invariant. The body may be for example, a molecule, a group of atoms, a lattice, or a crystal

structure. The word `point’ group can be more appreciated if we consider molecular symmetry.

A symmetry operation which rotates or reflects a molecule into itself must leave the center of

mass of the molecule unmoved. If the molecule has a plane or axis of a symmetry, the center of
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the mass must lie on this playing or axis. It follows that all the axes and planes of the symmetry

of a molecule must intersect in at least one common point, and that point remains fixed under all

the symmetry operations of the molecule. For this reason the symmetry group of a molecule is

generally referred to as its point group. These conclusions are valid for lattice points and there

are in total 32 distinct combinations of symmetry operations performed on a point in various

crystals. This number exhausts all the possible ways of combining the symmetry elements such

that the symmetry elements in each combination meet the requirements imposed by the

mathematical conditions (A x I = A). This gives 32 point groups in 3 dimensional lattices, in

which 27 are non-cubic and five (5) are cubic point groups. There exist two standard

nomenclature systems for point group. They are

1. The Schonflies 2. International.

Table 2.4a shows the 27 Non-cubic crystal point groups.

Table 2.4b shows the compositions of the 5 cubic point groups

2.5 Space groups:-

In a crystal, point group symmetry operations are combined with translational elements,

provided they are compatible. Such combinations are called space groups. The description of

the real crystal structures requires precise knowledge about the composition and symmetry of the

basis of the atoms attached to each lattice point. A crystal is regarded to have been constructed

by translating its basis through vectors of respective Bravais lattice. The translational symmetry

element exhibited by crystals is

a) Glide plane b) Screw axis
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Table 2.4(a) Twenty-seven (27) non-cubic crystal point groups

nfliesoSch  International Meaning in terms of symmetry elements Number

Cn n These groups have only an n-fold axis of rotation 5
(n = 1, 2, 3, 4, 6)

Cnv n m m The groups have an n-fold rotation axis, a mirror
(n even) plane containing the rotation axis, and as many

n m additional mirror planes as may be required by the
(n odd) presence of the n-fold axis (n = 2, 3, 4, 6). 4

Cnh In addition to the n-fold rotation axis, there is a
single mirror plane perpendicular to the rotation axis.










m

n
n = 2, 4, 6 (even)

n n = 1, 3 (odd) 5
Sn n These groups have only an n-fold roto- reflection

axis (n = 2, 4, 6). 3
Dn n 2 2 These groups contain an n-fold axis of rotation,

(n even) a 2-fold rotation axis perpendicular to the n-fold
n 2 axis, and as many additional 2-fold axes as the

(n odd) presence of the n-fold axis demands (n = 2, 3, 4, 6). 4

Dnh
mmm

n 22
In addition to all the elements of Dn, there is a mirror

plane perpendicular to the n-fold rotation axis. 4










mmm

n
n = 2, 4, 6 (even)

n 2 m n = 3 (odd)
Dnd In addition to all the elements of Dn, there are mirror

planes containing the n-fold rotation axis such that the
planes bisect the angles between the 2-fold axes of
rotation. 2

n 2 m n = 2 (even)

n
m

2
n = 3 (odd)
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a) Glide plane:

When a mirror plane is combined with simultaneous translation operation in a crystal, one

obtains glide plane. The glide plane is always parallel to the mirror plane.

b) Screw axis:

In a crystal the rotation axis coupled with the translation parallel to the rotation axis will give rise

to a new symmetry element called screw axis. The symbol, which is generally used for screw

axis in nm. This is performed by rotation of
mn

2
and a translation of

n

m
times the translation

vector parallel to the rotation axis in a crystal.

The complete pattern of symmetry element is known as a space group, which in addition to

having the translational symmetry elements contains all the elements of the respective point

Table 2.4(b) The five (5) cubic crystal point groups

nfliesoSch  International Meaning in terms of symmetry elements

T 2 3

Td 4 3 m

The tetrahedral point group (in a crystal the alternate
corners of the cube are vacant). It contains three
mutually perpendicular 2-fold axes, plus four 3-fold axes,
angles between which are bisected by the 2-fold axes.

In addition to all the elements of T, there is a mirror plane
through each pair of 3-fold axes (i.e. two mutually
perpendicular mirror planes through each 2-fold axis.
In all, there are thus six mirror planes.

The groups has all symmetry elements of T, plus a centre of
inversion i.

The octahedral point group. It contains three mutually
perpendicular 4-fold axes and four 3-fold axes which have
the same orientation with respect to one another as the
2-fold and 3-fold axes of the tetrahedral point group.

The group has all symmetry elements of O, plus a centre
of inversion i.

Th
m

2
3

(m 3)

O 4 3 2

On
m

4
3

m

2

(m 3 m)
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group. There are in all 230 space groups in three dimensional crystals. It is surprising that this

number would be reduced to 14 in the case of a completely symmetric basis.

All possible crystal structures are characterized by different space groups. These space groups

are obtained by introducing a basis with symmetries of each of the point groups of the system

into each of the Bravais lattices.

For example there are 5 point groups & 3 Bravais lattices (P, P, C) for a cubic system. So,

with these possibilities 15 different crystal structures can be produced, represented by 15

different space groups. The space group of a crystal is usually represented on a plane by a

repetitive pattern of the allowed point symmetry elements, using different standard symbols for

different symmetry elements. For the representation of space group both the nfliesoSch  &

international systems are used.

2.6 Common Crystal Structures:-

A large percentage of metallic structures crystallize in hcp, fcc, bcc. Simple cubic is very rare

in metals.

Simple Cubic:-

The simplest crystal structure that we can think of is that of simple cubic symmetry with a basis

of one atom. In this structure the atoms are situated at the corners of the cube touching each

other along the edges, which can be shown in fig 2.6(a).

Each atom surrounded by 6 nearest neighbors. So, that the Co-ordination number is 6.

The atomic radius is a/2 (r = a/2). Where a is the cube edge.

3 31

(a) (b)

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω
ω

(c) (d)

Fig 2.13 (a) & (b) Illustration of Screw operation
(c) Mirror reflection; (d) gride reflection.
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The number of atoms per unit cell is 1. Polonium is the lone known example of this

class in nature.

The CsCl Structure:-

The structure of Cesium Chloride is shown in fig 2.6(b). The space lattice is simple

cube.

The basis has one Cs+ ion of 000 and one Cl- ion at ½ ½ ½. The central atom is

surrounded by eight atoms of the other type at the corners, the co-ordination number is

thus eight. It may be noticed that this structure cannot be interpreted as body centred

cubic (BCC). The lattice points of CsCl are two interpenetrating simple cubic lattices,

the corner of one sub-lattice is the body centre of the other. One sub-lattice is occupied

by Cs+ ions and the other by Cl- ions. The lattice parameter of some ionic crystal having

this structure is given below.

Fig 2.6 (a)

Cs

Cl

Fig 2.6(b) The unit cell structure of CsCl crystal

Crystal Lattice parameter A0

(A0 = 10-10m)

CsCl 4.11
CsBr 4.29
CSI 4.56
TICI 3.84
TIBr 3.97
TII 4.18



M. Sc., PHYSICS 12 ELEMENT OF CRSTALLOGRAPHY

Crystal of Alkali Metals:-

Crystals of alkali metals (Li, Na, K, Rb, Cs) are typical representatives of the body

centered cubic (bcc) structure. The unit cell is non-primitive with 2 lattice points and the

basis of one atom. The cell consist of one atom of each corner & one atom in the centre

of the cube which is shown in fig 2.6(c). Each atom has only 8 nearest neighbors.

Therefore e Co-ordination number is 8.

(1) Total No. of atoms = 1 + 1 = 2

(2) Atomic radius r =
4

3a

(3) Volume of atoms in unit cell u =
8

3

3

4
2

3
3 a

rr


 

(4) Volume of a unit cell V = a3.

(5) Packing factor .68.0~
8

3~
3

3





a

a

V

u 

Crystals of Noble Metals:-

The Noble metals Cu, As, Au, crystallize in another structure, the face centred cubic

(fcc). The unit cell has four lattice points with the basis of one atom. The positions of

the atoms in the unit cell are 000, ½ ½ 0, 0 ½ ½ , ½ 0 ½. The Co-ordination number is

12. The structure is also close packed. The lattice parameters are given below (in
0

A ).

The NaCl Structure:-

Bravais lattice is fcc. An atom on the edge contributes 1/4th of the atom. Thus, the

unit cell gets three sodium atom from those on the edges 







 3

4

12
& one from that at the

centre. The total cell consists of 4 Na atoms. Similarly the contribution of chlorine

atoms to the unit cell comes to 4 [ 8/8 + 6/2 = 4 ]. A single unit cell accommodates four

formula unit cells of NaCl. The positions of atoms in the unit cell are,

Fig 2.6(c)

Cu 3.61

Ag 4.08

Au 4.07
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Na:
2

1

2

1

2

1
0 0

2

1
0

2

1
0

2

1
0 0

Cl: 0 0 0
2

1

2

1
0

2

1
0

2

1
0

2

1

2

1
.

The Sodium Chloride (NaCl) structure is shown in fig 2.6(d).

Fig 2.6(d): (a) The arrangement of Na and Cl (shown bigger) atoms on the unit cell
of NaCl crystal. (b) Locations of Na and Cl (shown bigger) atoms in the cube
representing the unit cell. The separation between the basis partners is half the

length of the body diagonal
2

3a
.

Since each ion has six nearest neighbors of opposite kind, the co-ordination number is 6.

Some of the crystals representative of NaCl arrangement, along with their lattice

parameter are shown in table.

Hexagonal close-packed structure(hcp):-

Fig (a), in fig (2.6e) represent the hexagonal close-packed structure and fig(b) represent

the primitive axes of the hcp crystal. The unit cell contains one atom at each corner, one

(a)

2

3a

a

Na

Cl

(b)

Crystal Lattice parameter A0

NaCl 5.63
LiH 4.08
KBr 6.50
RbI 7.33
NH4I 4.37
NiO 4.17
UO 4.92
PbS 5.92
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atom each at the centre of the Hexagonal faces and 3 more atoms within the body of the

cell. Each atom touches 3 atoms in the layer below its plane, six atoms in its own plane,

and 3 atoms in the layer above. Hence the Co-ordination number of this structure is 12.

The top layer contains seven atoms. Each atom is shared by 6 surrounding hexagon cells

and the centre atom is shared by 2 surrounding cells. The three atoms within the body of

the cell are carefully contributing to the cell.

Thus the total number of atoms in a unit cell is = .63
2

3

2

3


Diamond Structure:-

The diamond lattice can be considered to be formed by inter penetrating two fcc

lattice along the body diagonal by (1/4)th cube edge. One sub-lattice has its origin at the

point 0, 0, 0 and the other at a point quarter of the way along the body diagonal










4
,

4
,

4

aaa
. The basic diamond lattice and the atomic positions in the cubic cell of

diamond projected on a cube face are shown in fig 2.6(f).

The fractions denote height about the base in units of cube edge. The print at 0 and ½

are on the fcc lattice, those at ¼ and ¾ are on a similar lattice displace among the body

diagonals by ¼ of the cube edge.

The packing factor is (XZ)2 = (XY)2 + (YZ)2 =
16

3

168

222 aaa


(b)

a
b

c

M

Q

S R

M

P

(a)

A

B

C

c

a

Fig 2.6(e): (a) The hexagonal close-packed structure. (b) The primitive axes
of the hcp crystal. The c is normal to the plane of a and b. The two atoms of
one basis are shown as solid circles.
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But, XZ = 2r

 (2r)2 =
16

3 2a
 a = .

3

8r

Packing factor = %34)(34.0
16

38
3

3

3
4

or
a

r

V

U







Thus it is a loosely packed structure. Carbon, Silicon and Germanium crystallize in this

structure.

Zincblende structure:

In diamond structure consists of two fcc

lattice displaced from each other by one-

quarter of a body diagonal. The cubic

zinc sulfide structure results from the

diamond structure when Zn atoms are

placed on one fcc lattice and S atoms on

the other fcc lattice. The coordinates of

Zn atoms are 000; there are four atoms

of ZnS per unit cell.

Each atom has about it four equally distant atoms of the opposite kind arranged at the

corners of a regular tetrahedron. The diamond structure possesses a center of symmetry

at the mid point of each line connecting neighbor atoms; the ZnS structure does not have

inversion symmetry. Examples of the cubic zinc sulfide structure are CuF, CuCl, ZnS,

ZnSe, CdS, InAs, InSb, SiC, AlP etc.

1/2

1/2

1/2

1/2

1/4

1/4

3/4

3/4

a

X

Y

Z

/4

/4

Fig 2.6(f) Diamond structure.

a

Fig 2.7 Zincblende Structure
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2.7 Summary:

When we speak of a direction, we do not mean one particular straight line, but a whole

set of parallel straight lines, which are completely equivalent by virtue of the symmetry.

Square brackets are used to indicate a direction (line joining two lattice points). Each

direction is specified by the triplet [n1 n2 n3], where n1, n2 and n3 are three integers having

no common factor. It is difficult to designate the different planes in a crystal. To avoid

this difficulty Miller evolved a method to designate a set of parallel planes in a crystal by

three numbers (h, k, l) know as Miller indices.

The Miller indices define a set of parallel planes. Distance between a plane passing

through the origin and having Miller indices (hkl) and another consecutive parallel plane

is given by

2

2

2

2

2

2

1

c

l

b

k

a

h
d





The above relation is applicable to the primitive lattice I cubic, orthorhombic and

tetragonal systems. It is also

For tetragonal crystal a = b and

2/1

2

2

2

22 











c

l

a

kh
d

For cubic system a = b = c and
222

1

lkh
d




In a non-orthogonal lattice, calculation of inter planer spacing is more difficult. A set

of symmetry elements that satisfy group properties are said to form a group commonly

known as the “Point group” as all the operations contained in the group are performed at

a point in the crystal lattice. There are in total 32 point groups in crystals.

The crystal structure is complete only when its point group & space group are known.

The description of the real crystal structures requires precise knowledge about the

composition and symmetry of the basis of the atoms attached to each lattice point. A

crystal is regarded to have been constructed by translating its basis through vectors of

respective Bravais lattice. A space group, which in addition to having the translational

symmetry elements contains all the elements of the respective point group, symbolizes

the complete array thus obtained. There are in all 230 space groups in crystals. These

space groups are obtained by introducing a basis with symmetries of each of the point

groups of the system into each of the Bravais lattices.
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For example there are 5 point groups and 3 Bravais lattices (P, P, C) for a cubic

system. So, with these possibilities 15 different crystal structures can be produced,

represented by 15 different space groups. The space group of a crystal is usually

represented on a plane by a repetitive pattern of the allowed point symmetry elements,

using different standard symbols for different symmetry elements. For the representation

of space group both the nfliesoSch  & in international systems are used.

Several diatomic crystals and metals form cubic crystals with non-primitive unit cells.

Some follow Sodium chloride structure, some follow Cesium chloride structure some

follow Zinc blend and some other follow diamond structure.

In CsCl structure the basis has one Cs+ ion at 000 and one Cl– ion at ½ ½ ½. The

lattice points of CsCl are two interpenetrating simple cubic lattices the corner of one sub-

lattice is the body centre of the other. One sub-lattice is occupied by Cs+ ions and the

other by Cl– ions.

Crystals of alkali metals (Li, Na, K, Rb, Cs) are typical representatives of the body

centered cubic (bcc) structure. The unit cell is non-primitive with 2 lattice points and the

basis of one atom. The cell consist of one atom of each corner & one atom in the centre

of the cube.

The Noble metals Cu, As, Au, crystallize in another structure, the face centered cubic

(fact). The unit cell has four lattice points with the basis of one atom. The positions of

the atoms in the unit cell are 000, 0
2
1

2
1 ,

2
1

2
10 ,

2
1

2
1 0 . The Co-ordination number is 12. For

rock salt structure Brava’s lattice is fact. An atom on the edge contributes 1/4th of the

atom. Thus, the unit cell gets three sodium atom from those on the edges 







 3

4

12
&

one from that at the centre. The total cell consist of 4 Na atoms. Similarly the

contribution of chlorine atoms to the unit cell comes to 4[8/8 + 6/2=4]. A single unit cell

accommodates four formula unit cells of NaCl. The positions of atoms in the unit cell

are,

Na:
2
1

2
1

2
1

2
100 00

2
1 00

2
1

Cl: 000 0
2
1

2
1

2
1

2
1 0

2
1

2
10

Since each ion has six nearest neighbors of opposite kind, the co-ordination number is

6. in hcp crystal the unit cell contains one atom at each corner, one atom each at the
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centre of the Hexagonal faces and 3 more atoms within the body of the cell. Each atom

touches 3 atoms in the layer below its plane, six atoms in its own plane, and 3 atoms in

the layer above. Hence the Co-ordination number of this structure is 12. The top layer

contains seven atoms. Each atom is shared by 6 surrounding hexagon cells and the center

atom is shared by 2 surrounding cells. The three atoms within the body of the cell are

contributing to the cell. Thus the total number of atoms in a unit cell is 6.

The diamond lattice can be considered to be formed by inter penetrating two fcc

lattice along the body diagonal by (1/4th )cube edge. One sub-lattice has its origin at the

point 0, 0, 0 and the other of a point quarter of the way along the body diagonal

.
4

,
4

,
4








 aaa
The fraction denote height about the base in units of cube edge. The point at

0 and ½ are on the fcc lattice, those ¼ and ¾ are on a similar lattice displaced among the

body diagonals by ¼ of the cube edge.

The cubic zinc sulfide structure results from the diamond structure when Zn atoms are

placed on one fcc lattice and S atoms on the other fcc lattice. The coordinates of Zn

atoms are 000; there are four atoms of ZnS per unit cell. Each atom has about it four

equally distant atoms of the opposite kind arranged at the corners of a regular

tetrahedron. The diamond structure possesses a center of symmetry at the mid point of

each line connecting neighbor atoms; the ZnS structure does not have inversion

symmetry. Examples of the cubic zinc sulfide structure are CuF, CuCl, ZnSl, ZnSe, CdS,

InAs, InSb, SiC, AlP etc.

2.8 Keywords:

Miller indices – crystal planes – inter-planar distance – symmetry elements – center of

symmetry – point groups – Translational symmetry – glide plane – Screw axis – Bravais

lattices – space groups – common crystal structures.

2.9 Review questions:

1. What do you understand by Miller indices of a lattice plane. Find the Miller

indices of a plane that makes an intercept of 3a, 3b and c along the three

crystallographic axes, where a, b, c being the primitive vectors of the lattice.

2. Determine the Miller indices of a plane that makes intercept of 3A, 4A and 5A on

the coordinate axes of an orthorhombic crystal with a: b: c = 1:2:5.
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3. Draw a (110) plane in the unit cell of a cubic crystal.

4. Show that the (hkl) plane is perpendicular to the [hkl] direction in a cubic lattice.

5. Calculate the number of atoms per unit cell for a rock-salt crystal. Given a =

5.63A; Mol.wt. of NaCl = 58.5 and the density is 2180kg/m3.

6. The density of bcc iron is 7.9  103kg/m3 and the atomic wt. is 56. Calculate the

size of the unit cell.

7. Show that maximum packing ratio in the diamond structure is
16

3

8. The diamond lattice may be considered to be a combination of two

interpenetrating fcc sub-lattices. One sub-lattices has its origin at the point 0, 0, 0

and the other at a point one-quarter of the way along the body diagonal. a) Write

the position of all the atoms in the unit cell. b) How many atoms are contained in

the unit cell.

9. How many planes of type {hkl} are found in the cubic system. How many of the

type {hk0}.

10. Explain zinc blend structure and give two examples of compounds, which

crystallize in this structure.

11. Describe the diamond, sodium chloride and cesium chloride structures.

12. Show that for a simple cubic lattice d100 : d110 : d111 = 2:3:6

13. Derive the relationship between atomic radius and lattice parameter for fcc crystal

and calculate molecular packing.

14. What point groups does each of the following structures belong a) fc cubic b)

diamond c) bc cubic.

15. Explain clearly the three space group, point group and Bravais lattice. Show that

base centered and face centered tetragonal does not give any new Bravais lattice.

2.10 Text and Reference Books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)
2. Elements of solid State Physics by Omar (Person education)
3. Solid State Physics by S.L.Kakani and C.Hemrajani (S.Chand)
4. Solid State Physics by M.A. Wahab (Narosa)
5. Solid State Physics by C.Kittel (Asia Publishing house)
6. Solid State Physics by C.J. Dekker.
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UNIT – I

LESSON – 3

RECIPROCAL LATTICE

Aim: To learn about reciprocal lattices and Brillouin zones

Objectives:

 To introduce the concept of reciprocal lattice

 To show the relationship between real and reciprocal lattices

 To write Braggs law in terms of reciprocal lattice vectors

 To apply the reciprocal lattice concept to some important crystal lattices.

Structure:

3.1 Reciprocal Lattice

3.2 Bragg’s Law

3.3 Construction of Reciprocal Lattice

3.4 Relationship between a, b, c and a*, b*, c*

3.5 Application to some crystal lattices

3.5.1 Reciprocal lattice to (sc) simple cubic lattice

3.5.2 Reciprocal lattice to bcc lattice

3.5.3 Hexagonal space lattice

3.6 Summary

3.7 Key words

3.8 Review questions

3.9 Text and Reference books
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Introduction:

In the earlier lessons we learnt about the crystal structures in terms of the lattice

symmetry, basic composition, and various intersecting families of planes as visualized in

the space defined by the three crystal edges. The common experimental technique

employed to investigate crystal structures is the x-ray diffraction method. The crystal

photograph recorded on the X- ray film represents the diffraction pattern of the crystal in

which each of the spots corresponds to the diffraction maximum of a different family of

parallel planes, with a certain orientation and common spacing. It is worthwhile to find

some correlation between structure of a crystal and its planar X-ray photograph. This can

be done conveniently by introducing the concept of reciprocal lattice.

3.1 Reciprocal Lattice:-

It is necessary to consider sets of planes in a crystal. This can be done in terms of

their normal. Geometrically we have an advantage, that is, the planes are of 2-

dimensions while normal lines are of one-dimensional nature. But it is not enough if we

consider the orientation of planes alone to study the diffraction of x-rays by crystals but it

is also necessary to know the inter-planar spacing d since they only determine the

reflection angles . These inter-planar spacing may also be represented in the normal to

the planes by appropriately limiting their lengths.

From the above discussion it is clear that one can indicate the orientation of a set of

parallel planes by their common normal and the inter planar spacing by restricting the

lengths of the normal proportionately.

Consider any given space lattice and apply the following.

1. From a common origin draw a normal to each crystal plane.

2. Set the length of each normal equal to (or) 2 times the reciprocal of the inter

planar spacing dhkl.

3. Mark a point at the end of each normal, which represents the crystal plane.

A collection of points obtained in this way corresponding to various crystal planes

form a lattice array and is known as “reciprocal lattice”. The points in the reciprocal

lattice are called reciprocal lattice points. These points in 3 dimensional space form the

reciprocal lattice space. This is also called k-space. From the concept of reciprocal

lattice it may be understood that the “Co-ordinates of Points” in the reciprocal lattice
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space are defined by (h k l), the Miller indices. The concept of reciprocal lattice plays a

very important role in the field of x-ray crystallography.

3.2 Construction of Reciprocal Lattice:-
For the construction of reciprocal lattice first fix the origin at any arbitrary lattice

point O in the direct lattice and then identify three crystal axes (a, b, c) and shown in fig

3.2a

Let us now draw a family of d100 planes where d-stands for the inter planar separation and

(100) are the Miller indices. Drop a normal on OP to these set of planes from the origin

O. The vector OP in this case represents the direction of a*. The complete set of

reciprocal lattice vectors along this direction are given by

Fig 3.1 Direct and reciprocal lattice for a rectangular system

a

b

a*

b*

(a)

Real space

Reciprocal space

(b)

a

b

b*

a*



90-

A1

a

b

c

O
P

d100

Fig 3.2a Construction of the reciprocal lattice, a, b, c represent the primitive
axes of the direct lattice. A1 is the reciprocal lattice point referred to d100 planes
and lies on the normal to d100 planes. The normal OP passing through the
origin O gives the direction of the a* axis of the reciprocal lattice (|OA1| = |a*|).
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g = ,
2

100d

n
(n = 1, 2, 3,….) ------------- (3.1)

The tip of these vectors will be located at the respective reciprocal lattice points A1,

A2, A3,…. The smallest of these OA1, is denoted by a* and expressed as

OA1 = a* =
100100

ˆ22

d

e


d
------------- (3.2)

where ê stands for the unit vector along OP or a*.

Thus A1 represents the reciprocal lattice point corresponding to d100 planes and A2 will

correspond to d200 planes which are parallel to d100 planes with half common spacing.

Therefore, it is reasonable to write

OA2 =
200200

ˆ22

d

e


d
----------------- (3.3)

It is also very clear that a reciprocal lattice point truly symbolizes a family of parallel

planes because its position is defined implicitly by the orientation and explicitly by the

common spacing of planes. And the general expression for reciprocal lattice vectors

along a*, identified as one of the three primitive translation vectors, is

gh00 = ha*, (h = 1, 2, 3, . . . ) -------------- (3.4a)

We can similarly write vectors along the other two primitive vectors b* and c* as

g 0k0 = kb*, (k = 1, 2, 3, . . . ) -------------- (3.4b)

and
g 00l = lc*, (l = 1, 2, 3, . . . ) -------------- (3.4c)

Following this procedure for all the planes of a crystal lattice, its reciprocal lattice may

be mapped. The general reciprocal lattice vector should read as

g = ha* + kb* + lc* ---------- (3.5)
As also inferred towards the end of the preceding section, the reciprocal vector g given

by (3.5) is normal to the family of planes (hkl). Suppose one such plane passes through

the origin O in a crystal system. Another member of the family and closest to this plane

is drawn in Fig 3.2b. Vectors p, q and r lie in this plane. Now, it is a simple exercise to

show that g is normal to planes (hkl). All we need is to show that

g  t = 0 with t  p, q, r.

From the definition of the Miller indices, it follows that the intercepts of the plane,

shown in Fig.3.2b, with a, b and c axis vectors of the direct crystal are vectorially written

as a/h, b/k and c/l, respectively. This enables us to write
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p = 









kh

ba
; q = 










k

bc

l
; and r = 










h

ac

l

It can be checked that the scalar product of any of these vectors with g vanishes, proving

thereby that every reciprocal vector is normal to a family of parallel planes with common

inter plane spacing.

One point of caution: h, k and l in (3.5) need not always represent the Miller indices

and in principle they can have a common factor. In view of this fact it is safer to use the

form

g = m1a
* + m2b

* + m3c
* ------------------(3.6)

where m1, m2 and m3 are any integers.

3.3 Relationship between a, b, c and a*, b*, c* :

Consider a direct crystal lattice as shown in Fig. 3.3. Draw a normal OA from O on the

face opposite to be face.

Draw a normal OA from O on the face opposite to bc face volume of the unit cell,

V = a (b x c) = OA  (Area of the face bc) = OA  | S | ------------ (3.7)


OAV

1


S
(or) )(

1
100

100

dOA
Vd

 
S

dhkl

a/h

c/l

b/k

a

b

c

r

p

q

Fig 3.2b The figure shows intersections of a plane (hkl) with crystal axes a, b,
c at general orientations. The three intercepts measure a/h, b/k and c/l,
respectively. Vectors p, q and r lie in the plane (hkl).
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Thus
Vd

e S


100

ˆ

Where ê is the unit vector in the direction of the normal OA.

)(
2

2ˆ2

100 cba

cbS




 



Vd

e
---------------- (3.8)

 a =
)(

2
cba

cb




 ---------------- (3.9)

similarly  b =
)(

2
cba

ac




 ---------------- (3.10)

 c =
)(

2
cba

ba




 ----------------- (3.11)

From the above equations we observe that a, b and c is orthogonal to two crystal

axis vectors.

This can be compactly stated as, i  j = 2ij ------------------ (3.12)

Where i, j can be a, b and c and ij is the usual delta function.

3.4 Bragg’s Law in terms of reciprocal lattice vectors:-

We learn more about x ray diffraction in the forth coming lesson and for the present the

Bragg’s law derived for the X ray diffraction condition can be expressed suitably in the

reciprocal lattice, We now see how to do this.

a

b

c
A

O

Fig 3.3 A general direct crystal lattice
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In the X ray diffraction phenomenon, the crystal planes are believed to act like plane

mirrors. Radiations reflected from two successive parallel planes under certain

conditions may interfere constructively to produce a diffraction maximum. The Bragg

diffraction shown in fig3.4a. Occurs for specular reflections (angle of incidence = angle

of reflection). The constructive interference occurs when the path difference (2d sin )

between the interfering rays equals an integral multiple of the X-ray wavelength . That

is,

2d sin  = n ----------------- (3.13)

where d is the inter planar spacing  is the angle of the incident radiation with the plane

n = 1, 2, 3 …… (order of diffraction)

The relation (3.13), which is a mathematical statement of the Bragg law, shows that

the diffraction effects cannot be observed from a family of planes for any arbitrary angle

of incidence.

Bragg’s diffraction condition in terms of reciprocal lattice:

The Bragg condition can be expressed as a relation between vectors in the reciprocal

lattice. The Bragg condition can be expressed as

d
d sin d sin 

 

 

Fig 3.4a Bragg reflection from a family of planes with inter planar spacing
d. Note that the incident beam is deflected by twice the Bragg angle .
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hkl

hkl
d2

sin


  ---------------- (3.14)

in which the order of reflection is already included. The equation (3.14) can also be

written as




/1

/1
sin hkl

hkl

d
 --------------- (3.15)

A geometrical interpretation of eqn.(3.15) is given in fig (3.4b). SO is a vector whose

length is 1/. This vector is drawn in the direction of incident X-ray beam and ending at

the origin of reciprocal lattice. Now a sphere of radius 1/ is constructed about a point S

as centre. Let this sphere intersect some point (h, k, l) of the reciprocal lattice at P.

The vector OP then represents a vector counting the origin of the reciprocal lattice and a

point (h, k, l) of that lattice. The vector is normal to hkl plane of direct lattice and its

length is 1/dhkl. From the figure the length of the vector OP can be calculated from fig.

which is 2 sin  /.

Hence
hkld

1
/sin2  -------------- (3.16)

i.e.  = 2d sin 

and the Bragg condition is satisfied. Thus the vector OP represents a normal to the

reflecting planes (hkl) and the vector SP is in the direction of diffracted beam. The

direction of the diffracted beam is shown in figure (3.4c). For any experimental set up,

the direction of X-ray beam is defined as AO.

S

O

P

G

k

k



Fig 3.4b Vector geometry of Bragg reflection in the reciprocal lattice.
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Diffraction occurs only when the orientation of the crystal is such that a reciprocal lattice

point P comes to lie on the circumference of a circle S of radius 1/. When this occurs, a

diffracted beam is developed in the direction SP.

It is customary to imagine all the vectors of fig (3.4c) to be multiplied by a constant

factor of 2 as represented in figure (3.4d). Here the vector K is 2 times the vector SO

and the vector G is 2 times the vector OP. Again the disposition of vector is such that

vector SP must be vector sum of K and G.

Now the magnitude of the vector SP i.e., K+G and the magnitude of the incident beam

vector SO i.e., K must be equal. Applying this condition the Bragg condition is satisfied ; the

Bragg condition must imply that

(K+G)2 = (K+G).( K+G) = K2

i.e., 2K . G + G2 = 0 -------------- (3.17)

Equation (3.17) represents the vector form of Bragg equation.

Here G = h*a + k*b + l*c (h, k, l = integers)

Brillouin Zones:

If we consider a parallelepiped formed by reciprocal lattices a*, b* and c*, then this

may be taken as the primitive cell of the reciprocal lattice. It can be observed that the

eight corner points are shared among eight parallelepiped or we can say that one

parallelepiped contains one-eight of each of eight corner points. In this way the

parallelepiped contains one reciprocal lattice point. But in solid state physics, a primitive

cell of a reciprocal lattice is taken as the smallest volume bounded by planes normal to

each of (shorter) G’s at its midpoint.

Fig 3.4c Showing the direction of
diffracted beam.

X-ray
Beam

Crystal plane

A

Reflected beam

Reflected
beam


1/

2

1/S



O
900

hkld

1


S 

P

O

GK




K


G


Fig 3.4d Vector diagram of the figure
expanded by a scale factor 2
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Each of the new cell contains on lattice point and the point is at the centre of the cell as shown

in fig 3.4e. The primitive cell formed in this way in the reciprocal lattice is called the first

Brillouin zone. The same procedure adopted for real crystal lattice results in a real primitive cell

called Wigner-Seitz cell.

3.5Application to some crystal lattices:-

Reciprocal lattice to (sc) simple cubic lattice:-

The primitive translation vectors of a sc lattice may be written as,

a = a î ; b = b ĵ ; c = c k̂ ; where the volume of the unit cell is a . b x c = a3. The Primitive

translation vectors of the reciprocal lattice of the sclattice will be,

a =
)(

2
cba

cb




 = x

a
ori

a
ˆ

2
)(ˆ

2 

b =
)(

2
cba

ac




 = y

a
orj

a
ˆ

2
)(ˆ

2 

and c =
)(

2
cba

ba




 = z

a
ork

a
ˆ

2
)(ˆ

2 

From these equations, it is evident that the reciprocal lattice to sc lattice is itself a sc

lattice with a lattice const
a

2 . The boundaries of the resulting primitive unit cell are

the planes normal to the six reciprocal lattice vectors  a,  b,  c at their mid points,

a*

b*

Fig 3.4e Construction of first Brillouin zone.
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 i
a
ˆ

2

* 


a
; j

b
ˆ

2

* 


b
; k

c
ˆ

2

* 


c
.

The space bounded by these Six planes is a cube of side
a

2 and volume  32
a

 . This

cube is known as the first Brillouin Zone of the sc lattice is shown in fig 3.5a.

3.5.2 Reciprocal lattice to bcc lattice:-

The primitive translation vectors or the bcc lattice shown in fig 3.11 are given by,

a1 =
2

a
)( kji 

b1 =
2

a
)( kji 

c1 =
2

a
)( kji 

Volume of the unit cell is
2

3a
.

The primitive translation vectors a, b and c of the reciprocal lattice are defined by

a = )(
2

ji 
a



b = )(
2

kj
a


------------- (3.18)

kx

ky

kz

Fig 3.5a The first Brillouin zone of a simple cubic lattice

x y

z

a

bc
a

Fig 3.5b Primitive translation vectors
of the bcc lattice
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c = )(
2

ik 
a



We observe that, these reciprocal lattice vectors are just the primitive vectors of the fcc

lattice, showing that an fcc lattice is the reciprocal lattice of the bcc lattice. The

rhombohedron formed by a, b and c represents the primitive cell of volume V

expressed as

V = a (b  c) =
3

316

a



Similarly, it can be shown that the reciprocal lattice of the fcc lattice is a bcc lattice.

There are in all 12 shortest vectors for the lattice described by (3.18):

)(
2

yx 
a


; )(

2
zy 

a


; )(

2
xz 

a



with the choices of signs being independent.

Planes perpendicular to these vectors at their mid-points enclose the volume of the first

Brillouin zone which turns out to be a rhombododecahedron (Fig. 3.5c).

Face-Centered Cubic Lattice:

The primitive translation vectors of the fcc lattice as shown in fig.3.5d may be taken
as

Fig 3.5c The first Brillouin zone of a bcc crystal. It is
rhombododecahedral in shape.
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a =
2

a
(i + j);

b =
2

a
(i + k); -------------- (3.19)

c=
2

a
(j + k).

The volume of the primitive cell is a . b  c = 3

4
1 a . Using the primitive translations of the

reciprocal lattice are found to be

a* = )-(
2

kji 
a



b* = )(
2

kji 
a


; ----------------- (3.20)

c* = )(
2

kji 
a



These are the primitive translations of a bcc lattice. We have now

G = (2/a) [(h  k + l) i + (h + k  l) j + (h + k + l) k] ---------------- (3.21)

The shortest non-zero G’s are the eight vectors

(2/a) (i j k). --------------- (3.22)

Fig 3.5e The first Brillouin zone
in the fcc lattice.

a

x
y

z

a

b
c

Fig 3.5d Primitive translation vectors of
the fcc lattice.
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The zone boundaries are determined for the most part by the eight planes normal to these

vectors at their midpoints, but it may be seen that the corners of the octahedron thus formed are

truncated by the planes which are the perpendicular bisectors of the six vectors.

(2/a) (2i); (2/a) (2j); (2/a) (2k). --------------- (3.23)

The first zone is then the truncated octahedron shown in fig 3.5e.

3.5.3 Hexagonal space Lattice:-

The primitive translation vectors b1, b2 and b3 are drawn in Fig 3.5f. In relation to the

directions of x, y, z axes as shown in the figure, the primitive vectors of the direct lattice

are given by

b1 = ji
2

a

2

3


a

b2 = ji
2

a

2

3


a
---------------- (3.24)

b3 = kc

Then the primitive vectors of the corresponding reciprocal lattice are

| b1 | = | b2 | = a

| b3 | = cb1

b2

b3

Fig 3.5f Hexagonal space lattice b1, b2 and b3 are the primitive vectors and the
angle between b1 and b2 (on the hexagonal face) is 600.

i

j

z
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z
c

yx
a

yx
a

ˆ
2

ˆˆ
3

12

ˆˆ
3

12

*
3

*
2

*
1





























b

b

b

------------- (3.25)

The unit cell formed by these vectors is again a hexagonal prism as shown by Fig.3.5g.

The significant point about this prism is that

|| *
3b < || *

1b or < || *
2b

3.6 Summary:

One can indicate the orientation of a set of parallel planes in a crystal by their common

normal and the inter planer spacing by restricting the lengths of the normals

proportionately by applying the following rules

1. From a common origin draw a normal to each crystal plane.

2. Set the length of each normal equal to (or) 2 times the reciprocal of the inter

planer spacing dhkl.

3. Mark a point at the end of each normal which represents the crystal plane.

A collection of points obtained corresponding to various crystal planes form a lattice

array and this is known as “reciprocal lattice”. The points in the reciprocal lattice are

called reciprocal lattice points. These points in 3 dimensional space form the reciprocal

lattice space. This is also called k-space. It may be noted that the reciprocal lattice to sc

lattice is itself a sc lattice with a lattice const
a

2
. An fcc lattice is the reciprocal lattice of

the bcc lattice and vice versa.

*
3b

*
2b

*
1b

Fig 3.5g The reciprocal lattice of the hexagonal space lattice shown in Fig 3.5f
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A reciprocal lattice vector is expressed as G = ha* + kb* + lc* where h,k,l are integers.

The fundamental translation vectors a, b, and c of direct lattice and a*, b* and c* of

reciprocal lattice are mutually related as

2,2,2(or)

,,

cba

ba
c

cba

ac
b

cba

cb
a

cba

ba
c

cba

ac
b

cba

cb
a





































The Bragg’s law is also expressed as 2k. G + G2 = 0; Dk = G

A Brillouin zone is the locus of all those k-values in the reciprocal lattice which are

Bragg reflected.

Properties of the reciprocal lattice

(a) Each vector of the reciprocal lattice is normal to a set of lattice planes of the direct

lattice.

(b) If the components of G have no common factor, then |G| is inversely proportional to

the spacing of the lattice planes normal to G, i.e.
lhkd

1
G  .

(c)
   

0

33
22

)(
v





 

cba
cba .

(d) The direct lattice is the reciprocal of its own reciprocal lattice.

(e) The unit cell of the reciprocal lattice need not to be a parallelepiped.

Reciprocal lattice concept and Brillouin zone concept are useful not only in X-ray

diffraction, but also in the band theory particularly in explaining the properties of

materials.

3.7 Key words: Reciprocal lattice – k-space – Brillouin zone

3.8 Review questions:

1. Explain the concept of reciprocal lattice. Obtain reciprocal lattice vectors in terms

of direct lattice vectors.

2. Show that the reciprocal lattice must belong to the same system as the original

lattice.

3 .Derive reciprocal lattice vectors to fcc lattice.
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4. Explain about reciprocal lattice and Brillouin zones in crystalline solids.

5. Derive Bragg’s law in terms of reciprocal lattice.

6. Explain the properties and usefulness of reciprocal lattice.

7. Show that the reciprocal lattice of a hexagonal lattice is a hexagonal lattice with a

rotation of axes.

8. Sketch the first three Brillouin zones of of a 2-dimensional square lattice.

9. A particular two dimensional lattice has the basic vectors a = 2x , b = x + 2y . Find

the basis vectors of the reciprocal lattice.

10. The primitive translation vectors of the horizontal space lattice are

a = y
a

x
a

ˆ
2

3
ˆ

2
 , b = y

a
x

a
ˆ

2

3
ˆ

2
 and c = zcˆ

(a) Show that the volume of primitive cell is ca 2

2

3

(b) Show that the primitive translations of the reciprocal lattice are

z
c

y
a

x
a

y
a

x
a

ˆ
2

,ˆ
3

2
ˆ

2
,ˆ

3

2
ˆ

2 
  cba . So that the lattice is its own

reciprocal but with a rotation of axes.

11. What are Brillouin zones? Determine he reciprocal lattice vectors, which define

the Brillouin zones of bcc and fcc lattices.

12. Show that the volume of the unit cell of the reciprocal lattice is inversely

proportional to the volume of unit cell in direct lattice.

13. Deduce Bragg’s law in terms of reciprocal lattice.

3.9 Text and reference books:

1. Elements of Solid State Physics by J.P. Srivastava (PHI)
2. Elements of solid State Physics by A. Omar (Pearson education)
3. Solid State Physics by C. Kittel (Asia Publishing house)
4. A Text Book of Solid State Physics by S.L. Kakani and C.Hemrajani (S.Chand)
5. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT – I

LESSON: 4

Diffraction Methods

Aim: To learn about the principles of various diffraction methods

Objectives:

 To understand the phenomenon of diffraction of X rays by crystals

 To study the various experimental methods of X ray diffraction

 To understand the principles and uses of Electron and Neutron diffraction methods

Structure of the Lesson:-

4.1 The Diffraction of X-rays by Simple Lattice Arrays of Atoms:

4.2 Bragg’s law

4.2.1 Bragg’s law in Three Dimensions:

4.2.2 The Von Laue Treatment

4.3 Experimental methods in X-ray Diffraction:

4.3.1 The Laue Method:

4.3.2 Rotating Crystal Method:

4.3.3 The Powder-Photograph Method:

4.4 Electron Diffraction:

4.5 Neutron Diffraction:

4.6 Laue Derivation of Amplitude of Scattered Wave:

4.7 Summary

4.8 Key words

4.9 Review questions

4.10 Text and reference books
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Introduction:
Strong x-ray diffraction produced by crystalline solids is based on Bragg’s Law. Crystals are

composed of various intersecting planes each of which itself contains a number of atoms. Since

the inter atomic separations in crystals are of the same order of magnitude as the wavelength of

X-ray (~A), crystals act as diffraction gratings and produce diffraction on being irradiated by X-

rays. W.H. Bragg and his son W.L. Bragg observed in 1913 such characteristic effects in the X-

ray radiation reflected from crystals. In this phenomenon, the crystal planes are believed to act

like plane mirrors. Radiations reflected from two successive parallel planes under certain

conditions may interfere constructively to produce a diffraction maximum. The Bragg

diffraction, shown in fig.4.1a, occurs for specular reflections (angle of incidence = angle of

reflection). The constructive interference occurs when the path difference (2d sin ) between the

interfering rays equals an integral multiple of the X-ray wavelength . That is,

2d sin  = n -------- (4.1a)

where d is the inter planar spacing

 is the angle of the incident radiation with the plane

n = 1, 2, 3 …… (order of diffraction)

The relation (4.1a), which is a mathematical statement of the Bragg law, shows that the

diffraction effects cannot be observed from a family of planes for any arbitrary angle of

incidence. Even if monochromatic X-rays are used, the match among d,  and  has to be sought

to satisfy (4.1a) and get the Bragg diffraction. So, it is clear that Bragg diffraction is very much

different from ordinary diffraction which generally puts no restriction on the incident angle.

Further, since sin   1,

d
d sin d sin 

 

 

Fig 4.1a Bragg reflection from a family of planes with inter planar spacing
d. Note that the incident beam is deflected by twice the Bragg angle .
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  2d --------- (4.1b)

The condition expressed by (4.1b) clearly explains why Bragg diffraction cannot occur for the

visible radiation. The Bragg law as expressed by (4.1a) is essentially the consequence of the

periodicity with only the elastic scattering of radiation taken into consideration .

4.1 The Diffraction of X-rays by Simple Lattice Arrays of Atoms:

When an electron comes in the path of X-ray wave, it is set into forced vibrations by the

periodically changing electric field of the X-ray waves passing by it. Due to such oscillations,

the electron is accelerated and decelerated. We also know that an accelerated electrically

charged particle behaves as a source of electromagnetic disturbance and hence the electron acts

as a source of electromagnetic wave of the same frequency and wave-length as the original X-ray

wave. By this interaction the electron is said to scatter the original X-ray wave .

Let us consider one dimensional regular array of points, spaced a0 apart as shown in fig 4.1.

The atoms scatter X-radiations and produce about itself a new set of spherical wave envelopes.

Any line up of envelopes constitute a combined wave moving in the direction of common

tangent. The cooperative combination of scattered wavelets is

known as diffraction. When the tangent

is parallel to the original wavefront, the

diffraction is known as zero order

diffraction. When the tangent starts

from the inner most spherical envelope

of one atom, continuing through the

second nearest envelope of next atom,

through the third nearest envelope of

next atom and so on, the wave built up

along this front is known as first order diffraction. In this case the envelope difference is

one. Similarly, when the envelope difference is two, we have second order diffraction

i.e., the tangent connects envelope differences of two between neighboring atoms.

Now let us consider the condition of diffraction. Let the rays S1O and S2O represent

distances in the incoming beam, and OS and RT distances in the scattered radiation.

S1

S2

S

T
O

Q

R
P


0



0

a0

Fig 4.1 Diffraction of plane waves by
one-dimensional point grating.
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There will be a maximum of intensity in the direction of OS and RT when the following

condition is satisfied.

S1OS – S2RT = m1 --------- (4.2a)

Where m1 is an integer and  is the wavelength of the radiation. The path difference

(S1OS – S2RT ) can be calculated with the help of fig 4.1.

S1OS – S2RT = OQ – PR = a0 cos   a0 cos 0 ----------- (4.2)

From equations (4.2a) and (4.2), we get

a0 cos   a0 cos 0 = a0 (cos   cos 0) = m1 ----------- (4.3)

The equation (4.3) shows that except zero order, no diffraction maxima can occur for

wavelengths longer than 2a0 because the maximum value of (cos   cos 0)can be equal

to 2. The atoms along one dimensional array scatter secondary radiations in all directions

and hence the three dimensional representation of diffraction pattern may be obtained by

the rotation about the line of grating. The diffraction maxima lie along cones whose

mutual axis is the line of grating. The appearance of spectra of different orders on a

plane parallel to line of atom array is shown in figure 4.2(a). When the incident radiation

comes directly below grating i.e., 0 = /2 and cos0 = 0, the spectrum of zero order

appears as straight line upon this plane and other orders as hyperbolae.

Now we consider the three dimensional case consisting of one-dimensional grating of

equal interval a0 along the X, Y, and Z directions. Corresponding to these axes, let 0, 0,

and 0 be the direction cosines of the incident radiation and ,  and  the corresponding

quantities for a line in direction maxima in scattered radiation. In this case, we have the

following equation (known as Laue’s equations):

a0 (  0) = m1

a0 (  0) = m2 ---------- (4.4)

A

B

O

m1 = 0 m2 = +2m1 = +1

Fig 4.2(a)Diffraction pattern formed on the plane AB
by one dimensional points array at O.
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m3 =+2

m1 = 0

m2 = –2
m2 = –1

m1 = –1
m1 = –2

m1 = +1
m1 = +2

m2 = 0

m3 =+1

Fig 4.2(b) Illustrating the condition of
diffraction in three dimensions.

a0 (  0) = m3

where m1, m2 and m3 are integers.

The figure 4.2(b) illustrates the condition of diffraction in three dimensional gratings.

Let the wave-fronts on the incoming monochromatic radiation be perpendicular to Z-axis.

The axes of the diffraction cones from the component gratings parallel to Z-axis are

vertical and their sections by the plane AB are circles. These circles are shown in figure

4.2(b). The maxima in the diffraction pattern will be a common intersection of two

hyperbolae and circle. As no such

intersection can take plane there is no

monochromatic diffraction pattern at all

produced for a given value of 0, 0, and

0. Since, the angle 0 between the beam

and lattice rows is variable, it is possible

to arrange this variable such that the

three cos 0’s define an identical

direction. In this case diffraction occurs.

4.2 Bragg’s Law:

Schuster pointed out that X-rays are electromagnetic waves with wavelengths thousand

times smaller than the visible light. In order to measure the wavelengths, a grating of

corresponding dimensions is required and hence simple grating can not be used.

Moreover, it is rather impossible to prepare artificially a grating of such fine dimensions.

Laue and his collaborators showed that atoms in crystals are arranged in a regular manner

and the spacing between them is comparable to the wavelength of X-rays and hence the

crystal could act as suitable natural grating for diffracting the X-rays.

W.L.Bragg presented a simple explanation of the observed angles of the diffracted

beams from a crystal. Consider a series of parallel rows in which the atoms are arranged

in a given plane of the crystal. Suppose a parallel beam of X-rays is incident in a

direction making a glancing angle  with the surfaces of the planes. Each atom acts as a

centre of disturbance and sends spherical wave-fronts by Huygens construction. As X-

rays are much more penetrating than ordinary light, it is necessary to consider the rays
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reflected not from a single layer but from several layers together. There will, however,

be no diffracted beam unless the waves reflected from different planes are exactly in

phase. Now they will reinforce themselves and an intense reflected beam will result.

The condition that the reflected wavefronts be in same phase, is that path difference

between the reflected wave from one layer and that from the next must be an exact wave

length or an integral multiple of it. If there is a smallest disagreement in phase between

the beams reflected from successive planes, it causes destructive interference.

Let us consider two parallel rays LMN and PQR, which are reflected by two atoms M

and Q in adjacent layers as shown in figure 4.3(a). The atom Q is vertically below M.

The length of the path PQR is greater than the length of the path LMN. The path

difference is (AQ + QB) and according to the condition of reflection, we have

(AQ + QB) = n ------------ (4.5)

But from figure AQ = BQ = d sin 0

 2d sin 0 = n ------------- (4.6)

This is known as Bragg’s law and gives the condition for the reflection of X-rays from

series of atomic layers in a given plane. For a given set up with monochromatic

radiation, the wavelength  is fixed and hence equation (4.6) has only a particular set of

solutions namely.

,
2

1sin 1
0 








 

d




,
2

2sin 1








 

d


------------- (4.7)









 

d2
3sin 1 

….. etc.

N

R

L

P

A
Q

B

M0

0
d

Fig 4.3(a) Illustrating the derivation of the
Bragg’s Law.
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These are known as the first, second, third, etc. reflection according to n is 1, 2, 3 etc.,

this shows that the crystal cannot given rise to reflections at any angle but only at those

discrete angles indicated by equation (4.7). Bragg reflection can occur only for

wavelength   2d. Due to this fact, the visible light wavelength cannot be used in

diffraction.

The Bragg’s law is a consequence of the periodicity of the space lattice. The law does

not refer to arrangement or basis of atoms associated with each lattice point. The

composition of the basis determines the relative intensity of the various order n of

diffraction from a given set of parallel planes. As stated earlier, Bragg reflection can

only occur for wavelength   2d and due to this fact the visible wavelength cannot be

used in diffraction.

4.2.1 Bragg’s law in Three Dimensions:

The three dimensional diffraction grating of a crystal may be regarded as composed of

three sets of uni-dimensional gratings, each one of which consists of a row of atoms

parallel to one of the three axes of crystal. Let x1, y1, z1 represent the inter atomic

distances along the three axes. Let, 0, 0 and 0 be the direction cosines of the incident

radiation and ,  and  the corresponding quantities for the scattered radiation. Then the

conditions for diffraction along these three sets of linear grating are

x1 (0) = m1

y1 (0) = m2

z1 (0) = m3 -------------- (4.8)

where m1, m2 and m3 are integers representing the order of the diffracted beam from each

of the gratings. Considering the case of a cube crystal x1 = y1 = z1 = a0, the edge of the

unit cube. Squaring and adding equations (4.8), we get

(2 + 2 +2) + (0
2 + 0

2 +0
2)  2(0 + 0 + 0)

=  2
3

2
2

2
1

2

0

mmm
a








 
------------- (4.9)

But we know that

2 + 2 +2 = 0
2 + 0

2 +0
2 = 1 and

0 + 0 + 0 = cos 
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according to well know theorem in trigonometry. Here  is the angle between incident

and diffracted beams.

Applying these results to equation (4.9), we have

2 – 2 cos  =  2
3

2
2

2
1

2

0

mmm
a








 

4 sin2 /2 =  2
3

2
2

2
1

2

0

mmm
a








 

2 sin  /2 =
0









a


   2

3
2
2

2
1 mmm  . ---------- (4.10)

The angle of deviation  can be calculated with the help of equation (4.10). The

equation (4.10) may be regarded as typical in the viewpoint of Laue and in Bragg’s

viewpoint, it can be expressed in the following manner : We know that a plane of atoms

in a crystal is most commonly defined by its ‘Miller indices’, which are the reciprocals of

the intercepts of the plane upon the X, Y and Z axes, respectively. It is customary to

express these reciprocal intercepts in terms of their lowest prime numbers so that if the

reciprocal intercepts are given as h, k, l, the actual reciprocal intercepts will be nh, nk and

nl wher n is any integer. If, therefore, we choose such a plane of atoms that

m1 = nh; m2 = nk: m3 = nl,

we may regard the diffracted beam of equation (4.10) to be a diffracted beam of the nth

order from the plane (h, k, l). Hence

2 sin /2 =
0a

   nlkh 222  .

Or 2/sin
)(

2
222

0 
lkh

a
n


 ----------- (4.11)

But
)( 222

0

lkh

a


is equal to the distance between successive hkl planes, and it is

denoted by d. The grazing angle of incidence (or the angle of diffraction is  / 2 and it is

equal to 0. Hence

n = 2d sin 

If instead of considering the case of cubic crystal, we consider the case of any other

crystal, we arrive at a new expression in the denominator of equation (4.11) which would
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represent the distance d between successive planes for that crystal system. Equation

(4.11) is, therefore, perfectly general and applies to all types of crystals.

4.2.2 The Von Laue Treatment:

Consider the radiation scattered by

two identical scattering centers A and B

separated at a distance


 as shown in

fig 4.3 (b) Here the incident radiation is

assumed to be a parallel beam and the

scattered beam is assumed to be detected

at a long distance away.

Let


0S and


S be the unit vectors along the direction of incident beam and scattered beam

respectively. The path difference between the radiation scattered from radiating center B and

that scattered from A is given by

BP – AQ =


0S


 


S 


 = (


0S 


S )




Where BP and AQ are the projections

of


 on incident and scattered beams

respectively. The vector


0S 


S

represents the direction normal to the

plane that reflects the incident direction

to the scattered direction as shown in fig

4.3 (c).

The plane may be regarded as the reflecting plane in the sense of Bragg treatment.

If 2 be the angle which


S makes with


0S , then the magnitude of (


0S 


S ) i.e., |


0S 


S | = 2

sin  because


0S and


S are unit vectors. The phase difference between the radiation scattered

from the points A and B is given by





 

2
Path difference =



2
(



0S 


S )  ----------- (4.12)

0S


0S


S


S





 B

Q

A

Fig 4.3 (b)

0S


SS


0

S





Reflecting

plane

Fig 4.3(c)
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The condition that there be a diffraction maxima in the direction


S is that the phase

difference between the scattering contributions from A and B must be an integer multiple of 2.

This condition can be satisfied in nearest–neighbor atoms if the radiation scattered by them add

in phase. We know that nearest neighbor atoms are separated by primitive translation distances

a, b and c hence replacing


 by


b,a or


c in equation (4.12) and applying the condition of

maximum diffraction we have



2
(



0S 


S ) 


a = 2h = 2nh



2
(



0S 


S ) 


b = 2k = 2nk -------------- (4.13)



2
(



0S 


S ) 


c = 2l = 2nl

Here h, k, and l may be any three integers. These integers may form a smallest set of integers

in such a way that they may be identical with Miller indices of a crystal plane or they may

contain a common integer factor greater than unity. Considering the common factor as n, we can

write them as h = nh, k = nk and l = nl. Now h, k and l are now three smallest integers identical

with Miller indices. In a particular case n may be unity and in this case either set of integers may

have the same meaning. Let ,  and  be the angles between the scattering normal (


0S 


S ) and

the


-a ,


-b and


-c axes of the crystal respectively.

Now (


0S 


S ) 


a = 2 sin   a  cos  = 2a sin   a  cos 

( |


0S 


S | = 2 sin )

Similarly

(


0S 


S ) 


b = 2b sin  cos  --------------- (4.14)

and (


0S 


S ) 


c = 2c sin  cos 

Applying eqs. (4.14) to eqs. (4.13), we have

2a sin  cos  = nh

2b sin  cos  = nk -------------- (4.15)
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2c sin  cos  = nl

These conditions are known as Laue equations. The equations (4.15) serve to determine a

unique value of , thus defining a scattering direction. From these equations we note that the

direction cosines of the scattering normal (


0S 


S ) are proportional to
a

h
,

b

k
and

c

l
. We also

know that direction cosines of the normal to hkl family of planes are proportional to
a

h
,

b

k
and

c

l
. Therefore, we conclude that the scattering normal (



0S 


S ) is identical to the normal to (hkl)

planes. Hence the (hkl) planes may be regarded as the reflecting planes in the sense of Bragg

treatment. In this way the Laue equations provide the validity of Bragg treatment.

If d be the spacing between two adjacent planes of a family (hkl) we have

d = cos
h

a
= cos

k

b
= cos

l

c
.

Then from either of equations (4.15), we have

2d sin  = n -------------- (4.16)

which is the Bragg equation.

Here n is the order of the diffraction and it is the greatest common factor among the integers

h, k, and l enclosed in paranthesis i.e., (hkl). Thus the first order diffraction maxima for the

(111) planes is referred as (111) reflection. Similarly the second order diffraction maxima for

the family of planes as (222) reflection and so on.

4.3 Experimental method in X-ray Diffraction:

4.3.1 The Laue Method:

The experimental equipment here is relatively simple and is shown in figure 4.4. The crystal

is held stationary in the beam of X– rays. The rays after passing through the crystal are

diffracted and are recorded on the photographic plate place at a certain distance from the crystal.

Before passing through the crystal, the X– rays are limited to a fine pencil by a slit system. The

diameter of the pinhole is importance from the stand point of detail in diffraction pattern. The

smaller is the diameter the sharper is the interference. The crystal is set on a holder to adjust its
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orientation. The Laue method employs white radiation (X– rays beam of continuous range of

wavelength) which is usually obtained from a tungsten target at about 60,000 volts.

We have seen that if a beam of X– rays of a given wavelength  is passed in a given

direction through a crystal, the diffraction is not in general to be expected. This is

because very few sets of planes would be in a favourable position to meet the

requirements of the Bragg equation and reflections would of course be rare. But since

there is a whole range of wavelengths in the continuous spectrum, there will be discrete

values of  which satisfy the Bragg condition-no matter what may be the orientation of

the lattice planes. In another words, for any values of d and 0, there will be found in the

beam some value of  such that diffraction can occur. We know that atoms of crystal

have an orderly arrangement in all the these dimensions in space, hence the diffraction of

X-ray will occur from many families of atomic planes at once, each family picking out

the wavelength which it can diffract at the angle at which it finds itself. The sort of

diffraction pattern obtained is illustrated in figure 4.5.

Examination of the Laue photograph shows that the spots do actually occur at the

positions to be expected from the reflection law. When the primary beam passes along

the axis symmetry of the crystal, the Laue pattern consists of a series of spots whose loci

are ellipses which pass through the central image made by primary beam. The spots on

any one ellipse are produced by planes belonging to the same zone i.e. planes which are

parallel to one common direction.

The Laue pattern can be used to orient crystal for solid state experiments. Let us

consider the case of a crystal with four fold axial symmetry which is oriented with the

axis parallel to the beam. Each reflecting plane then selects a wavelength satisfying the

Crystal

X-RAYS

PINHOLE

P
H

O
T

O
G

R
A

P
H

I
P

L
A

T
E

LEAD DIAPHRAGMS

Fig 4.4 Diffraction of white X-rays by a single
stationary crystal



ACHARYA NAGARJUNA UNIVERSITY 13 ENTER FOR DISTANCE EDUCATION

Bragg equation from the incident beam. The Laue pattern obtained in this case shows the

four fold symmetry.

Practically this method is never used for crystal structure determination. In this case

several wavelengths may be reflected in different orders from a single plane, so that

different orders of reflection may superpose on a single spot. Due to this fact the

determination of a reflected intensity is difficult and thus the determination of the basis.

4.3.2 Rotating Crystal Method:

The rotating crystal method is shown in fig 4.6. The X rays are generated in the X-ray

tube and then the beam is made nearly monochromatic by a filter. The beam is now

passed through collimating system, which permits a fine pencil of parallel X-rays.

Now a crystal is mounted on a shaft which is arranged perpendicular to the incident

beam. This shaft is rotated at a uniform angular rate by a small motor. Here one thing

should be remembered that the crystal dimensions should not be greater than one mm, so

that the crystal may completely be bathed by the incident radiation.

When the crystal is set into slow rotation about a fix axis, the sets of plane come

successively into their reflecting position, i.e., the value of  satisfies the Bragg equation.

Beams from all planes parallel to the

vertical rotation axis will lie in the

horizontal plane. The diffraction pattern

may be registered either upon a

photographic plate perpendicular to X-

rays beam pr upon a film a cylindrical

camera, the axis of which coincides with

the axis of rotation of the crystal.

The two types of photographs may be obtained. The first is complete rotation

photograph in which the turning of the crystal through a series of complete revolutions

takes place. It is observed that each set of planes in the crystal diffracts four times during

the rotation. The four diffracted beams are distributed in a rectangular pattern about the

center point of the photograph. The second is oscillation photograph. In this case,

instead of being given a continuous rotation, the crystal is made to oscillate back and

Collimating system
Crystal

Photographic plate

Rotating shift

To electric motor

Direct beam

Diffracted beam

Fig 4.6. Rotating crystal method.



M. Sc., PHYSICS 14 DIFFRACTION METHODS

forth with a constant angular speed through a chosen angular range. It is observed that

the oscillation photograph lacks the symmetry, which is shown by the complete rotation

photograph. The limited range in oscillation photograph reduces the possibility of

overlapping reflections.

Now we shall discuss the theory of

the rotation photograph. Suppose the

crystal to be rotated in the X-ray beam is

mounted, in such a way that one of the

crystallographic axes coincides with the

axis be the Z-axis. Now consider the two

neighbouring atoms A and B at lattice

poiot along the Z-axis. The distance

between A and B will be primitive translation c as shown in fig 4.7(a). In this case the

condition of diffraction is given by

 nc  )cos(cos --------------- (4.17)

Where n is an integer representing the order of diffraction by the line grating. When

the rotation axis is perpendicular to the beam  = 900 and the condition (4.17) now

becomes

c cos  = c sin  = n ---------------- (4.18)

For various order of diffraction n assumes values such as 0, 1, 2, 3, ….etc giving rise

to the series of equations

cos 0 = sin 0 = 0

cos 1 = sin 1 = /c

cos 2 = sin 2 = 2/c

cos 3 = sin 3 = 3/c --------------- (4.19)

… ... ... ... …

… ... ... ... …

cos n = sin n = n/c

When  is constant, such equations give the loci of all possible diffracted rays as the

crystal turns. These loci are elements of a series of cones, shown in figure 4.7(b) of
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which the half apex angles are given by 1 , 2 ,3 etc. Any element of each of the cones

makes angles 1, 2 , 3 etc. respectively with the horizontal plane.

The central horizontal plane contains

all diffracted beams of order of zero.

The Miller indices of all planes giving

diffracted beams in horizontal plane

must be presented by (h, k, l). similarly

X-rays diffracted by planes of indices (h,

k, l) lie on the first order cone defined by

1 = sin-1 /c. --------------- (4.20)

Hence in general, all the beams

diffracted from planes of indices (hkl) lie

on the n th order cone defined by

n = sin-1

c

n
-------------- (4.21)

Figure (4.7(b)) shows that the cones intersect the cylindrical film in a series of circles

lying in planes perpendicular to the axis of rotation, which becomes a series of parallel

straight lines, known as layer lines when the film is unrolled. The cone for n = 0 is plane

perpendicular to the axis and containing the direction of incidence and the intersection of

this with the film is called the equatorial or zero layer line. The succeeding lines are

termed the first, second, third, etc. layer lines.

The dimensions of the unit cell of the structure are determined in the following way.

The spacings of layer lines give lattice translations. If the distance of the film from the

crystal is known, the distances of the layer lines from the equatorial line give the values

of angle  and  is known, the value of C can be calculated. Now the rotation

photographs are taken separately about all three axes. in this way translations a, b, c are

calculated which give the dimensions of unit cell of structure. The rotating crystal

method is this very powerful of giving the size of unit cell.

A powerful method which is much used now a days is due to Weissenberg. In the

Weissenberg method, the crystal is continuously rotated through 1800 and back and at the

same time the cylindrical camera containing the film moves at a constant speed backward

l = 2

l = 1

l = 0

l = 2

2nd layer line

l = 1

2nd layer line

1st layer line

Zero line

1

2



Fig 4.7(b) Formation of layer lines on
a cylindrical film
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and forward parallel to the axis of rotation. The movements of film and camera are so

synchronized that a given position of camera corresponds accurately to a definite angular

position of the crystal in its rotation. With the help of co-ordinates of the spot on the

film, the angle of reflection as well as the position of the reflecting plane can be known.

To allow only the spots due to one layer line, a metallic cylinder having an equatorial slit

of a few millimeters is introduced between the crystal and the film. The photograph

records all the spots belonging to that layer line spread pit into a characteristic pattern on

the single film and can readily be indexed.

4.3.3 The Powder-Photograph Method:

The powder method is the only method which can be used with that large class of

substances which can not be obtained easily in the form of perfect crystals of appreciable

size. This class includes not only the most metals and their alloys but also a large number

of compounds. The method was devised independently by Debye and Scherrer in

Germany and by Hill in America. In this method a monochromatic X-rays beam is used

and instead of using a single crystal, fine powders of crystalline aggregates of all kinds,

having random of chaotic orientations are used. Such a powder requires no rotation

because every atomic plane is present in every possible orientation and hence the

diffraction depends upon the fact that in a fine powder the grains are arrange in an

entirely chaotic manner. The entirely random orientations of the grains with respect to

the beam means that some of them will be in a position to reflect the radiation from an

important set of planes. Now diffracted rays go out from individual crystallites, which

happen to be oriented with planes making an angle  with the beam satisfying the Bragg

equation. Any fragment in which the normal to the plane in questions makes an angle

(90 - 0) with the incident beam will be in a position to reflect and since all orientations

of the fragment are equally likely, the reflected rays will form a cone, concentric with the

original beam and whose semi vertical angle is 2. There is such a cone of diffracted

rays for each set of planes. The cones intercept the film in a series of concentric circular

halves, from the radii of which the angle  and hence the spacing of the planes can be

deduced. The formation of powder photograph is shown in fig (4.8).
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Filter

Powder
X-Rays



Film

2

R

A

O

l

Fig 4.8(a) Design of an arrangement for taking powder photographs.

The radiation is made approximately monochromatic with the help of filter as shown

in fig 4.8(a). P is the powder and O is the point where the direct beam would have struck

the film. Point A on the film corresponds at which a spectrum with glancing angle  is

formed. The diffracted maxima lie on cones coaxial with the direct beam, and if a

photographic plate is mounted normal to the direct beam, and if a photographic plate is

mounted normal to the direct beam, concentric circles are registered upon it as shown in

fig 4.8(b). Usually a plate or film in the form of cylindrical shame is employed whose

axis is perpendicular to the beam. There appear arcs of the circles as shown in fig 4.8(c).

From fig. 4.8(c) it is observed that when rays are different through small angles, they

make arcs around the central spot on the film, when the rays are diffracted through 900,

the cones become flat and the corresponding trace is a straight line. When the diffracted

angle increases above 900, the curvature is reversed and when the angle approaches to

1800, the traces are nearly circular. Thus the curvature of lines changes from the centre to

the outside of the film.

Fig 4.8(c) Arrangement of lines in a powder photograph

180L 1800R90L 900R00

Monochromatic
X-rays beam Specimen

2

Film

Fig 4.8(b) X-ray powder diffraction camera.
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Now considering fig 4.8(a), if l is the distance from O to A, measured on the film and

R is the radius of camera, then  = l/2R. In this way by measuring l, the value of  can be

calculated.

This method is very useful in investigating the structures of simple crystals

particularly belonging to cubic system of which spacings a, b, c of unit cell are all equal.

In these crystals, there are certain definite relationship between the angles at which

spectra can occur. The spacings of all planes parallel to faces of the same form {hkl} are

equal and therefore produce spectra at the same–angle. In the most general case, in

which all h, k, l are different, there are 48 faces in the form and 24 sets of planes all

having the same spacing. These all co-operate to produce one line on the film. When the

three axes of different length are at right angles to one another, the general form {h, k, l}

corresponds to six different spacing and hence there are six different lines on the film.

4.4 Electrons Diffraction:

In 1924 de Broglie suggested that a material particle like electron in motion is always

associated with a wave whose wavelength is given by  = h/mv = h/p, where h be the

Plank’s constant and p, the momentum of the particle. The experimental evidence of this

fact was provided by Davisson and Germer and G.P. Thomson. Since the material

particle (electron) can be described by wave, it can be diffracted by crystals like X-rays.

The amount of matter required to produce electron diffraction is small as compared with

X-rays diffraction and the time of exposure required for a photographic record is

measured in a fraction of a second. Thus we here introduce the diffraction of electrons in

connection with the exploration of the crystal structure. The discussion would be

confined to comparison between the electron diffraction and X-rays diffraction.

First of all we shall calculate the wavelength of an electron beam appropriate to the

crystal diffraction work. According to de Broglie idea, the wavelength  associated with

the particle is given by

mv

h
 ------------ (4.22)

If the electrons are accelerated by an applied electric potential V, then the kinetic energy

½.mv2of the electron is given by
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½ mv2 = eV ----------- (4.23)

where e is the electronic charge.

From equation (4.22) and (4.23) we have














VmeV

h 150

)2(
 ----------- (4.24)

where  is in Å and V in volts.

It is evident from equation (4.24) that only 150 volts are required to produce electrons

of a wavelength of one Å suitable for diffraction work. The X-rays suitable for

diffraction work require approximately 12000 volts for the same wavelength.

The diffraction of electrons takes place in a similar way as in case of X-rays and the

diffraction pattern obtained can be interpreted exactly in the same way as X-rays

diffraction pattern.

Some special features of electron diffraction are:

1. In contrast with X-rays, electrons are scattered by the nucleus as well as by the

electrons in atoms.

2. The scattering factor for electrons decreases with increasing value of Bragg’s

angle  as in X-rays. However, the scattering efficiency of atoms is considerably

greater for electrons than X-rays. Due to this reason the diffraction of electrons

by gases requires much shorter exposure times than does X-rays diffraction.

3. Electrons are charged and interact strongly with matter as compare with X-rays.

4. Electrons penetrate a relatively short distance into a crystal. At normal incidence,

an electron of about 50keV has a penetration depth of only about 500Å, whilest

for small angles of incidence this may be only about 50 Å measured perpendicular

to the surface. Thus the electron diffraction is particularly useful in investigating

the structure of thin surface layers such as oxide layers on metals. These layers

are not detected by X-rays diffraction because they penetrate deep into the solids

and produce a pattern, which is the characteristic of the interior of the solid.

5. Electron diffraction can be used for the studies of orientation, lattice parameter

and perfection of evaporated thin films.

6. By electron diffraction, the dislocation patterns in thin metallic foils can be see.
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4.5 Neutrons Diffraction:

As neutrons are associated with wave and hence they can be diffracted from crystals

like electrons. Here we shall consider the neutron diffraction by crystal in connection

with the exploration the crystal structure, of course, the discussion will be confined to a

comparison between X-ray, electron and neutron diffraction.

First of all we shall calculate the wavelength of suitable neutrons. We know that

the wavelength in case of neutrons can be expressed as

vM

h

p

h

n

 ------------ (4.25)

E = )(
22

222

Kp
m

K

m

p





Jouls
27

2168

103

1010









jouls21103 

= 200K = 0.02 eV

where Mn is the mass of the neutrons. The mass of a neutron is 2000 times large in

comparison to an electron i.e., the wavelength associated with a neutron is about 1/2000

times that for an electron of the same velocity. The energy  of the suitable neutrons

may be calculated by the following expression

)M2( n v

h


 ------------ (4.26)

By equation (4.26), the energy  of neutrons is approximately 0.1 e.V. for  = 1Å

which is required for diffraction work. It is important to note that for X-rays of 1Å the

energy required is 104 e.V. while for electron it is about 102 e.V. In case of neutrons, the

diffraction patterns are formed in a similar manner a in case of X-rays.

Some special features of the neutrons diffraction are :

1. Neutrons are scattered chiefly by the nuclei of the atoms.

2. As the wavelength of the neutrons is much greater than the dimensions of the

scattering nucleus (10-13 cm), the atomic scattering factor is nearly independent

of the scattering angle.
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3. The scattering power does not vary in a regular manner with atomic number. Due

to this fact the light elements such as hydrogen and carbon produce relatively

strong scattering than X-rays scattering because the X-rays scattering is done by

electrons. This feature of the neutron diffraction enable us to deduce the positions

of hydrogen and carbon atoms in a number of organic crystals.

4. The scattering from neighboring elements in the periodic system may differ

appreciably. Hence neutron diffraction allows to detect with relative ease,

ordered phases of an alloy, such as FeCo, where as their detection by X-rays is

difficult.

5. The neutrons possess magnetic moments and these moments interact with the

magnetic moments of the scattering atoms of the solid. This gives an additional

scattering mechanism for neutrons, which often out-weights the nuclear

scattering. Thus neutron diffraction methods are exceedingly valuable in

structural studies of magnetic crystals.

In paramagnetic substances in which the atomic moments are randomly oriented, the

magnetically scattered neutrons are incoherent in phase resulting in a diffuse background.

This diffuse background of magnetic scattering is then superimposed on the lines

produced by the nuclear scattering.

In ferromagnetic substances in which the magnetic moments within a domain are

linked up in parallel, the diffuse background is absent.

In an antiferromagnetic solid the magnetic moments are aligned antiparallel and hence

from the point of view of the neutron such atoms would appear to be different.

Figure (4.9) shows neutron diffraction patterns for Mno (Mn ion has a permanent

moment), which is known to be an anti-ferromagnetic solid below and above its curie

temperature (1200).
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At room temperature (2930K) the pattern shows coherent diffraction peaks, like those

of X-ray diffraction, and in the positions expected from a lattice of NaCl structure. The

diffuse background of magnetic scattering is also a visible, which is inductive of no

magnetic order at all. At low temperatures, in a addition to these peaks certain other

peaks are located at positions which one can not expect on the basis of chemical structure

of a unit cell.

4.6 Laue Derivation of Amplitude of Scattered Wave:

Let us consider the case of a plane wave which is incident on a small crystal. Again

let in the free space at point x the amplitude be F, then

)(
0)( tieFxF  xK --------------- (4.27)

Referred to an origin at x = 0. Equation (4.27) represents a traveling wave having wave

vector K, angular frequency  and the wavelength  = 2/K, Now we place the crystal in

the beam with origin O chosen anywhere within the crystal. Here it is assumed that the

incident beam is not greatly disturbed by crystal i.e., neither by the refractive index nor

by the loss of energy through scattering. At a point


 , the amplitude of the incident

wave is given by
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F(


 ) = F0e
i(K.



 ) [at instant of time t = 0] ------------ (4.28)

The atom at


 will scatter some of the radiation out of the incident beam. As in fig

4.10 (a) and (b), the amplitude of the scattered radiation as seen at point P is R =


 + r

i.e., at a point distant r from


 outside the crystal will be proportional to











r

iKreiK
eF )( 0

 -------------- (4.29)

where the first parenthesis contains the amplitude and phase factor of the incident beam

and the second parenthesis describes the spatial variation of the radiation scattered from a

point atom at


 . The total phase factor at R is

eiK .



 . eiKr = e(iK .



 + iKr) ------------- (4.30)

From fig 4.10(c), we have

r2 = (R –


 )2 = R2 + 2  2R cos (


 , R) = R2












),cos(
2

1
22

2

R
RR




when R is at a large distance so that /R << 1, we have

Fig 4.10(a) Showing an electromagnetic
wave incident upon a small crystal.
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Fig 4.10(b) Showing the radiation
scattered 






R

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r
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


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

Fig 4.10(c) Showing the wave scattered at O as received at R
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 R2











),cos(
2

1
2

R
R




or r  R[1 – (2/R) cos (


 , R)]1/2

 R –  cos (


 , R)

now from equation (4.30), the total phase factor of the scattered wave on arriving at R

is

)],cos([ RiRiie  KKK  ---------------- (4.31)

Now it can be assumed that the amplitude of the wave scattered from an element of

volume of the crystal is proportional to the electron concentration n(


 ) in the volume

element. Hence the amplitude of the scattered radiation at R will be proportional to the

integral

)]cos([.)(. RiiendV  



KK -------------- (4.32)

The factor iKRe is omitted, being constant over the volume. Equation (4.32) can be

written in more compact form i.e.

Ri
endV




 .
.)(.


 -------------- (4.33)

where

iK .


  iK cos (


 ,R)  i


 (K - K)   i


 . K,

K is the wave vector in scattering direction R and

K  K K.

Equation (4.33) gives the amplitude of the scattered wave.

Scattering from lattice of point atoms.

Consider a finite crystal and let all points be scattering centers.

The lattice points are defined by



 = ma + nb + pc ------------- (4.34)

where m, n, p are integers. The amplitude a of radiation by entire crystal seen at R will

be proportional to
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We know that the intensity is the square of the amplitude, hence

Intensity = 222 |K)].(c[-ip.exp||K)].(b[-in.exp||K)].(a[-im.exp| 
pnm

------------- (4.36)

Now we shall consider the value of one sum out of the three from equation (4.36). Let

us consider the crystal of dimension Ma is the direction a where M is integer. We may

let that m, n and p run from 0 to (M – 1), the crystal will have M3 primitive cells because

the total volume will be M3 abc; abc is the volume of one cell. Thus

|)].(.[exp| 2
1

0






aim
M

m

This is a geometric series and the summation therefore will be
2
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Now using the series.
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with x  exp . [-i (a. K)] ----------- (4.38)

Thus sum in equation (4.37) can be written as
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Multiplying by its complex conjugate, we get
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------------- (4.39)

A plot of the function in equation (4.39) is shown in figure (4.11) for M = 20. The

intensity will be maximum when each term in the sum on left hand side is unity i.e.

a . K = 2q ------------- (4.40)
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where q is an integer. At these values equation (4.39) has a value M2.,

Now we shall consider the width of the

maxima as the value of a . K is slightly

changed. Let it be changed by  where

 is the smallest non-zero number i.e.

a . K = 2q + .

When  = 2/M, we have

Sin ½ M (a . K) = Sin ½ M (2q + 2/M) = sin  (Mq + 1) = 0

In this way if we choose  = 2/M, the width of maxima is proportional to 2/M or 1/M.

This shows that larger is the length of the crystal, smaller will be the width of maxima.

The area under the central maxima of equation (4.39) is given by the height (M2) times the

width (, 1/M), so the area is proportional to M, the number of atoms in the line. If the crystal in

three dimensions has M3 atoms, the scattered intensity will be directly proportional to M3.

4.7 Summary:

The Bragg law, shows that the diffraction effects cannot be observed from a family of planes

for any arbitrary angle of incidence. Even if monochromatic X-rays are used, the match among

d,  and  has to be sought using the relation 2d sin  = n, to get the Bragg diffraction. Bragg

diffraction is very much different from ordinary diffraction which generally puts no restriction

on the incident angle.

Further, since sin   1,

The condition expressed by   2d explains why Bragg diffraction cannot occur for the visible

radiation.

Laue and his collaborators showed that atoms in crystals are arranged in a regular manner and

the spacing between them is comparable to the wavelength of X-rays and hence the crystal could

act as suitable natural grating for diffracting the X-rays.

The Laue method employs white radiation (X– rays beam of continuous range of wavelength)

which is usually obtained from a tungsten target at about 60,000 Volts.

We know that atoms of crystal have an orderly arrangement in all the these dimensions in

space, hence the diffraction of X-ray will occur from many families of atomic planes at
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once, each family picking out the wavelength which it can diffract at the angle at which it

finds itself. The Laue pattern can be used to orient crystal for solid state experiments.

Practically this method is never used for crystal structure determination.

In the Weissenberg method, the crystal is continuously rotated through 1800 and back and

at the same time the cylindrical camera containing the film moves at a constant speed

backward and forward parallel to the axis of rotation. The movements of film and

camera are so synchronized that a given position of camera corresponds accurately to a

definite angular position of the crystal in its rotation. With the help of co-ordinates of the

spot on the film, the angle of reflection as well as the position of the reflecting plane can

be known.

The powder method is the only method which can be used with that large class of

substances which can not be obtained easily in the form of perfect crystals of appreciable

size. This class includes not only the most metals and their alloys but also a large number

of compounds. This method was devised independently by Debye and Scherrer in

Germany and by Hill in America. In this method a monochromatic X-rays beam is used

and instead of using a single crystal, fine powders of crystalline aggregates of all kinds,

having random of chaotic orientations are used. Such a powder requires no rotation

because every atomic plane is present in every possible orientation and hence the

diffraction depends upon the fact that in a fine powder the grains are arrange in an

entirely chaotic manner. The entirely random orientation of the grains with respect to the

beam means that some of them will be in a position to reflect the radiation from an

important set of planes. Now diffracted rays go out from individual crystallites, which

happen to be oriented with planes making an angle  with the beam satisfying the Bragg

equation.

ELECTRON DIFFRACTION: The wave length associated with an electron is given by

the relation














VmeV

h 150

)2(
 where  is in Å and V in volts.

It is evident from the equation that only 150 volts are required to produce electrons of a

wavelength of one Å suitable for diffraction work. The X-rays suitable for diffraction

work require approximately 12000 volts for the same wavelength.
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The diffraction of electrons takes place in a similar way as in case of X-rays and the

diffraction pattern obtained can be interpreted exactly in the same way as X-rays

diffraction pattern. Electron diffraction is particularly useful in investigating the structure

of thin surface layers such as oxide layers on metals. These layers are not detected by X-

rays diffraction because they penetrate deep into the solids and produce a pattern, which

is the characteristic of the interior of the solid.

Neutron diffraction : The mass of a neutron is 2000 times large in comparison to an

electron i.e., the wavelength associated with a neutron is about 1/2000 times that for an

electron of the same velocity. The energy  of the suitable neutrons may be calculated

by the following expression

)M2( nv

h


 By this equation, the energy  of neutrons is approximately 0.1 e.V.

for  = 1Å which is required for diffraction work. It is important to note that for X-rays

of 1Å the energy required is 104 e.V. while for electron it is about 102 e.V. In case of

neutrons, the diffraction patterns are formed in a similar manner a in case of X-rays.

Some special features of the neutrons diffraction are :

Neutrons are scattered chiefly by the nuclei of the atoms.

As the wavelength of the neutrons is much greater than the dimensions of the scattering

nucleus (10-13 cm), the atomic scattering factor is nearly independent of the scattering

angle.

The scattering power does not vary in a regular manner with atomic number. Due to this

fact the light elements such as hydrogen and carbon produce relatively strong scattering

than X-rays scattering because the X-rays scattering is done by electrons. This feature of

the neutron diffraction enables us to deduce the positions of hydrogen and carbon atoms

in a number of organic crystals.

The scattering from neighboring elements in the periodic system may differ appreciably.

Hence neutron diffraction allows to detect with relative ease, ordered phases of an alloy,

such as FeCo, where as their detection by X-rays is difficult.

The neutrons possess magnetic moments and these moments interact with the magnetic

moments of the scattering atoms of the solid. This gives an additional scattering
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mechanism for neutrons, which often out-weights the nuclear scattering. Thus neutron

diffraction methods are exceedingly valuable in structural studies of magnetic crystals.

In paramagnetic substances in which the atomic moments are randomly oriented, the

magnetically scattered neutrons are incoherent in phase resulting in a diffuse background.

This diffuse background of magnetic scattering is then superimposed on the lines

produced by the nuclear scattering.

In ferromagnetic substances in which the magnetic moments within a domain are

linked up in parallel, the diffuse background is absent.

In an antiferromagnetic solid the magnetic moments are aligned antiparallel and hence

from the point of view of the neutron such atoms would appear to be different.

4.8 Key words :

Bragg’s law - Bragg’s diffraction - Wave front – Grating - Laue’s method -

Weissenberg’s method - Rotating crystal method - Oscillating crystal method - White x-

rays - Electron diffraction - Neutron diffraction - Elastic scattering - Structure factor.

4.9 Review questions:

1. Obtain an expression for the intensity of the diffraction of X rays by a simple three

dimensional lattice of scattering points and hence derive Bragg’s law.

An orthorhombic crystal has cell edges a = 4A, b= 2A, c= 6A . X rays of wave length

1.5A suffer a Bragg’s reflection in the first order from the plane (2,1,3) . Find the

glancing angle of the incident X ray.

2. Derive the Bragg’s law. Use it to explain the principle of X-ray powder diffraction

pattern. How can a simple cubic and fcc cubic crystals be distinguished by X ray

diffraction.

3. What are the various techniques used of x ray diffraction. State in each case

(i) The nature of X-rays used (ii) The nature of sample (iii) The information obtainable

or application.

4. Develop Laue conditions for diffraction of waves by a crystal. Out line the procedure

to determine the lattice parameters by the powder method.
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5. Derive the condition for a systematic absence of reflections in bcc and fcc crystals.

What are the absent reflections in CsCl. Why is the x ray diffraction pattern of NaCl

different from that of KCl and in what way.

6. Powder diffraction patterns of three monoatomic cubic crystals with bcc and fcc

structures are recorded using Debye-Scherrer camera. The angles of diffraction in degrees

of the first four diffraction lines for the two samples marked as and B are as under

A B

42.9 28.8

49.2 41.0

72.0 50.8

87.3 59.6

Determine the structure type of each sample. What is the size of the cubic cell in

each case?. Take the wavelength of incident X-rays as 1.5A.

7. Describe briefly the methods for crystal structure determination by X-ray diffraction.

Explain the importance of geometrical structure factor taking the example of cubic

crystals.

8. The first reflection using copper K-alpha radiation from a sample of copper powder

(fcc) has value of 86.7 mm. Compute the camera radius. (57.3mm)

9. Calculate Bragg angle at which electrons accelerated from rest through a potential

difference of 80V will be diffracted from (111) planes of an fcc crystal of lattice

parameter 3.5A.

10. A beam of thermal neutrons emitted from the opening of a reactor diffracted by the

(111) planes of nickel crystal at an angle of 28o 30’. Calculate the effective temperature of

the neutrons, Nickel has fcc structure and its lattice parameter is 3.52A.

11. (a) Discuss the theory relevant to the crystal structure determination by X-ray

diffraction technique apply the theory for a cubic crystal.

(b) Compare the relative advantages between electron, X-ray and neutron diffraction

techniques.

12. (a) Explain the Bragg’s law employed in X-ray diffraction in crystalline materials

(b) Explain how the Bragg’s law or coalition is satisfied for laws diffraction and
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powder deffraction.

(c) Distinguish between electron and neutron diffraction methods.

4.10 Text and Reference books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A.Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C.Kittel (Asia Publishing house)
6. A Text Book of Solid State Physics by S.L.Kakani and C.Hemrajani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakasan)
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UNIT – II

LESSON: 5

Nature of Binding in crystals

Aim: To know about the various kinds of binding forces that result in different types of

crystals.

Objectives of Lesson:

 To know different types of bonds involved between atoms in crystals and also

knowing the origin of bonds.

 To know about the cohesive energy, the electrostatic and repulsive overlap

energy.

 To know about various types of crystals classified on the basis of nature of

bonding.

 To know the relation between atomic radii and lattice constants.

Structure of the Lesson:

5.1 Cohesion of atoms.

5.2 Primary bonds.

5.2.1 Covalent bond.

5.2.2 The metallic bond

5.2.3 The ionic bond.

5.2.4 Mixed bonding.

5.3 Secondary bond

5.3.1The van der Waal’s bond

5.3.2 The hydrogen bond

5.4 Cohesive energy

5.4.1 Ionic crystals

5.4.2 Covalent Crystals

5.4.3 Metallic Crystals

5.4.4 Molecular crystals

5.4.5 Hydrogen bonded Crystals
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5.5 Summary

5.6 Key words

5.7 Review questions

5.8 Text and reference books

Introduction:

Crystalline materials can be classified in many ways. We have already seen one type

of classification based on lattice structures. Crystals can also be classified according to

their properties like mechanical, thermal, electrical, magnetic etc,. The most convenient

basis for classification of crystals is the character of the inter-atomic binding forces in

various types of crystalline materials. According to this scheme of classification of

crystals, all solids fall into one of five general categories; (i) molecular, (ii) ionic, (iii)

covalent, (iv) metallic and (v) hydrogen bonded crystals. The distinction in the said five

categories is not a sharp one, because some materials may belong to more than one class.

From the very existence of solids we may draw two general conclusions (i) there must

act attractive forces between the atoms or molecules in a solid which keep them together;

and (ii) there must be repulsive forces acting between the atoms as well, since large

external pressures are required to compress a solid to appreciable extent. In order to

understand the importance of these two types of forces, let us consider the simplest

system e.g., a single pair of atoms.

5.1 Cohesion of Atoms:-

Consider two atoms kept at a finite separation. The nature of forces between atoms or

the binding energy depends primarily on the distribution of positive charge over the inner

ion core and of negative charge over the outer space within the atoms. Their potential

energy is zero when the atoms are infinite distance apart. When they are brought closure

to a finite separation, there will be a potential energy for the system whose sign depends

on the relative order of magnitude of the repulsive and attractive forces. The attractive

part of the potential energy is conventionally treated as negative since the atoms

themselves do the work of attraction. The positive sign for the repulsive potential energy

comes from the concept that in binding the atoms closer, the work is done against the
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repulsive force by an external energy. The total potential energy may be represented by a

general potential of the form.

U(r) =
mn r

B

r

A
 ---------- (5.1)

Where r is inter-atomic distance and A and B are constants. The net force is expressed as

F(r) =
11

)(



mn

mBnA

d

rdU

rrr
---------- (5.2)

The first term represents the attractive force and the second repulsive. The variation of

potential energy and force as a function of the inter-atomic separation is traced in fig. 5.1.

The net force at the separation r0, when the atoms are in stable equilibrium forming a

diatomic molecule, is zero [Fig 5.1(b)]. Obviously the potential energy at this position is

minimum with the negative sign [Fig 5.1(a)].

So at the interatomic seperation r0 , F(r) in equation 5.2 is zero. From this it follows that
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The minimum energy conditions require that 0

0

2

2


rr

dr

Ud
. This condition leads to m > n.

It means the repulsive forces be of shorter range than the attractive forces. Here, we must

note that although the attractive and repulsive forces are equal in equilibrium, the

attractive and repulsive energies are not equal, since n  m. We also must note that

although the energy cannot, in general be represented accurately by a relation of the type

shown in equation 5.1 the above treatment provides some useful qualitative conclusions

about the bonding of atoms in the solids.

From the above argument it is evident that the atoms are brought closure the repulsive

force increases faster than the attractive force at short distance. When the two atoms stay

in stable equilibrium at a certain separation they are said to have formed a chemical bond

between them. The atoms spend a part of their energy in bond formation or we can say

that a bond stores a part of the energy of the atoms. Therefore, the electron energy of

atoms decreases when a large number of them collect together to form a solid. This
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suggests that when a solid is heated to break it finally forms isolated atoms, the energy

stored in bonds must be carried away by the individual isolated atoms. How strongly the

atoms are bound together in a solid is represented by its cohesive energy (or binding

energy). A proper discussion on cohesive energy will be taken up later, after dealing with

the types of bonding in solids. When on solidification a pronounced lowering of electron

energy takes place, the bonds formed are strong and called primary bonds. On the other

hand, if the lowering of electron energies is small weak bonds are formed and referred to

as secondary bonds.

Fig.5.1 (a): Potential energy of a system of two atoms as a function of their inter atomic
separation. (b): Force between two atoms as a function of their inter atomic separation.
The r0 denotes the separation at which the bond formation occurs.

The quantum mechanical interpretation of the probability function comes handy in

understanding that some bonds are strong and directional while the others are weak and

non-directional. It can be done qualitatively by acquiring information about the energies

and the location of the bonding electrons with respect to positively charged ion cores.

The probability that an electron confined in the small volume dV, may lie in the orbital 

is given by dV. For the large value of the probability amplitude  in a certain

direction the bond formed is strong and concentrated along this direction and it behaves

as directional. The small value of  corresponds to the weaker non-directional bonds.

Further more, if  is spherically symmetric non-directional bonds result. The spherical

symmetry means that the chance of finding a bonding electron in all directions is equal
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and an atom can approach the other atom from any direction over the angle 2 for

making the bond. Such a bonding gives rise to close packing exhibited by metals.

Now, we set out to outline the description of various forms of binding mechanisms in

solids. Based on their comparative strength the bonds formed in various binding

processes, they may be broadly be classified as (a) primary bonds (b)secondary bonds.

5.2 Primary Bonds:

Three limiting cases of primary bonds are identified as (a) covalent bonds (b) metallic

bonds and (c) ionic bonds

5.2.1 The Covalent Bond:

A covalent bond involves the mutual sharing of a pair of electrons between a pair of

atoms. The spins of the two electrons are oriented in opposite directions. In solid state,

the most stable covalent bonds are formed between non-metallic atoms like those of N,

O, C, F and Cl. Some of the other elements that are well known to form covalent bonded

crystals include Si, Ge, As and Se. But the nature of bonds in these solids is only partly

covalent. Strong covalent bonds are formed when each atom has at least one half filled

orbital. In such a situation only there will be substantial lowering in the electrons energy

when each of the bonding electrons occupies the orbitals the two atoms simultaneously.

The lowering of electronic energy is proportional to the degree of overlap of the bonding

orbitals. The more the overlap, the stronger the bond. Either the electrostatic repulsion or

the Pauli exclusion principle controls the overlap. The molecular hydrogen offers itself as

the simplest candidate for the explanation of the covalent bonding. Hydrogen has a single

electron, which occupies the 1s orbital in the ground state. The orbital is half-filled and

the Pauli principle allows it to accommodate one more electron with the opposite sign.

Thus when two hydrogen atoms are brought closer, their electron charge distribution

overlap and the covalent bond is formed by having the two electrons with opposite spins

in the 1s orbital belonging to both the atoms. This configuration being lower in energy

than the one in which the second electron goes into the 2s orbital with the probability of

the same spin orientation belongs to the hydrogen molecule in the ground state.

The effect of repulsive interaction as a compulsion of Pauli principle is best

demonstrated in rare gas solids whose atoms have completely filled orbitals with little
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chance of overlap. This results in a large inter atomic distance (3.76
o

A in Ar) compared to

the bond length in a covalent-bonded molecule such as Cl2 (2
o

A ). There is a deficiency of

one electron in the outermost shell of chlorine (3p5) to saturate it. Because of this the

outermost orbital of a chlorine atom has the tendency to overlap with that of the

neighboring chlorine atom in search of the deficit electron. Since this forms the basis of

covalent bond formation, the covalent bond is also known as saturable bond.

The discussion on the covalent bonding remains in complete without a few remarks on

elements in group IV of the periodic table (C, Si, Ge and grey Sn). These are extremely

covalent elements and crystallize in the tetrahedrally coordinated diamond structure.

Each atom participates in four covalent bonds with its four neighbours. These bonds are

extremely directional and difficult to tilt. This provides the material with unusual strength

and hardness. The wide use of diamond for making cutting tools is a well-acknowledged

fact. Also the strong directional nature of the covalent bonds rules out close packing and

increases emptiness in covalent bonded crystals. For example the fraction of volume of a

diamond crystal actually occupied by atoms is a mere 0.34 which is 46 percent of the

value for the close-packed fcc and hcp structures. In view of this fact the diamond lattice

is called the empty lattice.

5.2.2 The Metallic Bond:

In the modern theory of metals the valence electrons being loosely bound to the

respective parent atoms are treated as common to the whole assembly of atoms

comprising the metal. The valence electrons generally one or two per atom, are

considered free and, therefore, allowed to move freely over the whole volume of the

metal. The metal is pictured as an assembly of positive metal ions embeded in a sea of

free electron gas. The attraction between the metal ions and the electron gas gives rise to

a strong cohesive force. The free electron gas serves as the glue. The concept of free

electrons contributes significantly to the success of this model in explaining most of the

properties of metals such as high electrical and thermal conductivities, high reflectivity

and opacity. In reality the motion of valence electrons also called conduction electrons

with reference to metals are affected, no matter how slightly, because of the presence of

other particles including the fellow electrons. A complete theory does not take care of
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this effect, which is of crucial advantage in explaining some of the dramatic properties

(e.g. superconductivity) of solids in general.

Since the metallic bonds involve loosely bound electrons there can be a relatively

large number of probable orientations for a metal bond. In other words, the bonds are

weak and non-directional. This characterizes metals as having the tendency to crystallize

in relatively closed packed structures with a large number of nearest neighbours. This fact

is in agreement with the observed structures of metals–hcp, fcc and bcc. In all these

structures the metallic bond is not saturated. For example in the bcc structure of lithium

each bond has only 1/4th of an electron since the only outermost electron (3s1) is involved

in eight bonds with atoms at the corners of the cube. Still the modern picture assumes that

the metallic bond is more closely related to the electron–pair or covalent bond then to an

ionic–type bond, which is discussed next.

5.2.3 The Ionic Bond:

The formation of an ionic bond is based on an electrostatic attraction between the

positive and negative ions that are derived from the free atoms by the loss or gain of

electrons. The ionic bond is responsible for the binding of the salts that comprise the

combinations of the elements located on the right– and left–hand sides of the periodic

table. Alkali halides are the typical representatives of such salts. The electronic

configuration of the alkali and halogen atoms is nearly closed-shell configuration. The

bond formation is facilitated by the ease with which the alkali atom looses one electron

and the halogen atom accepts it to acquire closed-shell configuration. In another way we

say that the origin of binding lies in the low ionization energy of the alkali atom and high

electron affinity of the halogen atom. Take the example of NaCl in which the sodium

atom has one electron more (1s2, 2s2, 2p6, 3s1) than the neon (1s2 2s2 2p6) and the chlorine

atom is one electron short (1s2, 2s2, 2p6 3s2 3p5) of the argon configuration (1s2 2s2 2p6

3s2 3p6). This shows how Na and Cl atoms get bonded when brought close because of

their easy ionization to Na+ and Cl ions. Each ion has the tendency of being surrounded

by as many ions of the opposite type as possible. The coordination number and the

nearest neighbour distance are governed jointly by the geometrical factors and the

repulsive interaction between the like ions. But the tendency of one type of ions to
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surround an ion of the opposite type binds a continuous network of ions to form the

crystal instead of forming small discrete molecules.

Ionic bonds are neither saturable nor directional. Even then they are strong enough as

is confirmed by the hardness, high melting point and low coefficient of expansion of

ionic crystals.

5.2.4 Mixed Bonding:

The discussion of primary bonds remains inconclusive without commenting on the

purity of bonds in crystals. The mixture of bonding types has been discussed by Pauling

in great detail. In particular it is a matter of general observation that the bonding in the

most of the covalent crystals has a small component of ionic bonding. Ash croft and

Mermin elucidate it for GaAs by picturizing the electron density of Ga and As ions in the

crystal. Phillips developed a semi-empirical theory of fractional covalent or ionic

character bonds in a dielectric crystal. His calculations show that bonds in Ge and Si are

purely covalent. But the bonding in most of the binary crystals turns out to be of mixed

nature LiF, NaCl and RbF are formed to be almost purely ionic as the fraction of ionic

character in them turns out to be 0.92, 0.94 and 0.96 respectively.

The ionic character of a solid may be determined by analyzing its X-ray scattering

data. This is an effective tool as the scattering power depends on the number of electrons

possessed by the constituent ions. For example in ionic bonded KCl each of the ions

Na+

Na+

Cl-

Cl-

0.05

Fig:5.2: Electron density distribution in the basal plane of NaCl.
The number of contours expresses the relative electron density.
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K+and Cl- has 18 electrons. Hence the scattering power for K+ and Cl- is found to be

equal. The electron density distribution in the basal plane of NaCl as derived by G.

Schoknecht is shown in fig.5.2.

5.3 Secondary Bonds:

The limiting cases of secondary bonds are not easily separable. Van der Waal and

hydrogen bonds will be discussed in this category. The electric dipole-dipole interaction

forms the basis of these bonds.

5.3.1 The van der Waal’s Bond:

One may be curious to know why neutral molecule or noble gases should undergo

liquefaction and crystallization. Consider the noble gas atoms, which have closed-shell

structure and are represented as spherical rigid charge distributions. Such electron

distributions are reluctant to overlap when any two atoms are brought close to each other.

But there must be some attractive forces between atoms bringing about the cohesion and

finally the solidification. Of these forces one is Van der Waal force we are interested in.

These are weak forces arising out of the attractive interactions between fluctuating

electric dipoles. By chance for a fraction of a second there could be more number of

electrons on one side of the nucleus than on the other. This destroys the spherical

symmetry of the electron charge distribution and momentarily displaces the center of the

negative charge (the electrons) from the positive charge (nucleus). Thus an atom becomes

a tiny electric dipole, which is capable of inducing an electric dipole moment in the

neighbouring atoms. The two dipoles attract each other through weakly resulting in Van

der Waal binding. As the electron charge distribution keeps fluctuating the electric

dipoles are called fluctuating dipoles.

Suppose we have two atoms 1and 2 of a noble gas separated by a distance r. As

described above when atom 1 acquires an instantaneous electric dipole–moment p1, an

instantaneous electric dipole-moment p2 may be induced in atoms 2 because of the

polarization caused by the electric field E of the atomic dipole 1 at atom 2. It is now a

trivial exercise in electrostatics to show that the interaction energy of two dipoles p1 and

p2 (= -p2.E) varies with separation as 1/r6. These forces have been treated by London and

Margenau on a quantum mechanical basis. An approximate expression for the interaction

energy of two atoms or ions with filled shell electron configuration is
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 where I1 and I2 refer to ionization energies of the particles

involved and 21 , refer to polarizabilities. The nature of these forces is essentially a

quantum effect, although the fact that they vary with the sixth power of the distance may

easily be shown from classical considerations.

The interaction is expressed as A/r6 where A is a constant. It must be noticed that the

Van der Waal bonds are neither saturable nor directional. Barring helium all the noble

gases crystallize in the closed packed fcc structure. These weakly bound crystals are

transparent insulators and characterized by low melting points.

5.3.2 The Hydrogen Bond:

A number of covalently bonded molecules behave as permanent electric dipoles. HF

and H2O are the two most talked about examples. The attraction between the positive end

of one dipole and the negative end of the neighbouring dipole forms clusters or large

aggregates of molecules on cooling when the crystallization may take place. The

mechanism of bond formation involves the attraction of a hydrogen atom to two strongly

electro-negative atoms. These bonds are called hydrogen bonds. These bonds have the

directional property and are stronger than Van der Waal bonds. This is endorsed by the

observation that super molecules like H2F2, H3F3 . . . . are formed even in the gaseous

phase.

sp+3

hybrid orbital

H+

H+

H+

H+

O2 –

Fig 5.3: The tetra hedral covalent bonding in ice involving the sp3

hybrid orbitals of H2O.
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In an effort to understand the mechanism of hydrogen bonding clearly we take up ice

crystals, which exhibit some unusual behavior. The outer electron configuration of the

oxygenation in H2O is represented by four sp3 hybrid orbitals. Fig 5.3 shows that two of

these are involved in covalent bonds to the hydrogen atoms and the rest two are doubly

occupied by oxygen electrons. Out of the six outer oxygen electrons, two are engaged in

bonding and the other four find a place in space orbital. This bonding pattern gives a

tetrahedral shape to bonded molecules in ice. Two vertices of a tetrahedral are occupied

by hydrogen atoms, which are essentially the localized protons. The other two vertices

exhibit relatively diffused negative charges.

The negligible small size of the proton is responsible for peculiar structure of ice

crystals as it practically sits on the oxygen ions something impossible for any other

positive ion to do. One of the many phases of ice crystals as shown in Pauling’s book is

pictured in fig5.4

Two oxygen atoms are bound by protons that is localized close to one oxygen atom

along the line joining it to one of its neighbouring oxygen atoms. There are two protons

close to each oxygen atom, giving a large number of a ways to attach a proton to either

end of the bond. This is reflected in the irregular positions of protons which are very well

accounted by the observed large residual entropy of ice crystals at low temperatures.

Lastly, a word about the floating property of ice. The molecular clusters of water are

smaller and less stable in liquid state than they are in ice because of which they are on the

Fig5.4: The hydrogen bonding in ice. The large circles denote oxygen atoms
and the small circles are protons.



M. Sc., PHYSICS 12 ELASTIC CONSTANTS OF CRYSTALS

average more closely packed in this state. This increases the density of water and ice

floats when immersed in it.

5.4 The cohesive energy:

As stated earlier, the cohesive energy of a crystal is the measure of how strongly its

constituent atoms or particles are bound. It may be defined as the energy required to

break the crystal into its isolated neutral constituent parts. By constituent parts we

precisely mean atoms or molecules. For example, it sounds more reasonable to define the

cohesive energy to solid nitrogen as the energy required to disassemble it into isolated

nitrogen molecules instead of atoms. The two definitions are, however, inter convertible.

In the early development of the solids classification, the theory based it self heavily on

the nature of cohesion. The role of spatial electronic arrangement was almost sidelined.

But with the increasing need to study the non–equilibrium properties of the development

of devices, the concern for the cohesive energy has ceased to be of any significant note.

We present a brief sketch of classical theory to discuss the cohesive energy of crystals

at 0 K. Calculations are made in the static lattice approximation which treats the atoms to

be at rest at equilibrium sites. It neglects zero point motion, which relates to one of the

basic tenets of quantum theory. The resulting error for most of the crystals turns out be

one percent less. But there may be a question mark against this approximation while

treating the lighter noble gases as they have the origin of their cohesion in the zero point

motion. This is not to suggest the noble gases cannot be handled with a simplified theory

like the one under consideration. Surprisingly, the theory which is reasonably simple in

this case enjoys a high degree of success.

The over simplified theory discussed above is applied to ionic crystals with maximum

ease as the dominating long–range attractive interaction between the oppositely charged

ions renders other interactions of little concern. On the other hand, it is difficult to have a

simple theory for calculating the cohesive energy of covalent and metallic crystals. The

electronic configurations in crystals have far more distorted forms than what they are in

isolated atoms or ions. This makes it imperative to calculate the energy treating the

valence electrons in the field of the periodic crystal potential. It leads to the problem of

band structure calculation complicating the whole procedure. The level of the present
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book cannot accommodate the theory of covalent and metallic crystals. The description

of simple methods of calculating the cohesive energy of ionic and noble gas crystals

would be sufficient.

5.4.1 Ionic Crystals:-

The potential energy of an ionic crystal is considered to be composed of two components,

one representing the electrostatic energy and the other belonging to the repulsive overlap,

which has its origin in the Pauli exclusion principle. These crystals will be studied in

detail in another lesson.

Properties of Ionic Crystals:

All ionic or electrovalent compounds are rigid and crystalline in nature. It has seen by X-

ray diffraction that the constituents of the crystals are ions and not atoms. The ionic bond

is fairly strong.

All ionic solids have high melting points and boiling points. This is because more

energy is needed to make the ions mobile, there being a necessity to overcome the strong

electrostatic force of attraction created due to the ionic bond in addition to the already

existing interatomic force of gravitational attraction. This explains why ionic compound

possesses high melting point and boiling point.

Pure and dry ionic compounds are insulators, because of the non availability of free

electrons. However, in solution they conduct electricity because of the movement of the

charged ions instead of free electrons. In a solution the ionic bond is weakened by the

solvent molecules. Thus the ions become free to move about and thereby become

conductors of electricity and the solutions are good electrolytes.

Ionic solids are easily soluble in polar solvent like water. This is because the

molecules of the polar solvent interact strongly with the ions so as to reduce the attraction

between the ions. Also, the polar solvents possess high dielectric constants, for example,

water has a high dielectric constant of 81, i.e., it will reduce the electrostatic force of

attraction between the ions to
81

1
of the original value.

Ionic compounds are insoluble in non-polar solvents like benzene (C6H6), carbon

tetrachloride (CCl4), because their dielectric constants are very low.
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Reaction between ionic compounds in solution state is always fast. This is because in

a solution, ionic substances exist as ions and chemical reactions take place between the

ions. The ionic crystals are transparent for all frequencies up to the value called the

fundamental absorption frequency. At frequencies higher than this, they are opaque.

High hardness and low conductivity are typical properties of these solids. When

subjected to stresses, ionic crystals tend to cleave (break) along certain planes of atoms

rather than to deform in a ductile fashion as metals do.

5.4.2 Covalent Crystals:

When a covalent bond is formed we imagine that an electron from each atom is

transferred to the region between the two atoms joined by the bond.

In an ionic bond it is a good approximation to think of the valence electrons as

attached to definite atoms. The Pauli principle applied to ions with filled electronic shells

ensures a low electron density in the region between the two ions where the charge shells

make contact. Ions with filled shells do not generally form covalent bonds. In a covalent

or homopolar bond the charge density between the two atoms may be rather high, and the

valence electrons are to an appreciable extent shared between two atoms. The covalent

bond is the normal electron-pair bond of chemistry, encountered particularly in organic

chemistry. It is characterized by a high density of electrons between the ions and also by

marked directional properties. The carbon bond is a good example of the directional

properties of the covalent bond: carbon atoms often prefer to join onto each other or to

other atoms by four bonds making tetrahedral angles with each other. That is, each

carbon atom will be at the center of the tetrahedron formed by the nearest neighbor

atoms. Diamond and methane, CH4, are typical examples of the tetrahedral covalent

bond. The diamond structure is loosely packed in a geometrical sense: the tetrahedral

bond allows only four nearest neighbours, while a closest-packed structure would require

twelve nearest neighbour atoms. The covalent bond is usually formed from two

electrons, one from each atom participating in the bond. The spins of the two electrons in

the bond are antiparallel. The carbon atom (2s2 2p2) tends, in a sense, to fill up the 2p6

electron shell by sharing electrons with four neighbors.
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There is apparently a continuous range of crystals between the ionic and the covalent

limits. It is often of importance to estimate the extent to which a given bond is ionic or

covalent, but this may be difficult to do with any confidence. We think of NaF as an

ionic crystal, and perhaps of InSb as largely covalent, but it is at present difficult to know

what to say about the nature of the bonding of ZnS or PbS, for example. Pauling has

formulated on a semi-empirical basis an electronegativity scale of some of the elements.

Electronegativity is a chemical term meaning the power of an atom in a molecule to

attract electrons to itself. The electronegativity is approximately proportional to the sum

of the ionization energy and the electron affinity of the atom. A suggested empirical

connection between the ionic character of a bond and the difference in electronegativity

of the atoms being joined is shown in fig 5.5.

Atoms with nearly filled shells (Na, Cl) tend to be ionic, whereas atoms not close in the

periodic table to the inert gases tend to be covalent (C, Ge, Si, Te).

5.4.3 Metal Crystals:

Metals are characterized by high electrical conductivity, and so a portion of the

electrons in a metal must be free to move about. The electrons available to participate in

the conductivity are called conduction electrons. In some metals such as the alkali metals

the interaction of the ion cores with the conduction electrons is largely responsible for the

binding energy. We may think of an alkali metal crystal as an array of positive ions

embeded in a more-or-less uniform sea of negative charge. In some metals such as the

transition metals it has been suggested that there may also be binding effects from
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Fig 5.5: Curve relating the ionic character of a bond A–B to the difference in
electro negativity xA – xB of the atoms.
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covalent-type bonds among the inner electron shells. Transition group elements have

incomplete d-electron shells and are characterized by high binding energy.

The binding energy of an alkali metal crystal is seen from table 5.1 to be very

considerably less than that of an alkali halide crystal, so the bond formed by a quasi-free

conduction electron is not very strong. Part of the explanation is that the interatomic

distances are relatively large in the alkali metals because the kinetic energy of the

conduction electrons favors large interatomic distances, leading thus to weak binding. In

the transition metals such as iron and tungsten the inner electronic shells make a

substantial contribution to the binding. The binding energy of tungsten, for example, is

210 kcal/mole.

5.4.4 Molecular Crystals (or) Noble Gas Crystals:-

The discussion under Subsection 5.3.1 needs extension for obtaining a complete picture

of interactions in noble gas crystals. The repulsive potential energy is conventionally

expressed in the form of an empirical power law as B/r12. The total potential energy of a

pair of atoms at the separation r is generally represented by

U(r) =
126 r

B

r

A
 ----------- (5.5)

and this is known as the Lennard–Jones potential. The constants A and B are empirical

parameters.

On the requirement that the repulsive force increases faster than the attractive force at

short distances, the exponent in the repulsive term has to be more than 6. In addition, if

the analytic simplicity is taken into account the choice falls on 12. Further, with this

choice the theoretical estimates of several physical properties of noble gases, exclusive of

He3 and He4, are found to be in excellent accord with the experiment. A satisfactory

explanation for the disagreement in the case of helium is not possible at this stage to

avoid digression. However, it should suffice to remark that helium is identified as a

unique quantum matter in the solid state theory which has developed provisions for

dealing with it especially. Finally, it must be emphasized that the van der Waals

interaction is present in all the three states of every material. Being weak in nature it is

not the main cause of cohesion in many crystals where other strong interactions are

present and the crystal bindings are named after them.
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Equation [5.5] is usually expressed as
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The Lennard-Jones potential in the form of relation (5.6) is shown in Fig 5.6. Suitable

values of the parameters and  have been obtained by fitting the theoretically calculated

values of certain physical properties involving these parameters with those

experimentally observed in the gaseous phase. In principle, these values cannot be used

for solids where the interaction is not a sum of pair potentials on account of high

densities. The values of parameters serve as a measure of the strength of attraction and

the radius of the repulsive core.

The hydrogen crystal are among the weakest bonded crystals with a cohesive energy

of 0.01 eV per molecule which is one-tenth of that of methane’s (0.1 eV per molecule).

These weakly bound crystals are transparent insulators and characterized by low melting

points.The cohesive energies of a number of crystals of different types are given in Table

5.1 for the purpose of a comparative study. For a thorough study the reader may consult

the book by Ashcroft and Mermin which gives a more comprehensive view of the subject
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Fig 5.6 The Lennard–Jones potential as given by equation (5.6)
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and treasures large data on the related physical quantities of molecular and ionic crystals

in particular.

It must now be abundantly clear that the calculations we have discussed in this section

are closely linked with lattice constants (or lattice parameters) of crystals. Let us briefly

comment on the involvement of lattice constants in a few other important physical

properties. The pressure required to maintain a certain volume can be determined by

calculating the rate of variation of cohesive energy with lattice constants. In effect, we

succeed in reproducing the experimental value of the equilibrium lattice constant

maintainable at zero pressure. Similarly, it is possible to study the change in volume

caused by a change in pressure and calculate the compressibility. The significance of the

lattice constant and compressibility must be emphasized in view of their utility in

estimating the empirical parameters  and . As the lattice constants have a close

relationship with the bond length and the atomic radii, we propose to give a short account

of the same in the following section.

Table 5.1 Cohesive energy of crystals

Crystal Binding type Cohesive energy Melting point (K)

LiF Ionic 10.31 eV/ion 1143
NaCl Ionic 7.96 eV/ion pair 1074

3.28 eV/atom
RbI Ionic 6.17 eV/ion pair 915
Diamond Covalent 7.37 eV/atom >3773
Si Covalent 4.63 eV/atom 1687
SiC Covalent 12.04 eV/molecule 2873 (subl.)
Na Metallic 1.11 eV/atom 371
Cu Metallic 3.49 eV/atom 1358
Au Metallic 3.81 eV/atom 1338
Ne van der Waals 0.02 eV/atom 24.6
H2 van der Waals 0.01 eV/molecule 14
CH4 van der Waals 0.10 eV/molecule 90
Ice (H2O) Hydrogen 0.51 eV/molecule 273
HF Hydrogen 0.30 eV/molecule 180.7

5.4.5 Hydrogen-Bonded Crystals:

As neutral hydrogen has only one electron, it should form a covalent bond with only

one other atom. It is known, however, that under certain conditions an atom of hydrogen

is attracted by rather strong forces to two atoms, thus forming what is called a hydrogen
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bond between them, with a bond energy of about 5 kcal/mole. It is believed that the

hydrogen bond is largely ionic in character, being formed only between the most

electronegative atoms. The hydrogen atom loses its electron to one of the other atoms in

the molecule; the proton forms the hydrogen bond. The small size of the proton permits

only two nearest neighbor atoms because they are so close that more than two of them

would get in each other’s way; thus the hydrogen bond connects only two atoms.

The hydrogen bond is an important interaction between H2O molecules and is

responsible, together with the electrostatic attraction of the electric dipole moments, for

the striking physical properties of water and ice. The hydrogen bond restrains protein

molecules to their normal geometrical arrangements. It is also responsible for the

polymerization of hydrogen fluoride and formic acid, for example. It is important in

certain ferroelectric crystals, such as potassium dihydrogen phosphate.

5.5 Summary:

1. Bonds are broadly classified on the basis of strength as (i) Primary bonds (ii)

Secondary bonds. These limiting cases of primary bonds are identified as (a)

Covalent (b) Metallic and (c) ionic. (iii) Some primary bonds are mixed type. (iv)

Van der Waals and hydrogen bonds fall in the category of secondary bonds.

2. Van der Waals interaction (induced dipole – dipole interaction) varies with

interatomic separation as 1/ r6. It is a quantum effect. The interaction potential

vanishes when the Planck constant h = 0. Example, inert gas solids.

3. The cause of repulsive interaction between atoms lies generally in the electrostatic

repulsions of overlapping charge distributions and the Pauli exclusion principle

that forces overlapping electrons of parallel spin occupy higher energy states.

4. The potential energy per ion in an ionic crystal is given by





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
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where

 is the Madelung constant

q is the charge on an ion

 is an empirical parameter
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r0 is the separation in a pair of ions of opposite type at equilibrium.

5. The overlap of charge distributions of antiparallel electron spin gives rise to

covalent bonding.

5.6 Key words:

Binding forces – Cohesion of atoms – Primary bonds – Secondary bonds – The Covalent

bond – The metallic bond – The ionic bond – Mixed Bonding – The Van der Walls bond

– The Hydrogen bond – The Cohesive energy – Lattice Constant.

5.7 Review questions:

1. Classify the different types of crystal bindings and their origin of bond formation?

2. What do you understand by cohesive energy and the repulsive overlap energy?

3. What is the inference of Noble gas crystals Explain the relation between atomic radic

and lattice constants?

4. Explain different types of bonding in solids and their characteristics what is the nature

of bond between molecules in ice. Explain the properties of diamond and graphite on

the basis of their structure.
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UNIT – II

LESSON 6

LATTICE ENERGY OF IONIC CRYSTALS

Aim: To study the nature of forces acting in ionic crystals and their stability

Objectives:

 To study the results of Born’s theory and the refinements suggested

 To study the relation between ionic radii of atoms involved and stability of

various crystal structures.

Structure:

6.1 Born’s theory

6.2 Calculation of the repulsive exponent from compressibility data

6.3 The repulsive exponent as a function of electron configuration.

6.4 The Calculated and experimental lattice energies

6.5 Born Haber cycle.

6.6 Stability of structures and ionic radii

6.7 Refinements of Born’s theory

6.8 Born Mayer revised theory of ionic crystals.

6.9 Summary

6.10 Key words

6.11 Review questions
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Introduction:

In lesson 5 we have learnt about the nature of forces that exist between atoms in crystals

to some extent. Because of the importance of ionic crystals and in particular of alkali

halide crystals we now study them in detail .

The potential energy of an ionic crystal is considered to be composed of two components,

one representing the electrostatic energy and the other belonging to the repulsive overlap,

which has its origin in the Pauli exclusion principle.

6.1 Born’s theory:

Borns’s theory of the lattice energy is based on the assumption that the crystals under

consideration are built up of positive and negative ions. If we assume that the charge

distribution in these ions is spherically symmetric, the force between two such ions

depends only on their distance apart and is independent of direction. As an example,

consider a lattice of NaCl structure, represented in Fig 6.1. We shall denote the shortest

interionic distance by r and consider this quantity a variable for the moment. A given

sodium ion is surrounded by 6 Cl- ions at a distance r, 12 Na+ ions at a distance 2r , 8

Cl ions at a distance 3r , etc. The Coulomb energy of this ion in the field of all other

ions is therefore.









 

5

24

4

6

3

8

2

12

1

62

r

e
e --------------- (6.1)

where e is the charge per ion. Note that

because Coulomb forces decrease

relatively slowly with distance, it is not

sufficient to consider only a few shells

of ions around the central ion.

Evidently, the coefficient of e2/r is pure

number, determined only by the crystal

structure. Series of this type have been

calculated by Madelung, Ewald, and

Evjen. For the NaCl structure the result is

Fig 6.1 The sodium chloride structure
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......747558.1thwi/2  ArAee --------------- (6.2)

The constant A is called the Madelung constant. For other crystal structures composed of

positive and negative ions of the same valancy, the Madelung constants are

Cesium chloride A = 1.762670

Zincbelende (ZnS) A = 1.6381

Wurtzite (ZnS) A = 1.641

Note that e in (6.2) represents in general the electronic charge times the valence of the

ions under consideration. The minus sign in (6.2) indicates that the average influence of

all other ions on the one under consideration is of an attractive nature. To prevent the

lattice from collapsing, there must also be repulsive forces between the ions. These

repulsive forces become noticeable when the electron shells of neighboring ions begin to

overlap, and they increase strongly in this region with decreasing values of r. These

forces, as other overlap forces, can best be discussed on the basis of wave mechanics,

because they are of a non-classical nature. Born in his early work made the simple

assumption that the repulsive energy between two ions as function of their separation

could be expressed by a power law of the type B/rn, where B and n are as yet

undetermined constants characteristic of the ions in the solid under consideration.

Focusing our attention again on one particular ion, we may thus write for the repulsive

energy of this ion due to the presence of all other ions.

nrB /rep --------------- (6.3)

where B is related to B by a numerical factor. In view of the fact, that, repulsive forces

depend so strongly on the distance between the particles, the repulsive energy (6.3) is

mainly determined by the nearest neighbors of the central ion. The total energy of one

ion due to the presence of all others is then obtained by adding (6.2) and (6.3).

nrBrAe //2  -------------- (6.4)

Assuming that the two types of forces just discussed are the only ones we have to take

into account and neglecting surface effects, we thus find for the total binding energy of a

crystal containing N positive and N negative ions.

)()(
2

rN
r

B

r

e
ANrE

n









 --------------- (6.5)
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We multiply by N rather than by 2N

because otherwise the energy between

each pair of ions in the crystal would

have been counted twice. The two

contributions to E(r) are represented

schematically in Fig (6.2). If we

consider the crystal at absolute zero, the

equilibrium conditions require E to be a

minimum, which will be the case for the

equilibrium value r = a0, where a0

represents the smallest interionic

distance in the crystal at T = 0. For this

minimum

0
0










ardr

dE
--------------- (6.6)

From the last two expressions one thus obtains the following relation between the two

unknown parameters B and n:

1
0

2










 na

n

Ae
B ------------- (6.7)

Substitution into (6.5) yields for the lattice energy EL,

LL N
na

e
NAaEE 










1
1)(

0

2

0 --------------- (6.8)

where L = (a0). The interionic distance can be obtained from X-ray diffraction data;

the charge per ion is also known, and thus the lattice energy can be calculated if the

repulsive exponent n is known. The information regarding n may be obtained is

discussed in the next two sections.

6.2 Calculation of the repulsive exponent from compressibility data:

Born obtained the unknown repulsive exponent n from measurements of the

compressibility of the crystals as follows: The compressibility K0 at absolute zero is

given by

r0

P
o

te
n

ti
a

l
E

n
er

gy

Attraction Energy

Repulsion Energy

Fig 6.2 Schematic representation of the
energy of attraction and repulsion as
function of the lattice parameter. The
resultant exhibits a minimum for a lattice
constant a0, corresponding to equilibrium.
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0
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









 ------------- (6.9)

where V0 is the volume of the crystal corresponding to an interionic distance a0; V

corresponds to the variable r. The relation between volume and interionic distance must

of course be of the form

V = cNr3 -------------- (6.10)

Where c is a constant determined only by the type of lattice. For NaCl, for example, c =

2. Hence











dr

dE

rdr

d

rNcdV

Ed

dr

dE

cNrdV

dE
22222

2

2

1

9

1
and

3

1
-------------- (6.11)

From (6.5) we thus obtain








 






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
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NacdV

Ed

cNaK
--------------- (6.12)

Substituting B from (6.7), we find

AeKcan 2
0

4
0 /91 --------------- (6.13)

from which the parameter n can be calculated if K0 is known. Some experimental values

for alkali halides according to Slater, and obtained by extrapolation of compressibility

measurements to T = 0, are given below

LiF n = 5.9, NaCl n = 9.1

LiCl n = 8.0, NaBr n = 9.5

LiBr n = 8.7.

We note that there is a marked variation from one crystal to another. However, even an

appreciable error in n leads to a relatively small error in the lattice energy, which is

proportional to (1 – 1/n). If we change n by unity, EL changes by only 1 or 2 per cent.

According to (6.8) and in view of the relatively large values of n, most of the lattice

energy is due to the Coulomb interaction, and the repulsion contributes only a relatively

small fraction. On the other hand, the repulsive and attractive forces acting on any one

ion just balance for r = a0 and thus are equal in magnitude.
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6.3 The repulsive exponent as function of electron configuration:

It will be obvious that the repulsive forces acting between two ions will depend on the

distribution of the electronic charges in the ions and especially on the number of electrons

in the outer shells. For example, we would expect n to be larger for NaCl than for LiCl,

because the Na+ ion has eight outer electrons and the Li+ ion has only two. From an

approximate treatment of the interaction between closed-shell electronic configurations,

Pauling arrived at the following values of n as a function of the occupation of electronic

shells.

This table should be used by taking the average value of n for the two ion types occurring

in the crystal. For NaCl, for example, one takes the average of 7 and 9; for NaF the

average of 7 and 7, etc. Note that this table is in qualitative agreement with the

experimental values of Slater referred to above.

6.4 Calculated and experimental lattice energies:

The lattice energy L may now be calculated from (6.8) by substituting the proper

values for the charge of the ions, the interatomic distance and the Born exponent n.

Values for L so obtained are given in Table 6.2 for alkali halides and the alkaline earths

oxides. The charge per ion in the latter group is assumed to be 2e; it is not quite certain

that these oxides can be considered ionic compounds. It may be remarked that CsCl,

CsBr and CsI crystallize in the cesium chloride structure (see fig 6.3), whereas all other

compounds in the table have the NaCl structure. The expansion of the lattice, entering

Ion type

He
Ne
Ar (Cr)
Kr (Ag)
Xe (Au)

Electron configuration

K L M N O n

2 ...….. …….. …….. ……. 5
2 8 …….. …….. ……. 7
2 8 8(18) …….. ……. 9
2 8 18 8(18) ……. 10
2 8 18 18 8(18) 12

Table 6.1 Repulsive Exponent as Function of Electron Configuration
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through the interionic distance a0, can usually be neglected; the coefficient of expansion

of ionic crystals at room temperature is of the order of 10–4 per degree.

6.5 Born Haber Cycle:

An experimental check on the calculated values of the lattice energies may be

obtained from what is known as a Born-Haber cycle. Consider, for example, 1 gram

atom of solid sodium reacting with
2
1 gram molecule of Cl2 gas. As a result of the

reaction, solid NaCl is formed and a certain amount of heat Q (the “heat of formation”) is

Compound

LiF
NaF
KF
RbF
CsF

LiCl
NaCl
KCl
RbCl
CsCl

LiBr
NaBr
KBr
RbBr
CsBr

LiI
NaI
KI
RbI
CsI

Mgo
CaO
SrO
BaO

2.07
2.31
2.66
2.82
3.00

2.57
2.81
3.14
3.27
3.56

2.74
2.97
3.29
3.42
3.71

3.03
3.23
3.53
3.66
3.95

2.10
2.40
2.57
2.75

a0 in
Angstroms

n L in ev
calc.

L in ev
exp.

6.0
7.0
8.0
8.5
9.5

7.0
8.0
9.0
9.5

10.5

7.5
8.5
9.5

10.0
11.0

8.5
9.5

10.5
11.0
12.0

7.0
8.0
8.5
9.5

……
……
……
……
……

8.6
7.9
7.1
7.0
6.7

8.2
7.5
6.8
6.6
6.4

7.8
7.2
6.6
6.5
6.3

……
……
……
……

10.5
9.3
8.3
7.9
7.5

8.4
8.0
7.1
6.9
6.5

7.9
7.5
6.8
6.6
6.2

7.4
7.0
6.5
6.2
5.9

41.0
36.5
34.5
32.5

Table 6.2 Lattice Energies for Alkali Halides and Alkaline Earth Oxides.
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given off. The change in energy due to such a reaction may be calculated by considering

the following steps

L

L

EDIS

E

D

I

S

















ClsolidCl2
1

NaNa22
1

solid

solidgas
-

Cl

Cl2
1

22
1

Navapor

vaporNasolid

NaClClNa

NaCl)ClNa(

ClelectronCl

ClCl

electronNaNa

NaNa

2

2

The quantities introduced all refer to the formation of one ion pair of solid NaCl. Here

SNa represents the sublimation energy of sodium per atom. Sublimation energies in

general can be determined experimentally by direct caloric measurements or from

measurements of the vapor pressure as function of temperature.

The ionization energy INa represents the energy required to take away the outer electron

of the sodium atom, and can be obtained experimentally either from optical

measurements or by bombardment of atoms with electrons and measuring the minimum

energy of the latter required to produce ions. The dissociation energy
2ClD required to

separate the two Cl atoms in a Cl2 molecule can be obtained by determining the

dissociation constant as function of temperature. The electron affinity ECl is the energy

gained by combining an electron and a Cl-atom. Electron affinities can be determined by

measuring the ionization energy of the negative ions, or by measuring the density of

halide ions in alkali halide vapor. Now, we also know that

Fig 6.3 The CsCl and the ZnS structures. The open circles in the ZnS
structure are located at points obtained by displacements of ¼ along three
cube edges of the corresponding corner point. For one of the open circles we
have indicated how it is surrounded by four black dots occupying the corner
points of a regular tetrahedron, with the open circle at the center.
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where q refers again to the heat of formation per “molecule” NaCl formed. Subtracting

this equation from the one obtained above, we find for the lattice energy per ion pair,

qEDISL  ClCl2
1

NaNa.exp 2
--------------- (6.14)

For NaCl, all quantities on the right-hand side are known from experiments and thus we

are able to give an experimental value for L, which may be compared with the one

calculated with the Born theory. For NaCl we find, for example, from (6.14)

eV9.73.48.32.11.51.1.exp L

whereas Born’s theory yields 8.0 eV. The experimental values obtained in this way are

listed in Table 6.2, and we see that theory and experiment agree within a few per cent,

indicating that the relatively simple approach is essentially correct.

For the fluorides and oxides, the electron affinities are not known from experiment,

and they are usually calculated by replacing Lexp. by Lexp. in (6.14). We note that for

oxygen the electron affinity is negative, i.e., it requires energy to add 2 electrons to the

atom. This is not surprising, because after the first electron has been added, we have a

negative O– ion and we would expect addition of a second electron to require appreciable

energy. An experimental determination of the affinity of a neutral oxygen atom for the

first electron added gives 2.2eV according to Lozier. Now the total electron affinity for

the addition of 2 electrons is –7.3 eV when calculated from the lattice energy of oxides in

the manner indicated above.

q solid22
1

solid NaClClNa

Table 6.3 Electron Affinities and Dissociation Energies

Electron
affinity

4.25 eV
2.50
3.8
3.45

- 7.3
- 3.5
- 4.2

Dissociation
energy

2.75 eV
2.50
2.01
1.58
1.52
2.75
2.50

Atom

F
Cl
Br
I
O
S
Se
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Thus addition of the second electron requires about 9.5 eV. The usually accepted

values of the electron affinities are given in Table 6.3 together with the dissociation

energies of the diatomic molecules (in electron volts).

6.6 Stability of structure and ionic radii:

Ionic compounds of the composition A+B- occur in the sodium chloride structure, the

cesium chloride structure, and the Zincblende structure (ZnS). The latter two are

represented in Fig. 6.3. In the CsCl structure each ion is surrounded by 8 nearest

neighbors of opposite sign; in NaCl by 6, and in Zincblende by 4. one may thus ask why

a certain compound crystallizes in a particular structure.

The answer must obviously be sought in the fact that the energy should be a

minimum, and the problem is thus reduced to explaining why for a given compound its

natural structure has a lower energy than any other structure. We shall see that some

insight into this problem may be obtained from considerations of the size of the ions.

For metals one defines the atomic radius as half the distance between nearest

neighbors, although it is recognized that the meaning of the size of an atom is necessarily

vague. For ionic crystals one could try a similar approach, but one is immediately faced

with the difficulty that these compounds consist of at least 2 types of ions, so that the

lattice constant provides information only about the sum of two radii. A little

consideration of the interionic distances as given in the preceding section shows that to a

fair approximation ionic radii are additive quantities. For example, if one calculates the

difference (   NaK
rr ) from Table 6.2 for the halides of these metals, one finds from the

fluorides,

35.0XaFKFNaK
  aarr Angstrom

and from the chlorides, bromides, and iodides in the same manner 0.33Å, 0.32Å, and

0.30Å, respectively. We see that the difference is roughly constant and that it has

meaning to associate a rather definite radius with each ion. It is also obvious that a table

of ionic radii can be obtained only if the radius of one ion is known.

Atomic and ionic radii were compiled by Pearson. An examination of this data shows

that on ion formation the size of a positive ion is smaller and that of a negative ion larger

than the size of the neutral atom. The best example illustrating this fact are the radii of
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C(0.72
o

A ), C4+(0.15
o

A ) and C4(2.60
o

A ). This can be understood by taking simple

examples of Na and Cl. The Na atom, whose radius is 1.86
o

A , loses one electron in

becoming the Na+ ion of radius of 0.90
o

A . On losing this outermost electron (3s1) which

is loosely bound, the atom assumes a more tightly bound configuration of Na+ ion with

the reduced size. This is one of the best examples to state, as the Na+ ion turns out to be

smaller than even the iso-electronic Ne atom of the preceding period. Similarly, the

bigger size of the Cl ion makes sense on the ground that the Cl atom is readily willing to

turn into a Cl ion whose electronic configuration is identical with the rigid spherical

charge distribution of the nearest (the next in the same period) noble gas atom (Ar).

The extent of charge clouds of a constituent ion in any crystal is generally referred to

as the crystal ionic radius. It needs to be distinguished from the free ion radius.

According to the quantum mechanical interpretation, the free ion radius may be defined

as the radius at which the probability amplitude ||2 for the outermost electrons to be in

the orbital represented by the wave function  is maximum. The wavefunction  is then

a solution of the Schrodinger wave equation whose Hamiltonian includes the ordinary

Coulomb potential. The boundary condition requires that the magnitude and the

derivative of the wavefunction  vanish at infinitely large distances. In contrast, for an

ion in the crystal the magnitude and derivative of the wavefunction must be zero at the

boundary of the ion on the demand of the boundary condition. The potential in this case

is not Coulomb but of the type shown in fig 6.2.

The above discussion indicates that the ionic radii may be calculated by solving one-

electron dingeroSchr  wave equation. This is usually done by the Hartree-Fock self-

consistent field method, treated in great detail by Slater. Some semi-empirical methods

of calculating the ionic radii in crystals are also in practice. For example, the distance

between two atoms shown as r0 (the nearest neighbour distance in a crystal) is

approximately equal to the sum of the radii of the two neighbouring atoms. This property

is known as the additive rule. The diffraction method is the standard way at present to

measure lattice constants. From the diffraction pattern it is possible to determine the

radius ratio of any two type of atoms from which the radii of other atoms comprising the

crystal can be determined. Goldschmidt in 1927 has tabulated ionic radii based on a
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radius of the F– ion of 1.33Å, a value which he decided upon on the basis of work by

Wasastjerna on the relation between polarizability and ion size. Pauling, in the same

year, independently published ionic radii based on theoretical calculations of the radii of

some ions. The two sets are not equal, which is not surprising because of the

inaccuracies involved. One commonly refers to the Goldschmidt and the Pauling radius

of a given ion. In Table 6.4 the Goldschmidt radii (G) do not refer to the original set but

include many recent X-ray diffraction data, especially those of Zachariasen. Contrary to

the tables by Goldschmidt, the radius for O2- is 1.45Å rather than 1.35Å. The radii

according to Pauling are also given in Table 6.4.

Using the additive rule of atomic radii it is possible to predict the bond lengths or the

inter atomic separations in a crystal. This is successfully done for crystalline phases even

before they are crystallized. But we must be aware that the charge distribution is not

rigid and spherically symmetric in every atom. This may introduce an appreciable error in

Ion G P

H– 1.54 2.08
F– 1.33 1.36
Cl 1.81 1.81
Br– 1.96 1.95
I– 2.19 2.16

O2– 1.45 1.40
S2– 1.90 1.84
Se2– 2.02 1.98
Te2– 2.22 2.21

Li+ 0.68 0.60
Na+ 0.98 0.95
K+ 1.33 1.33
Rb+ 1.48 1.48
Cs+ 1.67 1.69
Cu+ 0.95 0.96
Ag+ 1.13 1.26
Au+ …….. 1.37
Tl+ 1.51 1.44

Ion G P

B3+ 0.2 0.20
Al3+ 0.45 0.50
Sc3+ 0.68 1.81
Y3+ 0.90 0.93
La3+ 1.04 1.15
Ga3+ 0.60 0.62
In3+ 1.81 1.81
Tl3+ 1.91 0.95

Fe3+ 0.53 ……
Cr3+ 0.55 ……

C4+ 0.15 0.15
Si4+ 0.38 0.41
Ti4+ 0.60 0.68
Zr4+ 0.77 0.80
Ce4+ 0.87 1.01
Ge4+ 0.54 0.53
Sn4+ 0.71 0.71
Pb4+ 0.81 0.84

Ion G P

Be2+ 0.30 0.31
Mg2+ 0.65 0.65
Ca2+ 0.94 0.99
Sr2+ 1.10 1.13
Ba2+ 1.29 1.35
Zn2+ 0.69 0.74
Cd2+ 0.92 0.97
Hg2+ 0.93 1.10
Pb2+ 1.17 1.21

Mn2+ 0.80 0.80
Fe2+ 0.76 0.75
Co2+ 0.70 0.72
Ni2+ 0.68 0.69
Cu2+ 0.92 ……

Table 6.4 Goldschmidt (G) and Pauling (P) Ionic Radii in A
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the estimate. Therefore, it is a must to know accurately the average of charge clouds of

the constituent atoms in a crystal for making any estimates.

At first instance the knowledge of atomic radii can be used to determine the

coordinates of an atom and suggest the probable arrangement of atoms in the crystal.

Though this point has more relevance, it is worth digressing to emphasize the role of

atomic radii being discussed here. Beiser has excellently explained the threefold

coordinates for a binary ionic crystal. It is shown that the coordination is stable only

when the positive ion A+ touches all the surrounding negative ions B-. The mutual

contact among the three B- ions is not the necessary requirement for the coordination to

crystallize. A simple geometrical calculation shows that the minimum ionic radius ratio

rA/rB for this coordination to materialize is 0.155. We calculate below this ratio for the

fourfold coordination in a similar ionic crystal.

In the fourfold coordination, the A+ ion positioned at the center of a cube is

surrounded by four B- ions located at the alternate corners of the cube (Fig 6.4) whose

edge is ‘a’. For stable coordination, all the four B- ions should touch the A+ ion. Two B-

ions on every face are also in contact with each other, the distance between their centers

being equal to the length of the face diagonal  a2 . Let  be the angle between the line

joining a B-ion to an A+ ion and the line joining the two B-ions. From fig 6.4, we have,

2/3

2/2
cos

a

a
 (length of the body diagonal = a3 )

=
3

2

B

B

B
B

A+

Fig 6.4: The fourfold coordination. The smaller ion A-at the center of the cube
is surrounding by four B-ions located at the alternate corners of the cube. The

minimize value of rA/rB for the coordination is 0.225.
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Table 6.6 Data on the nearest neighbour separation and lattice constant, predicted from

the radii of the constituent ions/atoms, for some crystals

Crystal Radius of the Predicted nearest Relation between Lattice constant a Å
Constituent neighbour d and a ------------------------
ions/atoms separation, d (lattice constant) Predicted Observed

(Å) (Å)

NaF Na+ (0.97) 2.33 a = 2d 4.66 4.62

F- (1.63)

NaCl Na+ (0.97) 2.78 a = 2d 5.56 5.63

Cl- (1.81)

Diamond C (0.72) 1.54 a =
3

4d
3.56 3.56

Ne Ne (1.58) 3.16 a = d2 4.47 4.46

Also 816.0
3

2
cos 




BA

B

rr

r


This gives
B

A

r

r
= 0.225 which is the minimum value for the fourfold coordination to be

stable. These calculations show that for the formation of a stable threefold coordination,

the ion radius ratio must lie between 0.155 and 0.225.

Finally we demonstrate how successfully the bond length and the lattice constants are

reproduced with the knowledge of the self-consistent atomic/ionic sizes. The degree of

success achieved can be perceived by the data in table 6.6.

Returning now to the question of stability, we would expect at first sight that the CsCl

structure should always be more stable than the other structures, because it has the

highest coordination number. Now, although it is true that a high coordination number

will lead to strong binding and thus high stability, there is another requirement to be

fulfilled, viz., that ions of opposite sign should be separated by as small a distance as

possible. In other words, positive and negative ions should “touch,” because any increase

in their separation would give as higher energy (less binding) according to equation (6.8).

It is at this point that a consideration of the relative radii of the ions can provide at least a

guiding principle. To illustrate this, let us consider an ionic crystal of the type A+B+ with

ionic radii r1 and r2, where we assume r1< r2. Suppose we build a CsCl structure with
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these ions, assuming that positive and negative ions touch each other. The cube edge,

corresponding to the separation of ions of equal sign, is then ))(3/2( 21 rra 

Suppose the ion of radius r1 is the ion in the center of the cube. If we now increase the

radius r2 gradually, leaving r1constant, we reach a value of r2 such that further increase

makes it impossible for the central ion to touch the ones at the corners. This critical value

is clearly reached when

12212 37.1or))(3/2(2 rrrrra 

Thus r2 >1.37 r1 would lead to an increase in the distance between positive and negative

ions and consequently to an increase in energy. The competition between coordination

number on the one hand and separation between positive and negative ions on the other

will thus set in as soon as the ratio of the radii becomes larger than 1.37 and a more

favorable structure may result, viz., the NaCl structure. The stability limits of the latter

may be investigated in the same way. In this case the critical ratio of the radii is

determined by 12212 44.2or2)(2 rrrrr 

Again, if the ratio becomes larger than 2.44, positive and negative ions cannot touch each

other, leading to an increase of the energy and consequently to the formation of the more

stable Zincblende structure (fig 6.3). For this structure, positive and negative ions cannot

touch each other if r2 > 4.55 r1. The stability limits as derived from the above simplified

billiard ball model for the ions are therefore

Cesium chloride ………….1 < r2/r1 < 1.37

Sodium chloride ………….1.37 < r2/r1 < 2.44

Zincblende …….………….2.44 < r2/r1 < 4.55

It must be emphasized that these result can be looked upon only as a rough rule. In

general, however, one may say that the CsCl structure is found in those compounds for

which the ionic radii are nearly equal, whereas the zincblende structure occurs only when

the ratio of the radii is about two or more. This may be illustrated by a few examples in

Table 6.5.

It is finally of interest to note that structure transformations have been observed under

high pressures. A review of this subject may be found in a book by Bridgman.
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6.7 Refinements of the Born theory:

The development of wave mechanics provided a better understanding of the chemical

bond and interatomic forces in general. As a result, several refinements of the Born

theory have been made, in particular by Born and Mayer and their collaborators. The

essential refinements were the following:

1. Quantum mechanical calculations of the forces between ions indicate that a simple

power law for the repulsive forces (6.3) cannot be rigorous. One therefore replaced this

law by an exponential one of the form

/
rep )( rcer  --------------- (6.15)

where c and  are constants.

2. One added an attractive term to the lattice energy corresponding to the van der Waals

forces which act between ions or atoms with a rare gas electron configuration.

3. One takes into account the “zero-point energy” of the crystal.

We shall not go through the calculation of the lattice energy which includes the

modifications just mentioned, because the method is in principle the same as the one

followed above. Also, the differences in the results obtained are slight. However, a few

remarks about the modifications themselves, in particular about those mentioned under

(2) and (3) may be in order.

The van der Waals forces are responsible for the cohesion in the liquid and solid states

of rare gases as well as for most organic crystals. These forces have been treated by

London and Margenau on a quantum mechanical basis. An approximate expression for

the interaction energy of two atoms or ions with filled shell electron configuration is

Cesium chloride
structure

Zincblende
structure

r-/r+ r-/r+

CsCl
CsBr
CsI
TlCl
TlBr
TlI

ZnS
ZnSe
BeS
BeSe
CuCl
CuBr
CuI

2.1
2.3
5.1
5.6
1.9
2.0
2.3

1.1
1.2
1.3
1.2
1.3
1.5

Table 6.5 Ratio of Negative and Positive Ion Radii for Salts
with the Cesium Chloride and Zincblende Structure
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where I1 and I2 refer to the ionization energies of the particles involved and 1, 2 refer to

the polarizabilities. The nature of these forces is essentially a quantum effect, although

the fact that they vary with the sixth power of the distance may easily be shown from

classical considerations.

A homogeneous electric field E induces in an atom a dipole:

 = qx =  E ---------------- (6.17)

where q and x are, respectively, the effective charge and displacement;  is the

polarizability of the atom. The energy of the atom in the field is then

 
Ex

EdE
q

qEqEdx
0

2

2
1

0



--------------- (6.18)

For a field strength varying with time, one would have for the average energy,

 = ( /2)(E2) ------------- (6.19)

Now, suppose the atom is under influence of another atom at a distance r. The latter may

be considered a system of oscillating dipoles formed by the nucleus and the electrons.

The electric field strength of a dipole varies as r3 and hence, according to (6.18), the

energy of one atom in the field of another may be written

 = – constant / r6 ------------------ (6.20)

The mutual energy of two atoms would then be given by the sum of two terms of the type

(6.20). From the classical point of view, therefore, these forces are a consequence of the

dipole-dipole interaction between the atoms.

Actually, the energy corresponding to (6.16) is only part of the van der Waals energy

and there is an infinite series of rapidly converging terms. The next one corresponds to

dipole-quadrupole interaction and varies as r–8.

For the alkali halides, the attractive energy corresponding to (6.16) is of the order of a

few per cent of the total lattice energy. For the silver halides it is appreciably more; e.g.,

for AgBr it is about 14 per cent. This is a consequence of the relatively high

polarizability of the silver ion. We should note that the van der waals energy sometimes

plays an important role in the discussion of the stability of different lattice structures.
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The zero-point energy of the crystal is also a consequence of quantum mechanics.

The possible energy levels of a harmonic oscillator are given by

hvn )(
2
1 ------------- (6.21)

where n is an integer and v is the frequency. Thus, even at absolute zero an oscillator has

a zero point energy of hv/2. Now, in the Debye theory of the specific heat of solids, a

crystal is represented formally by a system of harmonic oscillators with a frequency

spectrum given by

dvv
cc

VdvvF
t

2

3
1

3

12
4)( 










  ------------------ (6.22)

where V is the volume of the crystal and ct and cl are, respectively, the velocities of

propagation of transverse and of longitudinal elastic waves. Making use of the definition

of the Debye frequency vD, one may write

dvv
v

N
dvvF

D

2

3

9
)( 








 ------------------ (6.23)

where N stands for the total number of atoms or ions in the crystal. Hence, at absolute

zero, the contribution of the zero-point energy is

D

v

NhvdvhvvF
D

2
1

02
1 )(  ------------------ (6.24)

Per ion pair this corresponds to 9hvD/4. with a Debye frequency of the order of 1012-1013

sec-1 this gives about 0.1 eV. As a correction to the lattice energy the zero point energy

thus contributes about 1 per cent. Note that this correction reduces the values given in

Table 6.2,

whereas the van der Waals correction raises them. In general, the van der Waals

correction is more important for heavy elements (large polarizabilities), and the zero-

point energy for light elements (high Debye frequency). As an example, we give here the

Coulomb……………
Repulsive …………..
Dipole-dipole ………
Dipole-quadrupole …
Zero-point ………….

LiF CsI

–12.4 – 6.4
+ 1.9 +0.63
– 0.17 – 0.48
– 0.03 – 0.04
+ 0.17 + 0.3
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various contributions to the lattice energy for the two extreme cases LiF and CsI (all

energies in eV).

6.8 Born-Mayer revised theory of ionic crystals
This theory closely follows the earlier theory given by Born but for the form of

repulsive energy term. The details of the theory are given below.
6.8.1 The electrostatic energy:

Consider an ionic crystal having N molecule, given a total of 2N ions. The electrostatic

energy of the crystal can be written as

Ue = NUi ------------ (6.25)

Where Ui is the average potential energy of a single ion in the field of the other remaining

ions. Also,







12

1

N

i
iji UU ---------- (6.26)

with Uij =
||4

1 2

0 ij

q

r
 ; rij3 = ri rj

Here Uij represents the electrostatic interaction energy in SI units between two ions

bearing an equal charge q and their positions being given by the vectors ri and rj. Taking

the origin of the coordinate system at the position of one of the positive ions, we have

rij =  rnknjni 321
ˆˆˆ 

| rij | =   rnnn 2

1
2
3

2
2

2
1  ---------- (6.27)

where n1, n2, n3 represent the number of units of the nearest neighbour distance r along

the x, y, z axes of the crystal. Having a positive ion at the origin, we observe that (n1, n2,

n3) r represents the location of

a negative ion, if (n1, n2, n3) is an odd integer

a positive ion, if (n1, n2, n3) is an even integer.

The Coulomb energy between the ion at the origin and any other ion located at rj will be

Uij =

rnnn

qnnn

2

1
2
3

2
2

2
10

2

)(4

)1( 321



 



---------- (6.28)

or

Ui =
r

q

0

2

4


---------- (6.29)
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Where  is a constant known as the Madelung constant, expressed by the following

relation:

 = )nn(n(-1) 2

1
2
3

2
2

2
1

n
12

0

12

0

12

0

321

321















 nn

N

n

N

n

N

n
---------- (6.30)

(n1, n2, n3) (0, 0, 0)

For NaCl crystal, the first term is 1/6 that is contributed by the six nearest

neighbours of the opposite type located at (1, 0, 0), (0, 1, 0) and (0, 0, 1) in units of

the nearest neighbour distance. The second term 2/12 comes from the 12 nearest

neighbours of the same type, located at (1, 1, 0), (0, 1, 1) and (1, 0, 1) and at a

distance of r2 from the origin. The sum in (6.30) can be made to converge rapidly

using some tricky mathematical method. The calculations yield the value of Madelung

constant as –1.7476 for a NaCl crystal. For some other important ionic crystals such as

CsCl, Zincblende (ZnS) and rtziteuw  (ZnS), the values are –1.7627, –1.6381 and –1.641,

respectively. A detailed account of the method of calculation has been provided by Born

and Huang. respectively.

6.8.2 The Repulsive Overlap Energy:

An approximate analytical form of the potential energy for pair of ions as originally

introduced by Born and Mayer is given by














|r|-
exp

ij)(
ij

r
ijU ---------- (6.31)

where ij and  are the empirical parameters which depend on the nature of the ions i and

j but are independent of the distance between them.

The repulsive term is representative of the fact that the overlap between the electron

configurations of neighbouring ions is resisted. The constants  and  stand for the

strength and range of interaction, respectively, and can be determined with the knowledge

of the experimental values of the lattice constant and compressibility. The range  is

defined as the values of |rij| for which the interaction is reduced to 1/e of the interaction ij

when the two ions are in contact, treating them as ideal point charges.
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Thus the total potential energy of the ions ri and rj can be written as the sum of the

attractive potential energy )(a
ijU and the repulsive potential energy )(r

ijU such that



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The total potential energy of a crystal of NaCl structure will be written as
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The subscript of  in (6.33) indicate that its value is different with reference to the

interaction between the like ions and that between unlike ions.

If we consider the repulsion only between the nearest neighbours the relation (6.33)

assumes the general from



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
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NU ---------- (6.34)

Where z stands for the number of nearest neighbours (six in NaCl structure).

Since the cohesive energy is referred to as the minimum value of the potential energy,

we can achieve the objective by expressing (6.34) in terms of the nearest neighbour

distance, for which the minimum potential energy occurs .For U to be minimum,

0
dr

dU

From (6.34), we get
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where r0 is the nearest neighbour distance at equilibrium .This condition gives
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From (6.34) and (6.35), we get
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As an exercise, we apply (6.36) to a NaCl crystal. The potential energy of a single ion in

the crystal is given by
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
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For NaCl,  = 1.748, r0 = 2.81
o

A and  is generally found to be ro/9. (A small value of 

shows the short range of repulsive interaction.)

Substituting these value in (6.37), we get

Uion = –7.97 eV

This is not correct energy of a single ion as every ion is counted twice while taking the

pair interaction. Therefore, the true potential energy of an ion is –7.97/2 eV = –3.99 eV,

which is essentially the contribution of a single ion to the potential energy .With

reference to ionic crystals the quantity, 7.97 eV, is referred to as the lattice energy which

only the cohesive energy per ion pair .This is in excellent agreement with the measured

value of 7.96eV.

The cohesive energy per atom may as well be calculated easily .The ionization

potential of the Na is 5.14 eV and the electron affinity of Cl is –3.62 eV. In the formation

of Na+ + Cl- ion pair, the energy spent in the electron transfer is equal to (5.14-3.61) eV

i.e. 1.53 eV, meaning thereby that each atom contributes 0.77 eV to the cohesive energy.

Thus, the cohesive energy/atom of NaCl

= (–3.99 + 0.77) eV

= –3.22 eV

The success of the underlined theory is further emphasized by the closeness of the

measured value (3.28 eV/atom).

6.9 Summary:

The potential energy of an ionic crystal is considered to be composed of two components,

one representing the electrostatic energy and the other belonging to the repulsive overlap,

which has its origin in the Pauli exclusion principle.

nrBrAe //2 

Born’s theory of the lattice energy is based on the assumption that the crystals under

consideration are built up of positive and negative ions.

For the NaCl structure the result is
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......747558.1thwi/2  ArAee

The constant A is called the Madelung constant. For other crystal structures composed of

positive and negative ions of the same valency, the Madelung constants are

Cesium chloride A = 1.762670

Zincbelende (ZnS) A = 1.6381

Wurtzite (ZnS) A = 1.641

Assuming that the two types of forces just discussed are the only ones we have to take

into account and neglecting surface effects, we thus find for the total binding energy of a

crystal containing N positive and N negative ions.

Born obtained the unknown repulsive exponent n from measurements of the

compressibility K0 of the crystals

The repulsive exponent AeKcan 2
0

4
0 /91

It is obvious that the repulsive forces acting between two ions will depend on the

distribution of the electronic charges in the ions and especially on the number of electrons

in the outer shells. For example, we would expect n to be larger for NaCl than for LiCl,

because the Na+ ion has eight outer electrons and the Li+ ion has only two. From Born

Haber method we can obtain an expression for lattice energy as

qEDISL  ClCl2
1

NaNa.exp 2

For NaCl, all quantities on the right-hand side are known from experiments and thus we

are able to give an experimental value for L, which may be compared with the one

calculated with the Born theory. For NaCl we find

eV9.73.48.32.11.51.1.exp L

whereas Born’s theory yields 8.0 eV.

From a study on alkali halide crystals it is concluded that depending on the ratio of anion

to cation radii of various structures result as

Cesium chloride ………….1 < r2/r1 < 1.37

Sodium chloride ………….1.37 < r2/r1 < 2.44

Zincblende …….………….2.44 < r2/r1 < 4.55
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Born and Mayer suggested refinements to the original Born’s theory particularly to the

form of repulsive potential.

Quantum mechanical calculations of the forces between ions indicate that a simple power

law for the repulsive forces cannot be rigorous. One therefore has to replace this law by

an exponential one of the form

/
rep )( rcer 

where c and  are constants.

Other refinements include adding an attractive term has to be to the lattice energy

corresponding to the van der Waal’s forces which act between ions or atoms with a rare

gas electron configuration and taking into account the “zero-point energy” of the crystal.

The van der Waal’s forces are responsible for the cohesion in the liquid and solid

states of rare gases as well as for most organic crystals.

The van der Waal’s contribution to energy can be written as  = – constant / r6

For the alkali halides, the attractive energy corresponding to van der Waal term is of

the order of a few per cent of the total lattice energy. For the silver halides it is

appreciably more; e.g., for AgBr it is about 14 per cent. This is a consequence of the

relatively high polarizability of the silver ion. We should note that the van der Waal’s

energy sometimes plays an important role in the discussion of the stability of different

lattice structures.

6.10 Key words:

Lattice energy – Born’s theory – Medelung constant – Repulsive exponent – Heat of

formation – Born Haber cycle – Ionic radii – Zero point energy – Polarizabilities – Debye

frequency – Lattice constants.

6.11 Review questions:

1. Define Madelung constant and obtain its value for NaCl crystal. Discuss its

physical significance.

2. How do you classify the crystal based on binding energy.
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3. Discuss clearly giving examples the relationship between the ionic radii and

stability of different types of structures for ionic crystals. Obtain the necessary

limits for the different structures.

4. Obtain an expression for the binding energy of an ionic crystal.

5. How does the stability of structures depend on ionic radii?

6. (a) Classify solids based on the nature of inter atomic forces. (b) Derive an

expression for the binding energy of NaCl crystal. (c) What is Madelung

constant?

7. Discuss Born’s theory for determining the binding energy of an ionic crystal.

8. (a) Obtain an expression for binding energy of an ionic crystal based on Born’s

theory. (b) How the stability of structures depends on ionic radii? (c) Comment

on the refinement of the Born’s theory.

6.12 Text and reference books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A.Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C.Kittel (Asia Publishing house)
6. A Text Book of Solid State Physics by S.L.Kakani and C.Hemrajani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakasan)
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UNIT – II LESSON: 7

Elastic constants of Crystals

Aim:

To know about elastic constants of crystal and also to learn about elastic waves in cubic

crystal.

Objectives:

 To know the relation between crystal binding (energy) and elastic properties of

crystals.

 To know definitions of elastic stress, elastic strain and the respective relationship

in between them

 To know definitions of dilation, elastic compliance and stiffness constants and

how these are applied to cubic crystals.

 To know about elastic waves in crystal and propagation of waves in the (100)

direction and (110) directions.

Structure Of The Lesson:

7.1. Introduction

7.1.1 Elastic Stress

7.1.2 Elastic strain

7.2 Elastic compliance and stiffness constants

7.2.1 Elastic energy density

7.2.2 Application to cubic crystals

7.2.3 Bulk modulus and compressibility

7.3 Elastic waves in cubic crystals

7.3.1 Propagation of waves in (100) direction.

7.3.2 Propagation of waves in (110) direction.

7.4 Summary.

7.5 Key words.

7.6 Review questions.

7.7 Text and Reference books.
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7.1 Introduction:

The crystal binding discussed in the earlier lesson establishes how this binding

controls the elastic behavior of solids .The nature of binding forces in a solid often

reflected in its elastic response. The study of elastic properties is essential for the

interpretation of several properties of solids. Elastic properties relate themselves to

thermal properties like the Debye temperature. Now we will know stress-strain

relationship in a crystal treating it as a homogeneous continuous elastic medium. The

crystal’s picture as a periodic array of atoms is replaced with homogeneous elastic

medium.

7.1.1: Elastic stress:

Let us consider uniform deformation of an elementary cube of a crystal. Under the

action of deforming force, an internal force develops within the crystal as a function of

the applied force. The internal force acting on the unit area of a crystal is defined as the

stress. For the present treatment, it is assumed that the applied force is not large and the

Hookes’ law is valid (stress is proportional to strain). The stress acting on the six faces

of the cube is expressed by nine components xx, xy , xz , yx ,yy ,yz, zx ,zy ,zz,. The

first subscript denotes the direction of the applied force and the second subscript denotes

the direction of the normal to the force on which the force is applied. The stress is a

tensor of second rank and denoted by a (3x3) matrix namely

 


















zzzyzx

yzyyyx

xzxyxx







 ---------------- (7.1)

with ,  = x, y, z.

The components xx, yy, zz express the normal stress components acting on the yz ,

zx, and xy faces respectively. The remaining six components represent the tangential

stress (two components of each of the three pairs of the faces). If the cube is in the state

of static equilibrium and it does not rotate under the influence of tangential stress

components  and  would produce equal and opposite rotations. Hence  = 

and the nine stress components reduce to six independent components. Figure 7.1 shows

a normal component yy and a tangential component yz acting on the respective faces of
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a cube. The stress components have the dimension of force per unit area or energy per

unit volume.

Fig 7.1:The normal stress component yy, produced by a force applied in the +y

direction on the xz face (with the normal along the +y direction) of a cube. The

tangential stress component yz produced by a force applied in the +y direction on

the xy face (with normal along the +z direction) of a cube.

7.1.2 Elastic Strain:

Let the three orthogonal unit vectors kji ˆ,ˆ,ˆ are embeded in an unstrained crystal.

Suppose on straining the crystal by a small deforming force these vectors are

transformed into non-orthogonal vector nml ,, respectively, with individual magnitudes

differing from unity. We treat the sets of vectors as the new and old coordinate axes. The

new coordinate axes may be expressed as


















kjin

kjim

kjil

zzxzyzx

yzyyyx

xzxyxx

ˆ)1(ˆˆ

ˆˆ)1(ˆ

ˆˆˆ)1(







------------------- (7.2)

where  define the deformation. These coefficients are dimensionless and very small

(<<1) for a small strain.

By taking the dot products nnmmll  ,, , we can easily show that the magnitude of

the each of the three new vectors is different from unity. Also the dot products

lnnmml  ,, do not vanish indicating that ml , and n are not orthogonal vectors.

z

x

y

yz(tangential)

yy (normal)
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The strain components e are defined in terms of  as

exx= xx, eyy = yy , ezz = zz ---------- (7.3(a))

and















zxxzzx

yzzyyz

xyyxxy

lne

nme

mle







.

.

.

---------- (7.3(b))

In relation (7.3b) the sign  may be replaced by the sign =, if the terms of order 2 are

neglected (<<1) . It is to be noted that the strain components in (7.3b) are defined in

terms of the changes in angle between the axes. Therefore for a rigid rotation in which

angles do not change exy = eyz = ezx = 0 and xy = -yx, yz = -zy and zx= -xz . If we do

not consider pure rotation since they are not deformed, we may always take

xy = yx, yz = zy, and zx = xz --------------- (7.4)

using (7.4) in (7.3b) we have





















zxxzzx

yzzyyz

xyyxxy

e

e

e

2

1

2

1

2

1







------------------- (7.5)

Now consider an atom at position ‘ r ’ in the unstrained crystal. The position vector is

expressed as

kzjyixr ˆˆˆ  ------------------- (7.6)

Let the position of the atom in the strained crystal be given by

nzmylxr ' ------------------- (7.7)

The displacement of the atom under the action of the deforming force is

 r = 'r - r -------------- (7.8)

Making use of (7.2) & (7.5) to (7.7) the above relation can be expressed as

kzeyexejzeyexeizeyexer zzyzxzzyyyxyzxyxxx
ˆ

2

1

2

1ˆ
2

1

2

1ˆ
2

1

2

1




















---------------- (7.9)
We rewrite it as

kujuiur ˆˆˆ)( 321  -------------- (7.10)
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where





















zzyzxz

zyyyxy

zxyxxx

zeyexeu

zeyexeu

zeyexeu

2

1

2

1

2

1

2

1

2

1

2

1

3

2

1

------------------- (7.11)

Where u1, u2, u3 are the displacement components along the coordinate axes of the

unstrained crystal.

All the six dimensionless strain components can now be defined as follows by taking

partial derivatives of u1, u2 and u3




























































x

u

z

u
e

z

u
e

z

u

y

u
e

y

u
e

y

u

x

u
e

x

u
e

zxzz

yzyy

xyxx

313

232

121

;

;

;

------------------- (7.12)

Relation in (7.12) give alternative definition of strain components. Relation (7.2) and

(7.3a) indicate that exx, eyy and ezz represent linear strain i.e., changes in length per unit

length along the three axes. Each of the other type of three components interpret a

combination of two simple shears. Take for example,

z

u

y

u
e yz









 23

It describes two shears one in which the planes normal to y-axis slide in the z-

direction and other in which the planes normal to z-axis along the y-direction. Like stress,

strain is also a tensor of second rank. In general it is described by nine components with

the matrix representation as

 


















zzzyzx

yzyyyx

xzxyxx

eee

eee

eee

e ------------------- (7.13)

With ,=x,y,z.

7.1.3 Dilation: The fractional increase in volume created by deformation is called

dilation. It is useful in determining some elastic constants such as the bulk modulus.
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Volume of a unit cube after deformation is

V = nml . --------------- (7.14)

Substituting for nml ,, from (2.2) into (7.14) neglecting the product of 2 strain

components (e1), we get

V = 1 + exx + eyy + ezz --------------- (7.15)

Therefore the dilation  =
V

VV 
= exx + eyy + ezz ------------ (7.16)

7.2 ELASTC COMPLIANCE AND STIFFNESS CONSTANTS:

According to Hooke’s law the strain is directly proportional to the stress for sufficiently

small deformations. Therefore for appreciable small elastic deformations of a crystal the

stress tensor components and the strain tensor components are related as

















































































xy

zx

yz

zz

yy

xx

xy

zx

yz

zz

yy

xx

e

e

e

e

e

e

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211













------------------- (7.17)

Conversely, the strain components can be expressed as the linear function of the stress

components.



















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

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















































xy

zx

yz

zz

yy

xx

xy

zx

yz

zz

yy

xx

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

e

e

e

e

e

e













666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

------------------- (7.18)

The coefficients C12, C11 etc are called elastic stiffness constants and represent moduli of

elasticity with dimensions of
volume

energy
or

area

force
. The other coefficients S11, S12 are called

elastic compliance constants and have dimensions of
energy

volume
or

force

area
.
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7.2.1 ELASTIC ENERGY DENSITY:

By analogy with the expression for the energy of a stretched spring, the elastic energy

density  is a quadratic function of strains in the approximation of Hooke’s law

vv
V

eeC 



6

1

6

12

1


 -------------- (7.19)

where the indices 1 to 6 should read as

1  xx, 2  yy, 3  zz, 4  yz, 5  zx, 6  xy ------------ (7.20)

The coefficients sC are found to be related to Cs of (7.17) as we will see below. We will

exploit the definition (7.19) to show that 36 coefficients in (7.17) or (7.18) can be

reduced in number. The very definition of potential energy allows us to obtain the stress

components from the derivative of  with respect to the associated strain component. For

example, when the stress xx acts on one face of a unit cube and the opposite face is held

at rest, we have





 eCCeC

eexx

xx )(
2

1
11

6

2
111

1













------------- (7.21)

An inspection of relation (7.21) reveals that only the combination )(
2

1
 CC  enters

the stress strain relations ,implying that the elastic stiffness constants are symmetrical.
Thus we have

C = )(
2

1
 CC  = C ---------------- (7.22)

The above symmetrical property reduces the number of constants from 36 to 21

7.2.2 Application to cubic crystals:

In accordance with the Neumann’s principle, the number of independent elastic

stiffness constants decreases as the symmetry of a crystal increases. This number 21, 13,

5 and 3 respectively for triclinic, monoclinic, hexagonal, and cubic systems. The cubic

crystals being the most symmetric have the least number of independent elastic stiff

constants. We now derive this result.

We pronounce that the relations for the elastic energy density of a cubic crystal has the

form
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)()(C
2

1
)(C

2

1
12

222
44

222
11 yyxxxxzzzzyyxyzxyzzzyyxx eeeeeeCeeeeee  ------ (7.23)

The above relation does not have the quadratic terms

....);(....);(....);(  yzxxzxyzxyxx eeeeee --------------- (7.24)

Fig 7.2 One of the four threefold Rotation axes (the direction of the body diagonal)

in a cubic crystal . The [111] direction and its equivalent directions represent other

threefold rotation axes (i.e. the direction of the other three body diagonals)

The correctness of (7.23) can be confirmed by showing that  is invariant under all

symmetry operations permitted in a cubic crystal. The minimum symmetry requirement

for cubic symmetry is the presence of four three fold rotation along the directions of the

four body diagonals of the cube (fig 7.2).

Counter clock wise rotations by 2 /3 about the (111)direction and three other

equivalent directions interchange the x, y,z axes according to the following four schemes.

It is straight forward to check that the relation for  remains unchanged when x, y, z

are interchanged in (7.23) according to any of the four schemes (7.25). But every term

appearing in (7.24) is odd in one or more indices. One of the schemes in (7.25) is surely

such that its application to (7.23) would change the sign of the term in (7.24) .This

confirms that the terms included in (7.24) have rightly been excluded from the relation

(7.23) for . We may now easily derive the stress components from (7.23) Thus

x

y

z 3

2

x  y  z  x; -x  z  -y  -x

x  z  -y  x; -x  y  z  -x
---------------(7.25)
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)(1211 yyzzxx

xx

xx eeCeC
e








 ---------------- (7.26)

The corresponding relation is given by (7.17) is

xyzxyzzzyyxxxx eCeCeCeCeCeC 161514131211  ---------------- (7.27)

On comparing (7.26) and (7.27) we get

C12 = C13; C14 = C15 = C16 = 0 --------------(6.28)

Further, from (7.23)

xy

xy

xy eC
e

44






 --------------- (7.29)

The corresponding relation from (7.17) is

xyzxyzzzyyxxxy eCeCeCeCeCeC 666564636261  --------------- (7.30)

Comparison of (7.29) with (7.30) gives

C66 = C44; C61 = C62 = C63 = C64 = C650 -------------- (7.31)

Proceeding this way for other stress components, we find that the array of values of the

elastic stiffness constants of a cubic crystal may be expressed in the following matrix

representation.

 





























44

44

44

111212

121112

121211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

C ---------------- (7.32)

Where ,  = 1, 2, 3, 4, 5, 6.

Matrix (7.32) shows that a cubic crystal has only three independent stiffness constants by

calculating the inverse matrix to (7.32), we obtain the following relationship between the

stiffness and compliance constants for cubic crystals.

C44 = 1/S44; C11 - C12 = (S11 - S12)
–1, C11 + 2C12 = (S11 + 2S12)

–1 ------------- (7.33)

7.2.3 Bulk Modulus and Compressibility:

Let us consider a strained crystal which is uniformly dilated. This refers to the

mathematical condition
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exx = eyy = ezz = 
3

1
--------------- (7.34)

From (7.23) we obtain the following relation for the elastic charge density of a cubic

crystal.

2
1211 )2(

6

1
 CC  ----------------- (7.35)

The bulk modulus B is usually defined by the relation

2

2

1
 B ----------------- (7.36)

Comparing (7.35) with (7.36), we express the bulk modulus of a cubic crystal as

)2(
3

1
1211 CCB  ----------------- (7.37)

The inverse of B has been interpreted as another useful elastic property called the

compressibility K. The compressibility of a cubic crystal is accordingly given by

1211 2

3

CC
K


 ----------------- (7.38)

7.3 Elastic waves in a cubic crystal:
Consider of an elementary cube of edges x = y =z with in the volume of a cubic

crystal. The cube edges are in the direction of x-, y-, and z- axes. When the cube is

strained, let the stress xx(x) act on the face at x. Assuming that the variation of xx is

uniform along the x-direction, the stress on the face parallel to that at x can be expressed

as [xx (x) + (xxx)x] (see fig 7.3). The net force on the cube due to a xx component

is equal to [(xxx)x] y · z. The other forces in the x-direction arise from the

variation of xy and xz across the cube. Therefore the net force on the cube along the x-

direction is

Fx= zyx
zyx
xzxyxx 




















 
-------------- (7.39)

The above force is actually the restoring force that tends to bring the cube to its

unstrained state. As a result, the particles in the crystal are thrown to a motion described

by the relevant equation of motion. If  is the density of the crystal, the force per unit

volume on the crystal along the x-direction is (2u1/t2) and the equations of motion in

the x-direction becomes
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yzxt

u xyxzxx


















 


2

1
2

---------------- (7.40)

Fig (7.3) Variation of normal stress component (xx) with in a cube along x edge

Using (7.17) and (7.32) the above equation is reduced to the following form for a cubic

crystal.















































z

e

y

e
C

x

e

x

e
C

x

e
C

t

u zxxyzzyyxx
4412112

1
2

 ---------------- (7.41)

On eliminating the strain components with the help of (7.12) above equations assumes

the form





































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






zx

u
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u
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u

y

u
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x

u
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t

u 3
2

2
2

44122

1
2

2

1
2

442

1
2

112

1
2

)( -------------- (7.42)

Here u1, u2, u3 are the components of the atomic displacement ( r ) along the axes of the

unstrained crystal [see equation (7.10)]. The solution to (7.42) turns out to have a

waveform, indicating that waves propagate within the crystal when it is strained in such a

way as there exists a non-zero stress on the crystal. These waves are called elastic waves

because they are produced here in an elastic continuum by elastic deformation.

Similar to (7.42) there are equations of motion in the y- and z-directions. We write

them by symmetry on the basis of (7.42).

























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



















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u
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u
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z

u
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y

u
C

t
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1
2

44122

2
2

2

2
2

442

2
2

112

2
2

)( ------------- (7.43)

xx(x+x)

z

x
y

xx(x)

Volume x y z
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
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)( -------------- (7.44)

Now we proceed to study the solutions of these equations in some common directions in

cubic crystals.

7.3.1 Propagation of waves in the [100] direction:

First, consider a longitudinal or compressional wave that propagates along the x-cube

edge. Its propagation constant or wavevector k is parallel to the particle displacement u1,

given by

u1 = (u1)0 exp [i(kx - t)] --------------- (7.45)

where k = 2 /, and  is the angular frequency. When (7.45) is used as a trial solution

of (7.42) and placed in it, we obtain the dispersion relation.

2 = C11k
2 -------------- (7.46)

This gives the velocity of the longitudinal wave in the [100] direction in a cubic crystal as

2/1

11













 C

k
vl ---------------- (7.47)

Next, we consider a transverse or shear wave with its wavevector k along the x-cube

edge and the particle displacement u2 in the y-direction. Thus,

u2 = (u2)0 exp [i(kx - t)] ------------------ (7.48)

The substitution of (7.48) into (7.43) gives

2 = C44k
2 -------------- (7.49)

Therefore, the velocity of a transverse wave in the [100] direction in a cubic crystal is
2/1

44













 C

k
vs ---------------- (7.50)

It can be shown that a transverse wave with wavevector along the x-cube edge and the

particle displacement u3 in the z-direction moves with the identical velocity. This result

asserts that two independent shear waves whose wavevectors point along the [100]

direction propagate in a cubic crystal with equal velocities. For a general direction of the

wavevector this result is not applicable. The geometry of the longitudinal and transverse

(wave) propagation in the [100] direction in a cubic crystal is shown in fig 7.4(a)
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7.3.2 Propagation of Waves in the [110] Direction:

The study of elastic waves propagation in the [110] direction (the direction of a face

diagonal) is especially gainful because the three elastic constants can be obtained simply

from the three measured propagation velocities.

Let us first consider a shear wave with wave vector jkikk yx
ˆˆ  propagating in the

xy plane and causing a particle displacement u3 in the z-direction. Thus

u3 = (u3)0 exp [i(kxx + kyy - t)] ------------------ (7.51)

Substituting (7.51) into (7.44) we have

2 = 244 k
C











----------------- (7.52)

Figure 7.4: The propagations of elastic waves in a cubic crystal L denotes

longitudinal waves and T denotes a shear wave.

(a). Waves in the [100] direction (k parallel to i) one longitudinal wave with velocity

characterized by C11, two degenerate shear waves with velocity characterized by

C44.

(b). Waves in the [110] direction (k parallel to (i+j)); one longitudinal wave with

velocity characterized by ½ (C11+C12+2C44), two shear waves with velocities

characterized respectively by C44 and ½ (C11-C12) .

(c) Waves in the[111] direction [k parallel to (i+j+k)] .

One longitudinal wave with velocity characterized by 1/3(C11+2C12+C44), two

degenerate shear waves with velocity characterized by 1/3(C11-C12+C44) i,j,k

denotes the unit vectors along the cube edges defining the X-,Y-,Z- coordinate axes.

k

T2

T1

L

(b)

T

T

k

L

(c)

T

T

k
L

(a)
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Next, consider the other two waves propagating in the xy plane with particle velocity in

the xy plane. Let these be represented as











)(exp)(

)(exp)(

022

011

tykxkiuu

tykxkiuu

yx

yx




---------------- (7.53)

Placing these solutions in (7.42) and (7.43), we get the following pair of equations.











144122
2

44
2

112
2

244121
2

44
2

111
2

)()(

)()(

ukkCCukCkCu

ukkCCukCkCu

yxxy

yxyx




------------ (7.54)

For a wave in [110] direction for which kx = ky = k/ 2 , equation (7.54) have a

characteristically simple solution. The solution exists only if the determinant of the

coefficients u1 and u2 in (7.54) vanishes. Thus

0
)(

2

1
)(

2

1

)(
2

1
)(

2

1

22
4411

2
4412

2
4412

22
4411










kCCkCC

kCCkCC
-------------- (7.55)

On solving equation (7.55) we get two dispersion relations

21211224412112

2
;

2

2
k

CC
k

CCC







 








 






 --------------- (7.56)

These two roots refer to two different types of waves. We now determine the nature of

the waves by finding the direction of the particle displacement caused by the respective

waves. When we substitute the first root in the first equation of (7.54) we get u1 = u2.

Since the particle displacement occurs in the xy plane, ( r ) = u1( ji ˆˆ  ). This shows that

the displacement takes place in the [110] direction that represents the direction of

)ˆˆ( ji  and happens to the direction of propagation of the wave (see fig 7.4(b)). Thus we

infer that the first root in (7.56) belongs to a longitudinal wave.

Similarly, on substituting the second root in the first equation of (7.54), we obtain u1= -u2

implying that, r = u1 )ˆˆ( ji  . The direction of the vector )ˆˆ( ji  is indicated as [ 011 ]

which is perpendicular to the[110] direction, the direction of propagation of the wave.

Hence the second root in (7.56) must refer to a shear wave [fig 7.4 (b)]. The treatment of

waves in the [111] direction is relatively lengthy though not complicated as for other

general directions. The main features of propagation may be found in 7.4(c).
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The subject matter of the last section is closely linked to the analysis of normal modes

of vibration of crystals. Generally the direction of particle displacement or the

polarization of normal modes may not be exactly parallel or perpendicular to the

direction of the wave vector k. The analysis becomes easier when k is along any

symmetry axis of the crystal.

7.4 Experimental Determination Of Elastic Constants:

In the experimental determination of elastic constants, a pulse of sound, generated by a

piezoelectric quartz transducer, travels through the crystal. After reflection from the rear

surface of the crystal, it travels back through the crystal and on emerging out of the

crystal is detected by an electronic device as shown in fig 7.5. The elastic wave velocity

can be determined by dividing the round trip distance by the time taken, and hence, the

elastic constants of a crystal can be determined from the velocities of these waves

through the relationship as mentioned above. In table 7.1 the measured elastic constants

for some materials are given

Ultrasonic Pulse

Ultrasonic Pulse

Quartz Transducer Crystal

Rear Surface
of Crystal

Fig 7.5 Ultrasonic pulse method for determination of elastic constants

Material C11 C44 C12

Table 7.1 Elastic constants (in units of Gpa) of some cubic materials

Diamond 1040 550 170

Si 165 79.2 64

GaAs 118 59.4 53.5

NaCl 49.1 12.8 12.8

ZnS 101 44.3 64.4

BaTiO3 222 112 139

SrTiO3 316 123 102
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7.5 Summary:

The nature of binding forces in a solid often reflected in its elastic response. The study

of elastic properties is essential for the interpretation of several properties of solids.

Elastic properties relate themselves to thermal properties like the Debye temperature.

Under the action of deforming force, an internal force develops within the crystal as a

function of the applied force. The internal force acting on the unit area of a crystal is

defined as the stress. For the present treatment, it is assumed that the applied force is not

large and the Hookes’ law is valid (stress and strain). The stress acting on the six faces of

the cube is expressed by nine components xx, xy ,xz ,yx ,yy ,yz,zx ,zy ,zz,.

The components xx, yy, zz express the normal stress components acting on the yz,

zx, and xy faces respectively. The remaining six components represent the tangential

stress components (two components of each of he three pairs of the faces).

The fractional increase in volume created by deformation is called dilation. It is useful in

determining some elastic constants such as the bulk modulus.

The coefficients C12, C11 are called elastic stiffness constants and represent moduli of

elasticity with dimensions of force volume. The other coefficients S11, S12 are called

elastic compliance constants and have dimensions of area or volume.

The expression for the energy of a stretched spring, the elastic energy density  is a

quadratic function of strains in the approximation of Hooke’s law

vv
V

eeC 



6

1

6

12

1


 , where the indices 1 to 6 should read as

1  xx, 2  yy, 3  zz, 4  yz, 5  zx, 6  xy

In accordance with the Neumann’s principle, the number of independent elastic

stiffness constants decreases as the symmetry of a crystal increases. This number is 21,

13, 5 and 3, respectively for triclinic, monoclinic, hexagonal, and cubic systems. The

cubic crystals being the most symmetric have the least number of independent elastic stiff

constants. The three independent elastic stiffness constants for a cubic crystal are C11,

C12, C44.

The velocity of a transverse wave in the [100] direction in a cubic crystal is

2/1

44













 C

k
vs . For a wave in [110] direction for which kx = ky = k/ 2 ,
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we get two dispersion relations

21211224412112

2
;

2

2
k
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k

CCC







 








 






 These two roots refer to two different

types of waves. The first root belongs to a longitudinal wave and the second root refers

to a shear wave

7.6 Keywords:

Elastic constant – Elastic stress – Elastic strain – Dilation – Elastic Compliance –

Stiffness Constants – Elastic energy density – Bulk modulus and Compressibility –

Elastic waves.

7.7 Review questions:

1. Define elastic constants of a crystal and obtain respective relationship in between

them.

2. Define dilation, elastic compliance and stiffness constants and elastic energy density,

how these are applicable to cubic crystals.

3. Define bulk modulus and compressibility. What do you understand by elastic waves in

cubic crystals?. How do these waves propagate along [100] and [110] directions?

4. Show that the longitudinal and shear wave velocities in the [111] direction in a cube

are respectively, given by

1v

2/1

441211

3

42







 



CCC
;

2/1

441211
2

3

42







 




CCC
v

5. Show that in a cubic crystal, the effective elastic constant for a shear across the (110)

plane in the [ 111


] direction is equal to
2

)( 1211 CC 

6. Discuss the solution for a longitudinal wave in a [110] direction and longitudinal shear

wave in a [110] direction.

7. A cubic crystal is subjected to tension in the [100] direction. Find the expression for

Young’s modulus and Poisson’s ratio in terms of elastic compliances or stiffnesses.

8. Show that in a cubic crystal the condition for a longitudinal wave in the [111] direction

to have the same velocity as a longitudinal velocity in the [110] direction is that

C11- C12 = 2C44.
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9. Give symmetry arguments to show that there are three independent elastic constants

for a cubic system.

10. For a cubic crystal, obtain an expression for velocity of elastic waves in (100) and

(110) directions. Express Bulk Modulus and compressibility in terms of elastic constants.

11. What are the stiffness and compliance constant so that the stress and strain are

symmetric tensors of the second rank. Describe an experiment to determine the elastic

constants of a cubic crystal.

12. Set of the equation of motion for propagation of elastic waves in cubic crystals.

Derive the relation between the velocity of propagation and elastic constants for (100)

and (110) directions.

13. Discuss the analysis of elastic strain and stress in crystals. How are the elastic

coefficient determined experimentally.

7.8 Text and reference books:

1. Elements of Solid State Physics by J.P. Srivastava (PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C.Kittel (Asia Publishing house)
6. A Text Book of Solid State Physics by S.L. Kakani and C. Hemrajani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT – II LESSON: 8

Lattice vibrations

Aim: To know about the theory of lattice vibrations.

Objectives of the lesson:

 To know about the introductory remarks about lattice vibrations.

 To know the balls and springs model of harmonic crystals.

 To look into one-dimensional atomic chain under normal model.

 To determine the periodic values of K through periodic boundary condition.

 Extension of normal model to one-dimensional diatomic chain.

 To look into the salient features of dispersion curves.

 To know about the restrahlen frequency band.

 To highlight the general theory of harmonic approximation.

 To know about normal model of real crystals.

 Quantised concept of lattice vibrations.

 Phonon dispersion by inelastic neutron scattering.

Structure of the lesson

8.1 Introduction.

8.2 The balls and springs model of harmonic crystal.

8.3 Normal model of one-dimensional monatomic chain.

8.3.1 Periodic boundary condition

8.3.2 Salient features of dispersion curve

8.4 Normal models of one-dimensional diatomic chain.

8.4.1 Salient feature of dispersion curves

8.5 The Reststrahlen band

8.6 General theory of harmonic approximation

8.7 Normal models of real crystals

8.8 Quantization of lattice vibrations

8.9 Measurement of phonon dispersion by inelastic neutron scattering
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8.10 Summary

8.11 Keywords

8.12 Review questions

8.13 Text book reference

.

8.1. Introduction:

The basis of crystal structure is often described in terms of ions for the interpretation of

the properties of solids. The valence electrons are considered to have been placed in the

force field of the lattice of ions. The roles of ionic and electronic motions are crucial in

the determination of the properties of solids. While some properties depend heavily on

the electronic motion, several others are closely linked to the ionic dynamics lattice heat

capacity, thermal expansion and hardness are some examples of properties that belong to

the latter class. In this lesson small vibrations of crystalline solids in terms of normal

modes (independent motions of characteristic frequency) of motion of constituent ions.

In normal modes all the ions mere with well-defined amplitude and phase. A normal

mode has the same amplitude in each cell but varies from one unit cell to the other across

the crystal like a wave with a certain wave vector. Such a wave is called lattice wave and

the vibration with which it is associated is commonly know as lattice vibration.

The analysis of lattice vibrations is faced with the major difficulty of finding a way to

treat the motion of ions that are heavy, separately from that of light electron,. This is

accomplished by working in the so called adiabatic approximation, which in this context

of molecules is famous as the ‘Born–Oppenheimer approximation’. The electron velocity

at the Fermi level Vf 106 m s where as typical ionic velocities are at the most of the

order of 10 3 m s. This simplifies the calculation of potential energy of ions.

8.2 The balls and springs model of a harmonic crystal:

Previously we observed that the equilibrium interionic separation in a crystal is

determined by the balance between the attractive forces (large separations) and the

repulsive force (small separation). When thermal agitations displace ions from their

equilibrium points each of them experiences a net force in the form of restoring force.

This force tends to bring the ions back to their equilibrium positions and accounts for the
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elastic property of solids. In a simple mechanical, model we visualize a crystal as a

three-dimensional periodic array of balls each of which is connected to its neighbours by

massless springs. The balls and springs are respectively the representation for the ion and

the coupling bonds of the real crystal. The force on an ion in the crystal is calculated by

drawing an analogy between the crystal and its mechanical model. For small contractions

and extensions of springs the Hooke’s law is applicable to the mechanical model.

Each ion inside a crystal moves in a potential well of force field of its neighboring

ions. For small displacements or small deviations from the equilibrium value of

separation of ions, the potential energy curve is parabolic since this form of potential

energy is a well-known attribute of simple harmonic motion, the ionic motion involving

small displacements may be treated as simple harmonic in nature.

Some of the rough estimates made below demonstrate that the harmonic

approximation is generally acceptable in solids. When the separation of ions changes by

a from the equilibrium value, the change in potential energy of the ion is written as

U =
2

1
f(a)2

where f is called force constant or the spring constant associated with the massless spring

joining the two ions viewed as the harmonic oscillator.

For a=1Å, it gives the value of U as 1 eV, yielding f = 30 N m-1. Using this value of

for a simple cubic crystal, we can readily deduce the macroscopic elastic modulus E for

extension along one edge of the crystal. Thus, we have

a

f

aa

aaf
E 

/)(

/)( 2




= 1011 N m-2 (for a = 3 Å)

This value of E is typically of the order of Young’s modulus identified alternatively as

a stiffness constant. By ignoring the fact that an ion is coupled to several other ions, let us

calculate the frequency of vibration of an ion attached to a spring whose other end is

rigidly fixed. We find that the order of magnitude of frequency for f = 30 N m-1 refers to

the IR region which indeed represents the region of vibration frequencies of solids.

Another important aspect is the propagation of long waves in solids. To these waves

such as sound waves, a crystal behaves as an elastic continuum. It enables us to estimate

the velocity vs of these acoustic waves as
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2/1
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Where  is the density Ma3, of a simple cubic crystal with M as the ionic mass.

The above relation gives vs = 104 ms-1, which is a correct order of magnitude; most of

the solids have vs in the range 1–10 Km s-1. This calculation, though rough, also

underlines the importance of stiffness constants in the continuum approach to wave

propagation in solids. In a commonly employed technique for measuring stiffness

constants, an ultrasonic pulse is sent through the crystal. The ultrasonic waves whose

wavelength (~m) measures several thousand times the atomic spacing treat the crystal as

a continuum.

8.3 Normal modes of a one-dimensional Monoatomic chain:

Let us consider the simplest crystal which can be a linear chain of N identical atoms

(Fig 8.1). This is equivalent to a linear chain of N primitive cells. With one atom in each

of them. If we wish to describe the vibrations of the chain we are confronted with the

problem of accounting approximately the motion of the ions in the middle and the motion

of two ions at the ends. The broad feature of the motion may still be obtained by

considering only the nearest neighbour interactions and ignoring the ends. The results of

such a calculation are most acceptable when the number of atoms is large. If we denote

the displacement of an ion at any moment from its site l in the static lattice by sl, the

effective potential energy of a chain of interionic separation, a, in the harmonic

approximation is

Ueff = 2)(
2

1
all

l
ssf  -------------- (8.1)

where only the nearest neighbour interactions are included.

a

sl – a sl+ a
sl + 2 asl

Fig 8.1 The displacement of ions in a linear chain of identical
ions connected by springs.
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The restoring force on the ion situated in the static lattice at the site l can be expressed as

lMs = -f [(sl – sl+a) + (sl – sl-a)]

= - f (2sl – sl+a – sl-a) ---------------- (8.2)

The preceding equation represents the equation of motion of a single ion in the chain.

We expect from symmetry a normal mode solution in the form

sl = s0 exp [i(k . 1 - t)] --------------- (8.3)

which is a wave with wavevector k varying as exp(ik .x) along the line of the ions (the x

direction) with amplitude s0.

Substituting sl from (8.3) in (8.2) we get

M2 = f [2 – exp (ika) – exp (-ika)]

or









 ka

M

f
ka

M

f

2

1
sin4)cos1(

2 22

Which given the angular frequency of oscillation as









 ka

M

f
k

2

1
sin2)(









 kam

2

1
sin -------------- (8.4)

if the positive root is chosen.

The m is the frequency maximum [2(f/m)] observed at k =  /a. It must be noted

that l does not figure in (8.4), indicating that the equation of motion of every ion gives the

same algebraic relation between  and k. This shows that the trial function s is indeed a

solution of (8.2). Relation (8.4) is the required dispersion relation and the  versus k plot

derived from this is known as the dispersion curve.

Another important observation is that we started with equations of N coupled

harmonic oscillators (8.2), implying that if one ion starts vibrating, it does not continue

with constant amplitude, but transfers energy to others in a complicated way. Thus the

vibrations of individual ions are not simple harmonic on account of this energy exchange.

Our solutions, on the other hand, are uncoupled oscillations called normal modes. Each

normal mode has a characteristic k-value with a definite  and, therefore, the oscillations

of ions in different normal modes are independent of each other.
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8.3.1 The Periodic Boundary Condition:

The dispersion relation (8.4) shows that  = 0 at k = 0 and  = m at k =  /a. This

indicates that all the normal mode frequencies lie in the range of k values from –/a to +

/a defining the extent of the first Brillouin zone of a linear lattice. The complete

spectrum of the normal modes is usually determined by involving the periodic boundary

condition originally given by Born and Karman for the electron gas. The condition

requires the two ends of the crystal to be joined. It is appreciated most easily in the case

of the electronic conduction. The electrical conductivity depends on the details of

electronic motion within the crystal. It implies as if an electron enters the crystal at one

end as soon as it leaves the other end. The fact is equivalent to starting that the two ends

of the crystal behave as being in contact. In the present case the ions at the ends of the

linear chain are imagined to have been joined by an additional spring which is identical

with those considered to couple the successive ions in the chain. The linear chain is thus

transformed into a ring as shown in fig 8.2.

When we move away from a certain ion along the ring and take N steps, each of

length a (the interatomic spacing), we are back to the same ion. Then we require that

sl = sl + Na ----------------- (8.5)

Where l = na, n being an integer

Na = the length of the chain L.

Using the solution (8.3) in the condition given by (8.5), we have

exp (ik . Na) = 1 = exp (i2n) --------------- (8.6)

or
L

n
N

n

a
k

 22
 --------------- (8.7)

Where n is an integer.

Fig 8.2: The Born – Karman periodic boundary condition for a linear
chain of N identical ions.
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So, the allowed values of k are given by

k = 0, 
L

2
, 

L

2
2 ,….. ---------------(8.8)

From (8.3) it is evident that if k changes by 2/a and or by its multiples, the solution

remains unchanged. But such changes (2n/a) in k denotes the reciprocal lattice vector

of the one dimensional lattice under discussion, as such a root of frequency 

corresponding to a certain k-value repeats whenever the k-value is changed by a

reciprocal lattice vector. This result forms one of the founding principles of the theory of

solid state. The range of the first Brillouin zone is from /a to +/a totaling 2/a width.

Therefore for every k-value in the second, third or any other zone, there is a k-value in the

first zone such that the vibration frequency for the two k-values is common. It happens

so because the points of k-values in the set are connected by the reciprocal lattice vectors

(Fig 8.3).

Fig 8.3 Brillouin zones of a one-dimensional crystal of lattice constant a. Wave
vectors k2 (extending to the second zone) and k3 (extending to the third zone) one
connected to wave vector k1 (with in the first zone) by reciprocal lattice vectors g1

and g2, respectively. The form of the solution to the equation of motion is such as to
yield the same value of vibration frequency for k1, k2 and k3. Thus all important k-
values (known as unique values) lie within the first zone.

This leads to a conclusion of great significance that all unique values of k that satisfy the

solutions (8.3) lie within the first zone and we need not search for the k-values in other

zones as they yield no new roots of .

Now, we are in a position to fix the last term in the set of the allowed k-values given by

(8.8) and rewrite the set as











aL

N

LL
k

 2

2
......,,

2
2,

2
,0 ---------------- (8.9)

The last term coincides with the boundary /a of the first Brillouin zone. The negative

sign is dropped since -/a is not independent on account of being connected to + /a by

the shortest reciprocal lattice vector of magnitude 2/a. The total number of unique k-

values in the allowed set is N and so will be the total number of normal modes.

0

a



a



a

2

a

3

a

2

a

3 k- k

k3 k2k1

g2
g1
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8.3.2 Salient Features Of The Dispersion Curve:

The dispersion relation (8.4) and the dispersion curve displayed in fig 8.4 show only the

nearest neighbour interactions. In this spirit a monatomic linear chain may be considered

to act as a low pass filter. The features of the dispersion curve are further revealing in the

extreme limit of the wave vector k. In the limit of small k-values, more often referred to

as the long wavelength limit, sin (ka/2) in relation (8.4) may be replaced with ka/2 in the

first approximation. The dispersion relation would then read as

ka
M

f
k )( ---------------- (8.10)

From (8.10) we infer that the frequency varies linearly with the wave vector for small

vectors. This behaviour is clearly evident in fig 8.4.

The behaviour of elastic waves in continuum is of exactly similar nature. In the long

wavelength limit of the waves where the wavelength is much greater than the interatomic

spacing, the medium behaves as an elastic continuum since these waves pass smoothly

through the medium. The chain of atoms under this condition acts like a heavy elastic

string.

In the limit, the group velocity d/dk and the phase velocity /k of the elastic waves

(or sound waves) are equal and both become independent of frequency. But as k changes

to larger values, the discreteness of the medium begins to show up and at the zone

boundary (k =  /a), the tangent to the dispersion curve is horizontal showing there by

Fig 8.4 The dispersion curve for a one-dimensional monatomic chain .

(k)

/a /a- k 0 k

m
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that the group velocity is zero here. This refers to the total dispersion and no waves

propagate through the crystal indicating that it acts as a discrete medium in this situation.

This sounds perfectly logical as at k =  /a, the wavelength is twice the inter atomic

spacing ( = 2a) for which the crystal cannot be treated as continuous medium. The zero

value of the group velocity also shows that the motions of the neighbouring atoms are out

of phase and the elastic waves suffer Bragg reflection at this point in k-space. This

behaviour is consistent with the condition for Bragg reflection in a one-dimensional

crystal. The elastic waves are no more traveling waves defined by (8.3) and get

transformed into standing waves at the zone boundary.

8.4 Normal modes of one-dimensional Diatomic Chain:

This chain is different from the earlier one in the sense that there are two different

types of atoms whose positions alternate along its length (Fig 8.5).

The chain may be viewed as a one-dimensional crystal whose primitive cell contains two

atoms of different masses M and m. The relevance of treating one-dimensional atomic

chains as against the reality of crystals being three-dimensional may be questioned. But

these calculations bring out a few broad features of the vibrations of real crystals, as seen in

the earlier section. In other words, it suffices to acknowledge that these exercises introduce

us to the basics of lattice dynamics using simple mathematics.

From fig.8.5 we see that the springs are identical. Therefore, if we consider only the

nearest neighbour interactions, a single force constant (say, f) will be involved in the

equations of motion. Supposing that the heavy ion (M) occupies the site 1 and the light one

(m) is at the site 2 in each primitive cell, we obtain the following equations of motion for

these ions in that order:

Cell 1 Cell 2

Fig 8.5: The displacement of ions in three consecutive
unit cells of a one – dimensional diatomic crystal.

Cell 3

a a

a

m

a
s1 s2

a a

M
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)2( 1,2211  nnnn fM ssss -------------- (8.11)

)2( 1,1122  nnnn fm ssss -------------- (8.12)

where s1n stands for the displacement of the ion at site 1 in the primitive cell n.

We seek the following solutions to the above equations:

)](exp[1 tknain  us

and )](exp[2 tknain  vs ---------------- (8.13)

Substituting these solutions in (8.11) and (8.12), we have

0)]exp(1[)2( 2  vikafuMf 

0)2()]exp(1[ 2  vmfuikaf  -------------- (8.14)

where u and v (the amplitudes) are unknowns in the above homogeneous equations. The

equations have solutions only if the determinant of the coefficients of u and v in them

vanishes. That is,

0
)2()]exp(1[

)]exp(1[)2(
2

2










mfikaf

ikafMf
-------------- (8.15)

or

0)cos1(2)(2 224  kafmMfMm  -------------- (8.16)

Based on our experience with the monatomic lattice it is advisable to solve (8.16) for

small k (i.e. long wavelength limit) and for the largest k, i.e. at the first zone boundary.

These describe the distinct features of the dispersion curves.

For small values of k, we have

.......)(
!2

1
1cos 2  kaka

Retaining the first two terms of the series and putting this value of cos ka in (8.16), we get

the following two roots:











mM
f

11
22 -------------- (8.17)

and

222
1

2 ak
mM

f


 -------------- (8.18)

The dispersion curve obtained from (8.17) is called optical branch while the one from

(8.18) is known as acoustical branch.

For the maximum value of k, i.e. at k = /a, the roots are
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)(
22 branchoptical
m

f
 -------------- (8.19)

and )(
22 branchacoustical
M

f
 -------------- (8.20)

8.4.1 Salient Features Of The Dispersion Curves:

The most prominent feature of the

dispersion curves shown in Fig. 8.6 is the

manifestation of a frequency gap between

the acoustical and optical branches. This

brings out the fact that a diatomic linear

chain acts as a band pass filter. Other

features of the observed two branches

representing two different types of normal

modes are discussed below.

The frequency of the optical branch is

nearly constant in the limit k  0 as made

out by the approximate nature of (8.17).

But it decreases slowly as k increases,

dropping to the value 2f/m at the zone

boundary.

The acoustic branch corresponds to the single branch, obtained for the linear chain of

monatomic atoms. The linear behaviour of  with k in the limit of small k (or long

wavelength) is in the limit of sound waves which are longitudinal and treat the crystal as

elastic continuum.

We may, further, exploit the above treatment to derive the state of ionic motions in the

two branches, again for the same two limiting cases.

Substituting 2 from (8.17) in (8.14), at k = 0, we have for the optical branch,

M

m

v

u


or mvMu  --------------- (8.21)
Relation (8.21) shows that the movements of the heavy and light ions are out of phase,

i.e., they move towards each other or away from each other such that their centre of mass

Acoustical

Optical

M > m

(2f/m)½

(2f/m)½

 [2f(1/M+1/ /m)]½

/2a /2ak0

Fig 8.6 Optical and acoustical branches
of dispersion curves for a one-
dimensional diatomic crystal of lattice
constant a. The frequency extreme for
two branches are given.
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remains at rest. This refers to the situation in ionic crystals where such a motion of positive

and negative ions may displace the centre of positive charges with the centre of negative

charges creating an electric dipole. The oscillating electric dipole on interaction with the

electromagnetic radiation may absorb the radiation. From a rough calculation we can find

that the frequency of vibration of ionic crystals (e.g. NaCl, KBr, LiF etc.) lies in the

infrared region. That is why ionic crystals are known to absorb infrared light. This forms

the basis for giving the name optical branch to the branch under discussion. The

relevance of treating a diatomic linear chain is thus amply justified. The results can be only

instructive as we have allowed the linear chain to produce only longitudinal waves. In real

crystals, there can be two transverse waves for each longitudinal wave. Generally, the

frequencies of all the modes are different with the exception that the two transverse modes

along directions of high symmetry in the crystal are degenerate (Fig 8.10). The

longitudinal and transverse vibrational modes of a crystal can be clearly separated only in

certain symmetry directions of crystals. The modes for any arbitrary direction are mixed in

character.

For acoustical branch at k = 0, we obtain

M

m

v

u
 --------------- (8.22)

which shows that the two ions move in phase.

The state of motions of the ions in the optical and acoustical branches in illustrated for

a transverse wave in fig 8.7. The example of a transverse wave is chosen since the

difference between the motions of ions in the two branches is more striking in appearance

for the transverse motion. Though this motion is not allowed in the linear chain, it is

present in all real crystal.

Optical mode

Acoustical mode

k

k

Fig 8.7 Illustration of the movement of ions in the transverse optical and
acoustical modes at equal wavelength in a diatomic linear crystal.
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The variation of the amplitude ratio u/v with the wavevector can be seen in Fig 8.8.

The state of motion at the zone end (k =  /a, the maximum k) can be interpreted with

the help of this figure. The light ions are at rest in the acoustical mode while the heavy

ions are at rest in the optical mode.

Another significant feature of the dispersion curves is that the gap at the zone end

decreases with the decrease in the mass of heavy ion and approaches zero as M  m. But

it would surprise us to know that we have still two different branches though M = m which

should give only the acoustical branch. For the present chain, if we have monatomic basis,

we need to correct the size of the first zone which will now be double in size owing to the

interionic spacing or the lattice constant being halved a/2. This ensures that the acoustical

branch is continuous over whole region of the modified zone (-2/a to 2/a). The illusory

optical branch of M = m in the original zone gets effectively reflected on to the regions

added to the original zone.

8.5 The Reststrahlen Band:

In the previous section to treat an extremely interesting phenomenon observed in the

infrared absorption spectra of ionic and partly ionic crystals. These crystals show very

intense reflection of infrared radiation over a small range of frequencies. The range of

frequencies over which this reflection occurs is termed ‘reststrahlen band’. ‘Reststrahlen’

Optical

Acoustical 1

0

a




a



v

u

M

m


k

Fig 8.8 The amplitude ratio u/v as a function of the wave vector k
for the acoustical branch (upper curve) and the optical branch

(lower curve), u belongs to M and v to m (M > m).
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is a German word which means residual rays. This underlines the fact that these crystals

show strong reflection to a radiation of certain frequency, for which they also act as strong

absorbers. NaCl and GaAs are good examples of such crystals.

It was mentioned a little earlier how an optical mode in an ionic crystal is excited when

an electromagnetic radiation is incident on its surface. The transverse electric field of the

radiation does the trick by exerting force on cations and anions in opposite directions. The

strong absorption (resonance) takes place when the frequency of radiation matches the

frequency of a transverse optical mode of the crystal. A proper explanation to the

reststrahlen phenomenon follows from the theory of optical constants. According to this

theory, when

 0< < 1/2 0 ---------------- (8.23)

no wave can propagate through the crystals.

Here  0 is the frequency of a transverse optical mode,  the frequency of the incident

radiation and  is the dielectric constant of the crystal. In the above condition we have an

evanescent wave that decays exponentially with the increasing distance in the crystal

therefore, in the specified range of frequencies the radiation incident on the crystal from

outside suffers total external reflection. This is what we know as the reststrahlen

phenomenon. The range of frequencies over which this occurs is called the reststrahlen

band.

Now we make an estimate of  0, the frequency at which the strong absorption occurs

using equations of motion set up in earlier for a diatomic lattice. This also gives the

measure of the reststrahlen frequency which is the same as  0. For NaCl crystal, the

lattice constant a is equal to 5.63 Å. With  = 2a, we get the maximum cut-off wavevector

km = 2/  1010 m-1. The wavevector associated with a typical infrared radiation of

wavelength 10,000Å is about 106m-1. Therefore, the vibration with these relatively small

wavevectors in the optical branch can be determined in the limit k 0. In this limit,

relations (8.14) reduce to

-M2u = 2f(v – u)

-m2v = - 2f(v – u) ---------------- (8.24)
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Relations (8.24) essentially give the force on masses M and m, respectively. When an

electromagnetic radiation with the transverse electric field E = E0 exp (i t) is incident,

these force terms get corrected by 0eE . Then relations (8.24) reduce to

-M2u = 2f(v – u) – eE0

-m2v = – 2f(v – u) + eE0 ---------------- (8.25)

Relations (8.25) give the two amplitudes of vibration as

22
0

0

 


 M

eE

u -------------- (8.26)

22
0

0

 
 m

eE

v

with











mM
f

11
22

0 ---------------- (8.27)

Though relations (8.26) indicate a single frequency at which the maximum absorption

should occur, experiments show that there is a small range of frequencies of the

electromagnetic radiation showing the reststrahlen phenomenon. This small range of

frequencies forms the reststrahlen band. The frequency 0 is referred to as the reststrahlen

frequency.

8.6 General Theory of Harmonic Approximation:

Let the position of a lattice site in the static crystal be represented by l. Assume that the

average position of the ion at the site in question is still given by l when the ion vibrates.

Thus the symmetry of the Bravais lattice is supposed to remain unchanged in a vibrating

crystal. Further, it is assumed that the displacement or deviation of the ion from its

equilibrium position is much small in comparison with the interatomic distance. We

denote the displacement of the ion by sl and its displaced position by rl (fig 8.9) having the

relation

rl = l + sl ---------------- (8.28)

Small values of the atomic displacements allow us to expand the total potential energy

about its equilibrium value in a Taylor’s series. This makes the exercise of obtaining the

equation of motion quite straightforward, which is otherwise extremely tedious.
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The kinetic energy T of the crystal can be written as

2

ln
2

1
sl

n
MT  ----------------- (8.29)

where Ml is the mass of the ion at site l and n stands for the unit cell running through all the

unit cells.

And the potential energy U is defined by its Taylor’s expansion as

.....
2

1

0'''
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
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
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ss
ss

s
s --------------- (8.30)

where index j denotes the three Cartesian x, y, z components.

The first term U0 refers to the potential energy at equilibrium which is a constant. It can

be dropped from the expression as it is the changes in potential energy from U0 that

determine the vibration spectrum of a crystal. The coefficient of slnj in the linear term is

equal to the magnitude of the net force on the ion at site l exerted by all the other ions when

each of the ions is at its equilibrium position. At equilibrium, this force vanishes and so

should the linear term. The terms of higher orders beyond the third term are not considered

in the harmonic approximation. Therefore, the lone non-vanishing third term in the

expansion expresses the effective potential energy of the crystal in the harmonic

approximation. That is,

0'''

2

'''
',','2

1


















jnlnjl

jnlnjl
jjnnll

eff U
U

ss
ss ----------------- (8.31)

We combine (8.29) and (8.31) to write the usual Lagrange’s equation from the equations

of motion for the Cartesian components obtained in the form

'''

'''

2

',','
jnl

jnlnjl
jnl

njll

U
M s

ss
s
















 ---------------- (8.32)

l

rl
sl

Fig 8.9 An ion at site l of the static lattice being displaced to position rl during
a vibration. The displacement sl from site l is very small.
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Relation (8.32) represents the jth component (which could be the x-, y- or z-

component) of the net force on the ion at site l in the unit cell n owing to the rest of the

atoms in the crystal. This equation marks the beginning of all theories of lattice dynamics.

In view of the elastic nature of crystals, the coupling between any two atoms is

customarily represented in the material form of a spring. Each spring in a crystal is

assigned a constant, whose value is characteristic of the nature of the ions being coupled.

In classical mechanics, this constant is called by the name spring constant or force

constant.

A comparison of (8.32) with the equation of motion of a particle executing simple

harmonic motion shows that the derivatives in (8.32) serve as force constants in these

equations of motion. For convenience, we will use from now onwards a shorter notation

for these derivatives given by

'''

'''

2
jnl

njl

jnlnjl

U
U




















ss
----------------- (8.33)

The equation of motion (8.32) then reads as

'''
'''

'''
jnl

jnl
njl

jnl
njll UM ss  ---------------- (8.34)

Equation (8.34) is the general equation of motion for ions in crystals. It is to be observed

that the equations of motion for the linear chains of monatomic basis (8.2) and diatomic

basis [(8.11) and (8.12)] are only the special cases of this equation with Vlnj having the

dimensions of force constants. They denote the generalized force constants of a system

with many degrees of freedom. The isotropy of space, the translational invariance and the

point group symmetry require the coupling constants to satisfy certain conditions.

It must be noted that each term within the summation in (8.32) denotes a force that

depends on the relative position of unit cells n and n and not on their absolute position. It

is the consequence of the translation invariance which effectively requires that

')'('''' jnnl
loj

jnl
njl UU  ---------------- (8.35)

We have, now, come to grips with the basic workable technique of solving the equations

of motion in crystals.
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8.7 Normal Modes Of Real Crystals:

This exercise concerns real crystals which are three-dimensional and in general may

have a polyatomic basis having atoms of different elements. The problem is most general

and, therefore, the task of finding its solution is bound to be tedious. But, in principle, the

solution is tractable. We give below the procedure for calculating the frequencies of

normal modes in the framework of a theory based on the harmonic approximation.

The equation of motion of an ion, whose site in the unit cell n is denoted by the position

vector ln, is given by (8.34). If the crystal is composed of N unit cells with p atoms in a

unit cell, we get in total 3pN equation analogous to (8.34). It is proper to write the

solutions or the displacement slnj in terms of a plane wave with respect to the cell

coordinates. That is,

](exp[)(
1

1

ti
M

njnjl  lkkus ------------ (8.36)

This plane wave is defined only at the lattice sites, unlike a normal plane wave.

Using this solution for (8.34), we have

0)()]'(exp[
1

)( '''
'''

'
'''

2  kullkku jlnn
jnl

njl

ll
njl

j iU
MM

 --------------- (8.37)

Let us write (8.37) as

0)()()( ''
''

''

2  kukku jl
jl

lj
jl

j D ------------- (8.38)

Where

)]'(exp[
1

)( '
'''

'
'

''
nn

jnl
njl

ll
n

jl
lj iU

MM
D llkk  ------------- (8.39)

According to (8.35), the terms in the sum of the above equations depend only on the

difference (n – n) and not on the absolute values of n and n. The quantity )('' kjl
ljD , which

is obtained by summing over n, is independent of n. It is instructive to note that it couples

amplitudes with each other without having to depend on n. This also explains why the

amplitudes in (8.13) appear without index n. A very common term in lattice dynamics

known as the dynamical matrix is formed by the quantities defined by (8.39). The set of

equations (8.38) belongs to a set of linear homogeneous set of order 3p. The set of linear

homogeneous equations has a solution only if the,

Determinant: { )('' kjl
ljD 2} vanishes. --------------- (8.40)
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The above equation gives 3p different solutions, i.e., for one value of k there are 3p values

of , each of which lies on a separate branch. A branch is characterized by its dispersion

relation. Thus, there are in total 3p branches out of which three are acoustical – one

longitudinal (LA) and two transverse (TA). The number of acoustical branches is three in

all crystals as it does not depend on the number of atoms. The rest (3p – 3) belong to the

optical branches; (p – 1) longitudinal (LO) and 2(p – 1) transverse (TO). Since there are N

(the number of unit cells) unique values of k for each branch, the total number of

vibrational modes comes to 3pN.

A complete description of the normal modes of a crystal requires the knowledge of

directions along which the longitudinal and transverse waves move for a certain value of k.

These directions are known as the directions of polarization. In an isotropic crystal, the

three solutions can be manipulated such that the longitudinal mode is polarized along the

direction of propagation (parallel to k) and the two transverse modes along directions

perpendicular to k. The picture in anisotropic crystals is not so straightforward. We can

describe the dispersion curves of these crystals in terms of longitudinal and transverse

branches, only if k lies along any n-fold axis of rotation permitted by the crystal symmetry.

In such a case the longitudinal mode is polarized along k, and transverse modes, that are

degenerate, along directions perpendicular to k.

It can now well be imagined that the picture of dispersion curves for crystals with

polyatomic basis will be fairly complex. We take a relatively simple example of diamond

whose primitive cell has two identical atoms. The dispersion curves plotted from the

experimental data are shown in fig 8.10 and refer to the propagation of waves along two

important directions [100] and [111]. The wavevector is expressed as a dimensionless

quantity, q = k(2/a), called the reduced wavevector as measured from the centre of the

Brillouin zone. In principle, there should be six branches in total. But we observe only

four, as the transverse modes along [100] and [111] directions are degenerate in the

acoustical and the optical branches, separately. The other important point exhibited by the

curves is that the LA and LO modes at the zone boundary are degenerate. This confirms

the zero gap between the acoustical and the optical branches at this point for the linear

chain of diatomic lattice composed of identical atoms.
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8.8 Quantization of Lattice Vibrations:

The energy of the lattice waves is quantized the same way as that of the electromagnetic

waves. In a harmonic crystal, the atomic oscillators are treated analogous to the Plank’s

radiation oscillators. The energy of a vibrational mode of angular frequency  with

wavevector k in the branch s is expressed as 









2

1
ksn ћs(k), where nks is an integer

denoting the excitation number or the order of the excitation state of the classical normal

mode. The fact of the normal mode being in its nks excited state is expressed in the

language of quantum theory by saying that there are nks phonons of wavevector k in branch

s. The usage of the term phonon is analogous to the term photon for the electromagnetic

radiation. Phonon is the corpuscular representation for a quantum of vibration of energy

hs(k) carried by a sound wave in the same way as photon represents a quantum of

radiation in an electromagnetic wave. The nks is also defined as the phonon occupancy

expressed by the Plank’s distribution function which is a function of s(k) and k.

The thermal energy of a harmonic crystal is given by
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k

k
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






 -------------- (8.41)
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Fig 8.10 Dispersion curve for diamond crystal
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Relation (8.41) shows that the energy of an oscillator is not zero even in the lowest

vibration state (n = 0) and has a value
2

1
ћs(k). It indicates that even the lowest state is

not vibrationless. This is known as zero point motion and finds its interpretation only with

the use of quantum mechanics. The quantity
2

1
ћs(k) is called the zero point energy.

8.9 Measurement of Phonon Dispersion by Inelastic Neutron Scattering:

The experiment performed to obtain the phonon dispersion curves are based on the

exchange of energy between lattice vibrations and a probe. In principle, X-rays or thermal

neutrons can be used as the probe in these experiments. The energy of thermal neutrons is

~0.025 eV, which is of the order of their average thermal energy (kBT) at room temperature.

Because of small energy, neutrons show an appreciable change in their energy on being

scattered while exchanging the energy of a vibrational quantum. This change in energy is

easily measurable on the respective energy scale. On the other hand, the energy of X-rays

is much high (~keV). The energy change for such an energetic photon is only 1 part in 106

which is difficult to measure on the scale of the photon energy. On account of this reason,

thermal neutrons, also known as slow neutrons, are preferred for the measurement of

phonon spectra. The assembly of apparatus used for this purpose is called a triple-axis

spectrometer. Its schematic diagram is shown in Fig.8.11. The experiment is generally

performed around a nuclear reactor which acts as the source of thermal neutrons. The term

slow neutrons used for these neutrons is only relative on the energy scale as the typical

order of their velocity is 105 cms–1, which is large compared to the motion of material

objects in our daily life.
Monochromating

crystal

Collimator
Collimator Analyzing

crystal

Specimen

Pile
2



Detector

Fig 8.11 Outlines of the experimental set-up for measuring phonon spectra
using a triple-axis neutron spectrometer.
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The information from the inelastically scattered neutrons is extracted mainly by

exploiting the consequences of the momentum and the energy conservation laws. If a

neutron of a wavevector k is scattered to a state of k and a phonon of wavevector ks is

created or destroyed in the process, the momentum conservation requires that

k - k = ks + g -------------- (8.42)

Where (+) and () signs refer respectively to the creation and destruction of a phonon of

energy ћs(k). The symbol s stands for the branch.

The reciprocal lattice vector g appears for the reason that phonons are plane waves that

are modified for a crystalline medium on the ground of its periodic character. The value of

ks in (8.42) lies within the first Brillouin zone.

According to the principle of energy conservation,

)(
2

'

2

2222

k
kk

s

nn mm



 ---------------- (8.43)

Where mn is the neutron mass.

The wavevector of the scattered neutron k is measured experimentally. For a given

incident neutron k, the wavevector of phonon ks absorbed or emitted and its frequency

s(k) can be determined. This is based on finding the energy gain or loss of the scattered

neutrons as a function of the scattering direction (k – k).

8.10 Summary:

 Ionic velocities in crystals are at least a thousand times smaller than the electron

velocity at the Fermi surface. Therefore, the electrons can be assumed to remain in

their ground state for an ionic configuration.

 For small displacements from the equilibrium positions, the ions in crystals may be

treated as harmonic oscillators.

 All lattice vibrations (elastic waves) can be described by wavevectors that lie within

the first Brillouin zone.

 A one-dimensional monatomic chain acts as a low-pass filter when only the nearest

neighbour interactions are considered.

 A one-dimensional diatomic chain acts as a band-pass filter by virtue of a frequency

gap occurring between the acoustical and optical branches.
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 The reststrahlen frequency for an ionic crystal containing ions of masses M and m is











mM
f

11
20 where f denotes the force constant.

 For a crystal with p atoms in the primitive cell:

Number of acoustical branches = 3 (independent of p) = 1(LA) +2(TA)

Number of optical branches = 3(p – 1) = (p – 1) ….(LO) + 2(p – 1)…. (TO)

 A quantized crystal vibration or the quantum unit of a crystal vibration is called a

phonon. Its energy is given by h, where  is the angular frequency of a crystal

vibration.

 The thermal energy of a harmonic crystal is given by

)(
2

1
k

k
sks

s
nE 










where nks denotes the number of phonons with frequency  and wavevector k in the

branch s; and
2

1
ћs(k) is the zero point energy.

 When in a crystal a neutron of wavevector k is inelastically scattered to a state of

wavevector k and a phonon of wavevector ks is created or destroyed in the

process, the momentum conservation requires that

k - k = ks + g

where (+) and (–) signs refer respectively to the creation and destruction of a phonon

of energy hs(k); and g is a reciprocal lattice vector.

8.11 key words:

Lattice vibrations – Ionic motion – Electronic motion – Balls and springs model – Force

constant – Lattice constant – Normal modes dispersion curve – Optical branch – Acoustical

branch – Restrahlen frequency.

8.12 Review questions:

1. Describe the balls and springs model of a harmonic crystal write the significance

normal modes of one dimentional monatomic chain.

2. What do you infer from periodic boundary condition. Sketch and illustrate

dispersion curve for a one dimensional monatiomic chain.
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3. What is explained in normal modes of one-dimensional diatomic chain and

illustrate the salient features of the dispersion curve.

4. Explain the resthlen band / frequency and what is to be inferred from general theory

of harmonic approximations. Illustrate the dispersion curve for diamond crystal.

5. Write briefly about quantization of lattice vibration and also measurement of

phonon dispersion by inelastic neutron scattering.

8.13 Text and reference books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C.Kittel (Asia Publishing house)
6. A Text Book of Solid State Physics by S.L.Kakani and C.Hemrajani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT – III LESSON: 9

THERMAL PROPERTIES OF SOLIDS - I

Aim: To learn about the thermal properties of Solids.

Objectives of the lesson:

 To know about the outstanding properties of solids namely high electrical

conductivity and thermal conductivity, metals obeying Ohms law, Wiedemann-

Frantz ratio etc.

 To know about the free electron model

 To derive an expression for the density of electronic states.

 To understand the effect of temperature on the parameters of free electrons gas.

Structure:

9.1 Introduction

9.2 Free electron model

9.3 Free electron gas in one-dimensional box

9.4 Free electron gas in three dimensions

9.5 Density of available electronic states

9.6 Effect of temperature on the parameters of the free electron gas

9.7 Summary

9.8 Key words

9.9 Review questions

9.10 Text and Reference books
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9.1 Introduction:

The outstanding properties of metals are

(1) High electrical and thermal conductivities,

(2) Obeying Ohm’s law: Metallic conductors obey Ohm’s law, which states that current

density ( j ) in the steady state is proportional to electric field strength ( E ) i.e., j =  E

where  the electrical conductivity is independent of j or E .

(3) Temperature dependence of conductivity: Resistivity of metals () above Debye

temperature is proportional to the absolute temperature i.e. T and at low temperatures

the resistivity of metals is proportional to the fifth power of absolute temperature

i.e.T5.

(4) Wiedemann - Frantz ratio: The ratio of thermal to the electrical conductivity


k
has

the same value for nearly all metals at a given temperature and 








 

k1
has the same

value at any temperature.

The idea that the large electrical and thermal conductivity of metallic substances

might be explained by the presence of large concentration of mobile free electrons in the

metals was first proposed by Drude in 1900. The implications of this hypothesis were

exhaustively investigated subsequently by Lorentz. Drude and Lorentz attempted an

explanation of these properties on the basis of the assumption that these free electrons are

capable of moving through the lattice there by suffering collisions with the atoms. As

such the free electrons in metals as an ideal gas of free particles, which when in thermal

equilibrium would obey Maxwell-Boltzmann statistics. One of the greatest achievements

of the theory was that it led to semi quantitative agreement with the Wiedemann-Frantz

law.

The free electron theory in its simplest form, however, led to a prediction of the

electronic component of specific heat, which was in serious disagreement with

experimental results. Another difficulty encountered in classical theory pertains to the

magnetic properties of free electrons. Each electron has a magnetic moment associated

with its spin and classically should therefore give rise to a paramagnetic susceptibility
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inversely proportional to the temperature. Experimental results on the other hand show

that paramagnetism of metals is nearly independent of temperature.

Further another difficulty is: Using the classical theory we cannot understand the

occurance of long electronic mean free paths. From many types of experiments it is

abundantly clear that a conduction electron in metal can move freely in a straight path

over many atomic distances undeflected by collisions with other conduction electrons or

by collisions with the atom cores. In a very pure specimen at low temperatures the mean

free path may be as long as 108 or 109 interatomic spacings (more than 1 cm), vastly

longer than we would expect from the known sizes of atoms. We must ask why

condensed metallic matter is so transparent to conduction electrons. The conduction

electrons act as a gas of non-interacting particles. To explain this we have to invoke

quantum concepts and classical statistics is not valid.

There are two parts to the answer to our question.

(a) A conduction electron is not deflected by ion cores arranged on a periodic lattice

because matter waves propagate freely in a periodic structure.

(b) A conduction electron is scattered only infrequently by other conduction

electrons. This property is a consequence of the Pauli’s exclusion principle.

These difficulties were resolved by Sommerfield using Fermi-Dirac statistics

rather than classical Boltzmann statistics. The Fermi – Dirac free electron picture

serves as a very simple and conceptually quite direct way of discussing and

visualizing transport effects in metals.

9.2 Free Electron Model:

In the free electron model, the conduction electrons are assumed to be free, except for

a potential at the surface (fig 9.1), which has effect of confining the electrons to the

interior of the specimen. According to this model, the conduction electrons move about

inside the specimen without collisions except for an occasional reflection from the

surface much like the molecules in ideal gas. The forces between the conduction

electrons and ion cores are neglected in the free electron approximation., all calculations

proceed as if the conduction electrons were free to move everywhere within the

specimen. The total energy in all like kinetic energy, the potential energy is neglected.
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However the free electron gas in metals

differs from ordinary gas in some

important respects. First the free

electron gas is charged (in ordinary

gases the molecules are mostly neutral).

Free electron gas is thus actually similar

to a plasma to a certain extent. Secondly

the concentration of electrons in metals

is large: N1029 electrons /m3.

In contrast the ordinary gas has about 1025 molecules /m3. We may thus think free

electron gas in a metal as dense plasma. Our model for metals in short, is a box full of

electrons and nothing else. Our problem is how to treat a box of full of electrons

quantum mechanically. First we have to apply Pauli’s exclusion principle-no two

electrons can have all the same quantum numbers, but we do not know the quantum

numbers of particles in a box. The electrons in box are free, the only constraint to which

they are subjected is that they are in a box. We must find the allowed states in a box.

9.3 Free Electron Gas In A One–Dimensional Box:

Consider an electron of mass m confined to a length L by infinite barriers Fig 9.2. The

wave function n (x) of the electron is a solution of the Schrodinger equation.

H=E --------------- (9.1)

where Hamiltonian H is equal to the sum

of the Kinetic energy and Potential

energy and E is a set of allowed energies

or eigen values of the electron in the

orbital. Since the total energy is Kinetic

(Potential energy is neglected).

Ef
Es

Metal
Vacc

Fig 9.1: The Sommerfeld model. Es is the
energy difference between an electron at
rest inside the metal and one at rest in
vacuum. At T = 0 all energy levels up to Ef

are filled; all higher ones are empty.
Work function  = Es – Ef.

v(
x)

x = 0

0

x = L

 

Fig 9.2: An electron of mass m confined
to a length L by infinite barriers.
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We have H =
m

P

2

2

where P is the momentum in quantum mechanics. P the momentum

is represented by –iћ
dx

d
, so that

Hn =
2

22

2 dx

d

m
n

 = Enn -------------- (9.2)

The boundary conditions are n(0) = 0 and n(L) = 0 as imposed by the infinite potential

energy barrier.

The general solution of equation (9.2) is

n(x) = Aeikx+Be-ikx --------------- (9.3)

where k2 = nE
m








2

2


--------------- (9.4)

and A and B are arbitrary constants

The first boundary condition n(o) yields A = - B leaving the wave function to be

sine like. Applying the 2nd boundary condition one singles out those solutions for which

Sin (kL) = 0 or kn =
L

n
with n = 1,2,3… -------------- (9.5)

and the allowed energy eigen value En are given by

22

.
2











L

n

m
En


---------------- (9.6)

and the corresponding wave functions are

n = A sin 








L

xn
--------------- (9.7)

Thus only for integral values of n, there are allowed wave functions n(x) and the corresponding

energy values En. The number ‘n’ is called quantum number. The plot of energy En versus n is

given in fig 9.3.

The energy spectrum evidently consists of discrete energy levels with their separation

depending on
2

2

L

n
. If L is large, the energy levels are thus spaced very close together.

The energy levels are spaced very closely together. For example if L = 1 cm, EnEn+1 = 3.5 

1019 eV. It is only when L is of atomic dimensions that the separation

between the levels become appreciable.
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The value of the constant A in equation 9.6 is so chosen that there is unit probability of finding

the electron somewhere on the line. Because )()( xx nn 


is the probability that the electrons in

the line segment dx at x, we require that

1)()(
0




dxxx n

L

n 

or 1sin 2

0

2  dx
L

xn
A

L 

or
L

Aei
L

A
2

..
22 

So the normalized wave functions are

L

xn

L
xn


 sin

2
)(  ---------------- (9.8)

The first few lower energy state wave

functions are represented in fig 9.4.

Now consider that we are interested in to accommodate N-electrons on this line. This

can be done with the help of Pauli’s exclusion principle. The elementary statement of the

Pauli’s exclusion principle is that no two electrons can have all their quantum numbers

identical. That is each orbital can be occupied by at most one electron. This applies to

electrons in atoms, molecules or solids. In a solid the quantum numbers of an electron in

0

5

5
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1 2 3 4
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20

E
n
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s

n

Fig 9.3: The energy is a quadratic function of the quantum number
n, for a free electron confined to a length L in one dimension
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 = 2L

 = L

 = 2/3 L

Fig 9.4: First three energy levels and wave
functions of a free electron of mass m confined
to a line of length L, the energy levels are
labeled according to the wave functions. The
wavelengths are indicated on the wave
functions. The energy En of the level of
quantum no. n is equal to (ћ22m)(n/2L)2.
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a conduction electron orbital are n and ms, while n is any positive integer in eq (9.8) and

ms = 
2
1 , according to the spin orientation. Each energy level with quantum number n

can accommodate two electrons. One with spin up and other with spin down. If there are

eight electrons, then in the ground state of the system the filled orbitals are those given in

the table:

Let nf denote the top most filled energy level, where we start filling the level from

bottom (n = 1) and continue filling the higher levels with electrons until all N-electrons

are accommodated. Considering N to be even we have

2nf = N ------------------ (9.9)

determines the value of n for the upper most filled level. The Fermi energy Ef is defined

as the energy of the top-most filled level at 00K. From equation (9.7) with n = nf we have

22
2

2

2

2/

22



















L

N

m

h

L

n

m
E

f

f


----------------- (9.10)

We see that the energy of the top electron depends on the number of electrons in the

box and on the size of the box just as in an atom the ground state depends on the number

of electrons (z) and on the size of the central coulomb field strength i.e., the number of

protons in the nucleus.

For example if N/L = 0.8 electrons/angstrom = 8 107 from equation (9.10) we have,

6eV.ergs1068.9

1064
10932

)106.6(

424
12

14

28

227

2

22

2

2















L

N

m

h
E f





Electron
occupancy

Electron
occupancy

n nms ms

1

1

2

2

3

3

1

1

1

1

1

1

4

4

5

5

6

6

1

1

0

0

0

0

























Table:



M. Sc., PHYSICS 8 THERMAL PROPERTIES OF…..(I)

Energy En  Ef
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)


Fig 9.5 Density of electronic states as a
function of energy, for one
dimensional line. At absolute zero, all
the states are filled upto Fermi energy
Ef.

Consider the case of N electrons in the lowest energy state of the entire system, the total

energy E0 can be obtained by summing the individual energies En between n = 1 and

nf =
2
1 N; where the factor 2 is introduced due to the spin degeneracy. Thus














2/

1

2

222/

1
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2
2
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n

N

n
n n

Lm
EE



But

N/2Swhere321 2222
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2 

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n



1Sfor
3

1
)132(

6

1 32  SSSS

3

3
1 )2/(N
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2

2/

23

1

23

1

2

2
22322

0 N
L

N

m

hN

Lm
E 





























fNE3
1 --------------- (9.11)

Hence for one dimensional problem, the average K.E in the ground state is one third of

Fermi energy.

The Density Of States:

We now find number of orbital per unit energy, often called the density of states,

equation 9.7 gives

22

2










L

n

m
En



Differentiating we have

ndn
Lm

dEn 2
2

22













Now
ndE

dn
denoted the energy levels per

unit energy. Corresponding the to spin

states, there are two quantum states and

hence the density of states of free

electron gas is given by
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2/12

2 2

4

2

12
2

2
)( 



















nn E

m

h

L

n

Lm

dE

dn
ED


----------------- (9.12)

This result plotted in fig.9.5

9.4 Free Electron Gas In Three Dimensions:

The free electron Schrodinger equation in three dimensions is

)()(
2 2

2

2

2

2

22

rEr
zyxm

kkk  
























-------------- (9.13)

Where Ek is the total energy (in this case kinetic energy) of electron in K-state.

If the electron is confined to a cube of edge L, the analogue to wave function (9.8) is



































L

zn

L

yn

L

xn

L
r zyx

k


 sinsinsin

8
)(

3
----------------- (9.14)

where nx, ny and nz are positive integers and 







3

8

L
is normalizing constant. This is

standing wave.
The solution of the wave equation is a consequence of a particular boundary

conditions imposed. It is better to introduce wave functions, which satisfy periodic

boundary conditions as we did for phonons. We now require the wave functions to be

periodic in x, y and z with period L. The appropriate boundary conditions are















),,(),,(

),,(),,(

),,(),,(

Lzyxzyx

zLyxzyx

zyLxzyx







--------------- (9.15)

The wave functions satisfying the free particle Schrodinger equation (9.13), the

normalization condition over the volume L3 and the periodic boundary (9.15) are of the

traveling plane wave form

(x, y, z) = Ae(ikr) =
)( zkykxki zyxAe


----------------- (9.16)

Provided that the components of the wave vector k (kx, ky, kz) satisfy


LL

k x

 4
,

2
,0 --------------- (9.17)

and similar ky and kz. That is any component of k is of the form
L

n2
where n is positive

or negative integer. The components of k are the quantum numbers of the problem; along
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with quantum number ms for the spin direction that is the state of electron is specified

completely when we are given the values of kx, ky, kz and ms.

On substituting (9.16) in (9.13) we have

2
2

222
2

2
)(

2
k

m
kkk

m
E zyxk


 ---------------- (9.18)

for the energy Ek of the orbital with the wave vector k. The magnitude of the wave

vector is related to the wave length  by



2
k -------------------- (9. 19)

Evidential the energy spectrum consists of discrete energy levels which be usually very

close together (~10-15eV apart) and thus for most purposes may be taken as continuous;

such energy levels are said to be quasi continuous. In fact the separation between energy

levels depends on the size of the box. The above separation (10-15eV) is for the box

having laboratory dimensions, on the other hand if the dimensions are atomic, the levels

are discrete as well as widely spaced (3.6 eV for box of 5 A side)

Using the normalizing condition (r)(r)d = 1. Constant A can be determined as

    
L L

rik
L

rik dxdydzeeA
0 0 0

2 1

or
2/1

1










V
A

Hence the normalized wave function is

rik
k e

V
r 











2/1
1

)( ------------------ (9.20)

Suppose there are N non-interacting electrons contained in the box at absolute zero

temperature. Using the effect of Pauli’s exclusion principle on the energy distribution of

conduction electrons – as we did in the case of one dimensional box, it can be shown that

at absolute zero all the levels below a certain level will be filled with electrons and all the

levels above it will be empty. The level which divides the filled and vacant-levels is

called the Fermi level at absolute zero and is denoted by Ef (0). We note that according to

quantum mechanics even at absolute zero not all the electrons are condensed into the

state of zero energy as happens in the classical theory. They rather occupy states between
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the energy values 0 and Ef(0). This feature modifies the parameters of the free electron

gas in a significant manner.

Let us now discuss the effect of temperature. It is clear at non zero

temperatures, the distribution of filled states would not end abruptly rather some of the

states below Ef(0) would be empty and some above it would be filled. Enrico Fermi has

shown that the probability that a particular quantum state at energy E is filled is given by

the so called Fermi- function.

1}/)exp{(

1
)(




TkEE
Ef

Bf

------------------- (9.21)

Where Ef is the Fermi-energy. Fig (9.6) shows the plot of this function for several value

of temperature including zero.

From(9.21) it is clear that at absolute zero











)0(

)0(

for0

for1)(

f

f

EE

EEEf
---------------- (9.21a )

i.e, the Fermi distribution function becomes simply the step function implying that all the

energy states below Ef(0) are filled and all those above it are empty. As the temperature

increases the edges of the step are rounded off, and the distribution function varies

rapidly from nearly unity to nearly zero over an energy range of a few times kBT around

the value E = Ef(0). At the same time the value Ef (energy at the highest filled level) itself

changes as shown in fig (9.6). At very high temperatures, the distribution function loses

T1 < T2 < T3

T1
T2

T3

T1 T2

T3

Ef(T3)
Ef(0)

E

f (E)

T = 0

Fig 9.6: Schematic representation of the Fermi distribution function for
four different temperatures. Note the variation of the Fermi energy with
temperature. The temperature dependence of the Fermi energy depicted
here is, typical of a three-dimensional free-electron gas but the actual
variation in any particular systems will depend critically upon the density of
states functions (or level degeneracies) for that system.
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its step like character and varies much more slowly with energy. From (9.21) it is clear

that the value of f(E) at E = Ef is first
2
1 ,That is f(Ef) =

2
1 .

Hence a quantum state at the Fermi level has a probability of occupations of
2
1 . This in

turn means that Ef represents a level lying half way between the filled and empty states.

But in case of metals since the allowed energy levels are very closely spaced (~ 10-19eV)

it is usually taken as reference to the highest filled (or partially filled) energy level.

It may therefore be concluded that if the electrons are heated up from absolute zero to

a temperature T each electron would not increase its energy (log kBT) as is expected

classically, but those which are already with an energy range kBT below the Fermi level

can do it of course. This is because absorption of energy by an electron requires its

excitation into a higher energy state; for electrons lying deep into the energy there are no

empty states with in few kBT into which they can be excited but for electrons lying below

the Fermi level the empty states are available. Thus according to quantum mechanics

very small fraction, that is

eV0.3for
100

1
 f

f

B E
E

Tk

of electrons can absorb energy from an external heat source, Moreover, ordinarily it is

very unlikely that an electron in the distribution will be excited at room temperature, if it

lies more than 0.1eV below Fermi level because this requires that the electron should

absorb about 4 kBT (0.1 eV  4 kBT) from external surrounding, this is not available.

These modifications in the behaviour of free electron gas have an important bearing on

the problem of the heat capacity of metals.

9.5 Density Of Available Electronic States D(E):

By D(E) we mean that total number of available electronic states (number of orbitals)

per unit energy range at E. This quantity is useful in the description of the behaviour of

the free electron gas. To find the expression for D(E) we consider the linear momentum

which in quantum mechanics is represented by operator

P =  iћ

Whence for the energy state (orbital) 9.16

)()()( rkrirP kkk    ---------------- (9.22)
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So that the plane wave k in an eigen function of the linear momentum with eigen

value ћk. The particle velocity is given by

m

k
v


 --------------- (9.23)

In the ground state of a system of N free electrons the occupied orbitals may be

represented as points inside a sphere in K-space. The energy at the surface of the sphere

is the Fermi energy, the wave vectors at the Fermi surface have a magnitude kf in the fig

(9.7) such that

m

k
E

f

f
2

22

)0(


 --------------- (9.24)

From equation (9.17) and fig (9.7) we

see that there is one allowed vector ( one

distinct triplet of quantum numbers kx,

ky, kz) for the volume element
3

2









L


of

k space. Thus in the sphere is called

Fermi sphere of volume 3

3

4
fk


the total

number of orbitals is

Nk
V

L

k
f

f
 3

23

3

3)/2(

)3/4(2




------------- (9.25)

where the factor 2 on the left comes from the two allowed values of ms, the spin quantum

number of each allowed value of k. We have put the number of orbitals equal to N, the

number of electrons from (9.25) we have

3/123










V

N
k f


------------ (9.26)

This depends only on the particle concentration and not on the mass using (9.24) we have

3/222

)0(

3

2 









V

N

m
E f


------------ (9.27)

kx ky

kz

kF

Fig 9.7: In the ground state of a
system of N electrons the occupied
orbitals of the system fill a sphere of

radius k, where
m

k
E

f

f
2

22
 is the

energy of an electron having wave
vector kf on the surface of a sphere
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This relates the Fermi energy to the electron concentration
V

N
and mass m. The

electron velocity vf at Fermi surface is
3/123











V

N

mm

k
v

f

f


--------------- (9.28)

The density of states function D(E) defined from the fact that all the energy states

below Ef(0) are occupied and this is equal to the total number of electrons i.e

 
)0(

0
)(

fE

NdEED --------------- (9.29)

Substituting the value of N from (9.27) we have

 









)0(

0

2/3

2

)0(

2

2

3
)(

fE fmEV
dEED



Expressing the integrals as an indefinite integral we have

 









2/3

22

2

3
)(



mEV
dEED



or 2/12/1

2/3

22

2

2
)( CEE

mV
ED 











--------------- (9.30)

where
2/3

22

2

2











mV
C


The result may be obtained and expressed most simply by writing (9.27) as

constantlog
2

3
log )0(  fEN

or
)0(

)0(

2

3

f

f

E

dE

N

dN


and we have

)0()0(

)0(
2

3
)(

ff

f
E

N

dE

dN
ED  ---------------- (9.31)

With in a factor of the order of unity, the number of orbitals per unit energy range at the

Fermi-energy is just the total number of conduction electrons divided by the Fermi

energy.

These results apply to free electrons with energy (E) proportional to k2. We can obtain

a result for a general relation E(k) by direct analogy as
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
)()2(

2
)(

3 kgrad

dsV
ED

E

E


--------------- (9.32)

Where the factor 2 arises from the

two spin orientations. V is the volume of

the specimen and ds is the element of

area in k space of the surface of constant

energy E.

It is seen from expression (9.30) that

D(E) is a parabolic function of energy.

This is allowed in fig (9.8).

Also it increases with increase in the crystal volume; this is in order to accommodate the total

number of electrons present, which also increases with the size of the crystal.

9.6. Effect of Temperature on the parameters of the free Electron Gas:

Hitherto we have assumed that the electron system is at 00K and in accordance with

the Pauli’s principle. We fill the levels until we have used up all electrons at the Fermi

level of energy Ef(0). Now the kinetic energy of the electron gas increases as the

temperature is increased and some energy levels are occupied which were vacant at

0oKand some levels are vacant which were preciously occupied at 0oK.

As an example of Fermi function at T > 0 is given in fig. (9.6), For energies below Ef

such that Ef –E  kBT (degenerate Fermi gas) the value of f(E) is still practically unity i.e.

energy distribution in that region is the same as that for T = 0. It is only in the vicinity

of Ef minus a few kBT the f(E) begins to drop below the vaule at T = 0. For energies

above Ef such that E–Ef  kBT one may neglect the term unity in the denominator of

distribution function and obtain
TkEE BfeEf

/)(
)(




the Fermi distribution becomes identical with Boltzmann distribution.

Here it is of the prime importance to take into account the effect of temperature on the

Fermi energy and average kinetic energy. In order to do this we shall have to evaluate the

integral









0

)(
)( dE

E

E
EfI


---------------- (9.33)

D(E)

C E1/2

E

T = 0

T  0

Fig 9.8: The curve CE½ represents D(E) in
accordance with (9.30). The energy
distribution is obtained by multiplying
D(E) with F(E).
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where f(E) is the Fermi function and (E) is a function of energy(E) which has the

property that

(0) = 0 --------------- (9.34)

Integrating (9.33) by parts, we have

  dE
E

Ef
EEEfI




 

 )(
)()()(

00 

= dE
E

Ef
E




 

 )(
)(

0
 ----------------- (9.35)

Since the product f(E) (E) vanishes at both the limits. Expanding (E) as a Taylor’s

series about the point E = Ef we have

)()()(
2

2

2 



























ff EEEE

ff
E

a
E

EEEE


 -------------- (9.36)

Where by (9.35) can be expressed as





























ff EEEE

f
E

a
E

aEaI
2

2

210 )(


 -------------- (9.37)

where 







0

)(
)(

!

1
dE

E

Ef
EE

n
a n

fn -------------- (9.38)

But

 
)1(

11

1

)(
2/)(

/)(

EE

BB
TkEE

TkEE

ff
TkTke

e

E

Ef

Bf

Bf












-------------- (9.39)

The plot of
E

Ef



 )(
versus E is given in fig 9.9.

f (E)

1 – f (E)f (E)

f E(1 – fE)

E
Ef

Fig 9.9: The function f(E), 1–f(E) and fE . (1 – fE) for a Fermi system,
plotted as a function of energy,, The vertical scale factor for the fE .(1– fE)
curve is not the same as for the other curves.
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Now if kBT << Ef,
E

Ef



 )(
is negligible for negative values of E and the limits of integral

(9.38) may be extended to +  to - . If this is done then, we have

  1)(
)(

0 











 EfdE
E

Ef
a -------------- (9.40)

0)(1 


 



dE

E

df
EEa f -------------- (9.41)

The integral vanishes because
E

Ef



 )(
is an even function of (E-Ef) and integrand

from -  to +  must yield zero

dE
E

Edf
EEa f

)(
)(2

1
2 



 


and putting
Tk

EE
x

B

f
 , we have








 2

2

2

22

2
1 )(

6)1(2

)(
Tkdx

e

exTk
a Bx

x
B 

-------------- (9.42)

Substituting these values in (9.37), we have









0

)(
)( dE

E

E
EfI

















 fEE

Bf
E

E
TkE

2

2
2

2 )(
)(

6
)(


 -------------- (9.43)

This formula is convenient for working out approximate values of Fermi integrals .It

is restricted by the condition (9.34) and by the condition that kBT<<Ef. The room

temperature quantities the latter condition. Suppose now that we choose


E

dEEDE
0

)()(

whence
E

ED

E

E
andED

E

E













 )()(
)(

)(
2

2

with D(E) as given by (9.30) for the free electrons system, we have from (9.43)





0

)()( dEEDEfN
















f

f

E

EE

B
E

ED
TkdEED

0

2
2 )(

)(
6

)(


--------------- (9.44)

But from (9.29), we have

NdEED
fE


)0(

0
)(
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Substituting the values N we have in (9.44) we have

f

ff

EE
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EE

E

ED
TkdEEDdEED
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
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




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ED
TkdEEDO
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






 

)(
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6
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2

)0(


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fEE
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E

ED
TkEEED














)(
)(

6
)(~ 2

2

)0(


--------------- (9.45)

In the above equation we have assumed that D(E) does not vary much in the interval from

Ef(0) to Ef which for kBT<<Ef will be only a small fraction of Ef(0). Since D(E) is of the

from CE1/2 (9.30) with C, a constant, we have

f

f

f

f

f

EE E

ED

E

CE
CE

E

ED

f

)()(
2
1

2/1

2
12/1

2
1 











 



and equation (9.45) can be written as

 
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f

Bfff
E

ED
TkEEEDO

)(
)(

12
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)0(



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B
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Tk
EE
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)0(

)(

12


 ----------------- (9.46)

For kBT <<Ef, the second term will be a small correction to be subtracted from relative by

large quantity













  eV
E

Tk
eVforEgeE

f

B
ff

4
22

)0()0( 10~)(

12
,5~.,.,


and the difference between Ef and Ef(0) will be small compared to Ef(0). Under these

circumstances not much error will be made if Ef in the connection term (9.46) is replaced

with Ef(0), giving finally
















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











2

)0(

2

)0(
12

1
f

B
ff

E

Tk
EE


----------------- (9.47)

Thus the Fermi energy is not constant but decreases slowly as the temperature rises,

the slowness of the variations following immediately from the occurrence of the factor
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2

)0(

2

12 













f

B

E

Tk
which is very small. The result (9.47) is quite satisfactory but while using

it is applicable only at temperature such that kBT<<Ef, which incidentally includes the

whole range of temperature for which the metals are solids (500oc to 3000oc).

9.7 Summary:

1. When atoms are packed together to form a metal, valance electrons detach from their

own atoms and more through out the crystal without any collision and one treated like

molecules of an ideal gas. This is called fee electron gas.

2. The energy spectrum of one dimension free electron gas is discrete with the energy

level separation depending on
2

2

L

n
. For laboratory dimensions the levels are very closely

spaced.

3. The energy spectrum of three dimensional free electron gas is also discrete and at

absolute zero temperature all levels below a certain level will be filled and all the above it

will be empty. The levels dividing filled and vacant levels is called the Fermi level (Ef(0)).

4. Fermi energy is determined by the concentration of electrons. Its value is

3/222 3

2 








V

N

m


and the density of states is given by 2/12/1

2/3

22

2

2
CEE

mV











. This, at

absolute zero, can be expressed as )0(2
3

)0( /)( ff ENED  .

9.8. Keywords:

Thermal conductivity – Electrical conductivity – Wiedemannn–frantz ratio – Fee electron

gas – Density of states – Fermi level – Fermi sphere.

9.9.Review Questions:

1. Describe the free electron model by explaining wave function and eigen function.

2. Explain in detail the free electron model in three dimensions, explain the Fermi

function and also sketch Fermi distribution function for different temperatures.

3. How do you understand the density of electronic states and also effect of temperature

on the parameters of free electron gas.
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4. Explain Sommerfield’s treatment of free electron model and work out expressions for

` Fermi Energy ‘ and `density of states.’

Using the free electron model calculate the number of orbitals between 1.0 *10-8 cm-1

and 1.2 10-8cm-1 for the magnitudes of wave vector for a cubic sample of dimensions

1mm * 1mm * 1mm.

5. Discuss the successes and failures of free electron theory of metals.

9.10 Text and Reference Books:

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)
2. Solid State physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C. Kittel (Asia Publishing House)
6. Solid State Physics by S.L. Kakani and C.Hemrajani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)
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UNIT – III LESSON: 10

THERMAL PROPERTIES OF SOLIDS - II

Aim: To know about thermal properties of solids

Objectives of the lesson:

 To know about thermal capacity and its dependence on temperature

 To discuss the classical and quantum theories of heat capacity

 To discuss about the Einstein model and its deficiencies.

 To know about Debye model the criticism on Debye model

STRUCTURE OF LESSON:

10.1 Thermal capacity of free electron system

10.2 Heat capacity: Classical theory

10.3 The Einstein model

10.4 Debye model

10.5 Summary

10.6 Keywords

10.7 Review questions

10.8 Text and Reference books

10.1 Thermal capacity of the free-electron System:

The classic electron theory proposed by Drude-Lorentz, in which the free electrons are

assumed to obey Maxwell-Boltznamm satistics leads to the conclusion that (assuming one free

electron per atom) the heat capacity of free electrons should be 2
3 NkB .The total heat capacity

would be then the sum of the lattice contribution given by Debye theory and electron

contribution 2
3 NkB. At temperature large compared to Debye temperature, the total specific heat

of the metal can be expressed as

Cv = Cv (lattice)+ Cv (electronic)
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=3NkB+
2
3 NkB =

2
9 NkB ------------------ (10.1)

Dulong and Petit observed that the specific heat above the characteristic temperature is the same

for all metals and is equal to 3NkB, as predicted by Debye theory for the lattice contribution

alone. Since the large specific heat predicted by (10.1) is not observed in metals, it appears that

the heat capacity of free electron is much smaller than the value predicted by Drude–Lorentz–

Boltzmann model. This was one of the major shortcomings of the original Drude –Lorentz model

.

With the advent of the Quantum mechanics it became apparent that this shortcoming is due to

incorrect assessment of electrons that absorb thermal energy. When Fermi–Dirac statistics is

used to describe the free electron energy distribution, the calculated heat capacity is much

smaller than the
2
3 NkB and in fact is negligible compared to the lattice contribution at moderate

and high temperatures. The Fermi free-electron model is thus much better accord with the

experimental observations, than the original Drude –Lorentz theory .The explanation of the

electronic specific heat of metallic substances was one of the original triumphs of quantum

statistics.

The reason for much smaller heat capacity of the Fermi-Dirac free electron system is that only

electrons with in a few kBT of the surface of the Fermi sphere can receive energy from an

external heat source. Ordinarily a particle of external heat bath at temperature T has an energy

of only few times kBT to give an electron of the Fermi free electron system. Electrons deep

inside the Fermi sphere are incapable of interacting with such external exciting bodies because

there are no occupied states with in a few times kBT in energy into which they can be excited. As

such these electrons do not contribute towards specific heat. Only electrons near the Fermi

surface where there are unoccupied states available can participate in interactions with an

external heat source and contribute towards the specific heat. The quantum mechanics therefore

modifies the thermal behavior of the free electrons in a simple and satisfying manner.

Contribution of conduction electrons to specific heat of solids:

In order to make an accurate calculation of heat capacity, it is necessary to find the average

energy for the Fermi free electron gas. The average energy U is given by





0

dEf(E)D(E)EU --------------- (10.2)
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In order to solve the integral, we choose


E

EE
0

dED(E))(

Where D(E)
)(

E
E

E






and  D(E)
)(

2

2

E
EE

E








 

Substituting in (10.2), we have

dE
E

E
EfEU




 

 )(
)(dEf(E)D(E)

00



and
f

f

EE

E

E
E

TEU














  D(E))k(

6
dED(E) 2

B

2

0


-------------- (10.3)

In lesson VIII we derived an expression for the density of states as

D(E) = CE1/2 (or) E D(E) = CE3/2

and from this   )(
2

3

2

3
)( 2/1

fEE EDCEdEEDE
E f





 ---------------- (10.4)

Substituting in (10.3), we have

)(
2

3
)(

6
dED(E)dED(E) 2

2

0 )0(

)0(

fB

E

E

E

EDTkEEU
f

f

f 
 

)()(
4

)(][ )0(
2

2

)0()0()0(0 fBffff EDTkEDEEEU


 --------------- (10.5)

Here U0 is the absolute zero value of the internal energy as represented by the integral of E D(E)

from zero to Ef(0) and the integral of this quantity over the small range Ef(0) to Ef has been

approximated by the same procedure, which was used in connection with equation (9.45) of

lesson nine. In the last term of eqn.10.5, D(E) is evaluated at Ef(0) rather than at Ef ; which

introduce a small error . Substituting the value given by eqn.9.47 for

Ef - Ef(0) into (10.5), we have

)()(
4

)()(
12

)0(
2

2

)0(
2

2

0 fBfB EDTkEDTkUU




)()(
6

)0(
2

2

0 fB EDTkU


 ------------------- (10.6)

Equation 9.31 gives

FBf

f
Tk

N

E

N
ED

2

3

2

3
)(

)0(

)0( 
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where TF is Fermi temperature given by Ef(0) =kBTF and TF =30,0000K, a typical value for

simple metals (alkali and noble) calculated from equation (9.27). Substituting value of D(Ef(0))

in (10.6), we have

F

B

FB

B
T

TNk
U

Tk

N
TkUU

22

0
2

2

0
42

3
)(

6


 -------------- (10.7)

The heat capacity is obtained in the usual way as

F

B
v

T

TNk

T

U
C

2

2





 ---------------- (10.8)

The electronic component of specific heat as calculated using Fermi statistics thus amounts to

only small fraction of Drude–Lorentz value BNk
2
3 and except at very low temperatures is small

compared to the lattice contribution. At temperature small compared to the Debye temperature,

the lattice contribution becomes quite small approaching zero like T3 as T0. In this range the

electronic contribution is often a significant factor and in certain temperature may even be the

dominant effect.

Comparison between theory and experiment:

At temperatures much below the Debye temperatures and very much below Fermi

temperature, the heat capacities of metals may be written as the sum of electronic and lattice

contributions:

Cv = T+AT 3 ---------------- (10.9)

Where  and A are constants characteristic of the material and are given by (10.8) ?. The

electronic term is linear in T and is dominant at sufficiently low temperature. The measurements

made in this limit determines primarily the electronic contributions and the direct comparison of

the above theory with experiment is possible.

Kok and Keesom determined the value of  for few metals as a test of the above theory. By

applying these considerations, they, in fact represented the experimental result by plotting a

curve Cv/T versus T2 and from the slope of the straight line graph thus obtained, determined

value of . Such a plot for Potassium is shown in fig 10.1 and corresponding value of  is

obtained. The observed values of the co-efficient  are of the expected magnitude, but often do

not agree very closely with the value calculated for free electrons of the mass m . By the use of

relation (10.8).
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f

B

E

ZNk

2

22
  ----------------- (10.10)

for a mole of material, where N is Avagadro’s number Z is the valancy of the element.

This is the difficulty which one encounters also for other metals and is a consequence of the over

simplifying assumptions made in the free electron model .The departure involves three separate

effects:

(i) The interaction of the conduction electron with periodic potential of the rigid crystal lattice.

(ii) The interaction of the conduction electron with phonons .An electron tends to polarize or

distort lattice in its neighborhood so that, the moving electron tries to drag nearby ions along,

thereby increasing effective mass of the electron .In ionic crystal, the effect has a name – the

polarization effect.

(iii) The interaction of conduction electrons with themselves. A moving electron causes an

inertial reaction in the surrounding electron gas, there by increasing the effective mass of the

electron.

The effect of electron –electron interaction are usually described with in the framework of what

is called London theory of Fermi liquid.

10.2 Heat capacity: Classical Theory:

The classical theory is based on the following assumptions

(1) Solids consist of large number of atomic particles executing simple harmonic motion

about their equilibrium position. They are called atomic oscillatros.

(2) The atomic oscillators vibrate with the same frequency, but, their energies are different,

because, they vibrate with different amplitudes

Potassium C/T = 2.08 +2.57 T2

C
v/

T
in

m
j/

m
ol

e
de

g.

2.0

2.5

3.0

0.20 0.1 0.3
T2 in (0 K)2

Fig 10.1: Experimental heat capacity values for Potassium, plotted Cv/T versus T2. The
solid points were determined with an adiabatic demagnetization of crystal
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(3) The internal energy is largely due to vibrational energy of all atomic oscillators.

(4) There is no restriction on the energy values of the atomic oscillator and it can take up

continuum of energy values right from 0 to  though, the probability of occupation of

each level is different

(5) The total energy of a solid at a given temperature is N times the average energy ( ) of

the oscillator.

For a single three-dimensional isotropic harmonic oscillator the total energy is

E = )(
2

2

rV
m

P
 ---------------- (10.11)

with V(r) = 2
1 m 0

2 (x2+y2+z2) = 2
1 m 0

2 r2 = f (P, q )------------(10.12)

where m is the mass and 0 the natural frequency of the oscillator. Assuming Maxwell-

Boltzmann distribution law for energy, we have

f() = TkBAe / = TkrmTmkP BB eAe 2/2/ 22
0

2   ------------------- (10.13)

Where A is constant. The average energy is then given by

dqdp

dqdpEfE
E

f(E)

)(




 ----------------- (10.14)

If we choose spherical coordinate(r, , ) in co-ordinate space, and (p, p, p) in momentum

space, we have

dφdr dθsinθrdφdθ dpsinθpee

dφdr  dθsinθrdφd dpθsin pee rmω
2m

p

E
2

PPp
2T/2krωm

P r

T/2mkP

2
pPp

2T/2krωmT/2mkP

P r

22
02

1

2

B
22

0
2

B
2

B
22

0
2

B
2


















 

  

----------------- (10.15)

Since the integrand has no dependence on , , p and p, the integration over these variables

give simply 4 both in numerator and denominator leaving

drerdpe

drerdpe
m

p

E
TkrmTmkP
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BB

2/

0

2

0

2/

0
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0

2
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2



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
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





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


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dpepdrer
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TmkPTkrm

BB

BB





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
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

0

2/22/
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2/22/42
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pk
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Tkrm

TmkP

TmkP

EE
drer
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m

dpep
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m B

B

B

B














 







0

2/2

0
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2
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1

0

2/2

0

2/4

22
0

22
0

2

2

2

1





 ---------------- (10.16)

It is apparent that the first term above represents average kinetic energy and the second, the

average potential energy. Evaluating integrals with the help of Maxwell–Boltzmann integrals,

we have

Pk EE  =
2
3 kB T ------------------ (10.17)

For an assembly of N independent oscillators, the total internal energy is

U = EN = 3NkB T ------------------- (10.18)

and the heat capacity Cv is by definition

Cv =
vT

U












= 3NkB =3R ------------------- (10.19)

The heat capacity is found to be a constant, independent of temperature. This is Dulong and

Pettit law. This result is certainly in agreement with experimental values at high temperature but

the actual value of Cv decreases as T decreases, and in fact, vanishes entirely as T 00K. This

discrepancy between the theory and experiment was one of the outstanding paradoxes in physics

until 1905, when it was resolved by Einstein involving quantum mechanics.

10.3 The Einstein model:

The physical model employed by Einstein was simplified but his results definitely indicate that

quantum theory contained the answer to the difficulty encountered in the classical theory. The

salient features of Einstein’s model are:

1. All the atoms vibrate independently of each other

2. The solid containing N atoms is considered to be equivalent to 3N harmonic oscillators.

3. All the atomic oscillators have the same frequency (v) because of their assumed identical

surroundings.

4. The energy spectrum of oscillators is not continuous but discrete. The possible energy

levels of a harmonic oscillator are given by

n = (n +
2
1 )hv -------------- (10.20)

5. Any number of oscillators may be in the same quantum state of the system.
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6. Since these atomic oscillators form an assembly of systems which are distinguishable or

identifiable by virtue of their location at separate and discrete lattice sites, hence the

oscillators are regarded as having Maxwell-Boltzmann distribution of energies.

Equation (10.20) refers to an isolated oscillator but the atomic oscillations in solid are not

isolated. They are continuously exchanging energy with the ambient thermal bath surrounding

the solid .The energy of the oscillators is therefore continually changing but its average value at

thermal equilibrium is given by

xn

n

xn

n

Tkhvn

n

Tkhvn

n
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n
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n

n
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e
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e
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
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
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


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









 --------------- (10.21)

where
Tk

hv
x

B

 ------------------ (10.22)

Equation (10.21) can be written as
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Tkhv Be

hv ----------------- (10.23)

The internal energy is obtained by multiplying the average energy per oscillator by the

number of oscillators (3N). Hence

1

3

2

3
3

/ 


Tkhv Be

NhvNhv
NU ----------------- (10.24)

and
2/

/2

)1(
3
























Tkhv

Tkhv

B

B

v

v
B

B

e

e

Tk

hv
Nk

T

U
C ----------------- (10.25)

putting h = E kB ----------------- (10.26)

Here E is called “Einstein’s temperature”. Substituting (10.26) in (10.25), we have
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Fig 10.2: Specific heat of copper versus
temperature. The dots represent
experimental values and the curve is given

by the Einstein’s expression.

2/
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)1(
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




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




T

T
E

Bv
E
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e

e

T
NkC




----------------- (10.27)

If we plot C verses T using Equation (10.27), we obtain a curve of general shape as in Fig

(10.2), which indicates that the theory is now in agreement with experiment at least qualitatively;

over the entire temperature range.

Note in particular that C  0 as T  00K

a new and important feature, which was

lacking in the classical theory. The

temperature E is an adjustable

parameter chosen to produce the best fit

to the measured values over the whole

temperature range. Fig (10.2) illustrates

the procedure for copper where E is

found to be 240 K.

We can calculate Einstein’s frequency E = 2vE, once we have determined the temperature

E. Thus for E = 240K, the E = 13105.2 


EBk 
sec-1 which is in the infrared region.

Let us now examine the behaviour of C as given by (10.27) in the extreme temperature

limits. If )( EB ThvTk  , i.e., high temperature limit, we can write

Tk

hv
e

B

Tkhv B  1/

TNk
Tk

Nhv
U B

B

3
3



and .33 RNk
T

U
C Bv 
















which is Dulog and Petit law. Thus the model is satisfactory high at the high temperature

limit because the quantum aspects become irrelevant.

At low temperatures ET  and

1/ Tkhv Be

and Cv = 3NkB
TE Ee

T
/

2

 








---------------- (10.28)
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The specific heat approaches zero exponentially as the temperature approaches zero.

Physically, the reason that specific heat becomes small at low temperatures can be understood

by assuming that the crystal is placed in contact with external heat bath consisting of an ideal

mono-atomic gas at some given temperature; and allowed to absorb energy of the ideal gas. The

average energy of gas atoms is
2
3 kBT and if the temperature of the system is high enough so that

kBT is of the order of, or greater than, the energy h required to excite one of the vibrating atoms

of the crystal to a higher energy state, then such excitations will occur frequently when the gas

atoms from the heat bath collide with the crystal. These collisions will then be elastic in

mechanical sense and energy initially belonging to the gas atoms will readily transferred to the

crystal lattice as vibrational energy.

At low temperatures the mean thermal energy kBT is very much less than the quantum of

energy h and is insufficient to excite the thermal vibrations of oscillators-most of them are in

the state of zero point energy or frozen energy state and execute zero point oscillations and not

the thermal oscillations. Under these circumstances an occasional gas atom having much higher

energy than average will be capable of effecting such an excitation and transferring heat to the

crystal lattice resulting in excitation of a small fraction of oscillators. Hence the mean thermal

energy of the oscillator will be much less than kBT. Thus at low temperatures the specific heat of

quantum oscillator will be less than the specific heat of the oscillator.

In most respects Einstein’s model has been a remarkable success; its results are in good

agreement with experiment over most of the temperature range. However its drawbacks are;

(1) It explains the specific heat curves up to a certain point (upto 0.2) but fails completely

at extremely low temperatures (below 0.2) where T3 law holds true.

(2)  and  are obtained empirically and can not be verified from any other independent

physical data.

(3) Einstein himself recognized that the assumption of the monochromatic vibrations did not

correspond to actual facts. The vibrations of a particular atom must be very complex

indeed because it is under the field of force of thousands of other vibrating atoms.

Nevertheless Einstein’s model was a great step forward in the right direction.
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Einsten Approximation

Optical Branch
Debye

Approximation

Acoustic Branch

Fig 10.3: Comparision of Einsteins
and Debye approximation for
dispersion relation of lattice waves,
referred to a linear diatomic lattice.

K


10.4. DEBYE MODEL:
The main difference between Einstein’s

model and Debye model is, that, Debye

considers the vibrational modes of a

crystal as a whole (=vk) the dispersion

relation for a homogeneous solid where

as Einstein starting point was to consider

the vibration of a single atom assuming

that the atomic vibrations to be

independent of each other.

The Debye model is based on the following assumptions:

1) A solid is treated as an isotropic elastic continuum, so that the the longitudinal and transverse

wave velocities are independent of propagation direction relative to the crystal axes.

2) The Debye approximation considers the thermal energy in acoustical mode where as Einstein

approximation considers the thermal energy in optical mode fig (10.3).

3) The atoms of the solid have 3N frequencies ranging from 0 to a maximum m. The restriction

to the maximum frequency is a consequence of the fact that the waves of the half wave length

shorter than interatomic distances (/2  a) can not be propagated through the crystal.

4) With each frequency Debye associated a distribution function D() such that D() d

represents the number of modes of vibrations lying between the frequency interval  and  +

d.

5) These modes of vibration are distributed in energy according to the Maxwell-Boltzmann

distribution law.

6) Since any vibrational motion of the system can be thought as a superposition of independent

normal-mode vibrations, those normal modes are regarded as independent harmonic oscillators

whose allowed energy levels are given by n = (n +
2
1 v) hv and whose average energy  () is

given by 











)1(

1
/2

1
kThve

hv .

7) The contribution to the internal vibrational energy of the crystal from these modes of vibration

is given by
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 dDdU )()( ---------------- (10.29)

The total energy of the crystal is now obtained by integrating (10.29). Thus




dDU
m

)()(
0  ---------------- (10.30)

where from, the heat capacity can be obtained using
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
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U

T

S
T

dT

dQ
C ----------------- (10.31)

The procedure was first given by Born and von Karman and according to it the problem of

calculating heat capacity is essentially of calculating the quantity D(). We therefore proceed to

calculate this quantity.

Density of Modes in three Dimensions:

Let us consider a crystal with dimensions (Lx, Ly, Lz). The Boundary conditions are

S(Lx, y, z, t) = S(0, y, z, t)

S(x, Ly, z, t) = S(x, 0, z, t)

S(x, y, Lz, t) = S(x, y, 0, t)

The equations of motion for the mechanical vibrational amplitude S(x, y, z, t) then lead to

vibrational solution of the form
t}){(t).ri(),,,(

  
zyxi zyxAeAetzyxS

kkkk

where 2222
zyx kkkk 

using the boundary conditions we have

zyx L

2
;

L

2
;

L

2 z
z

y

y
x

x

nnn 
 kkk --------------- (10.32b)

where nx, ny, nz are integers (positive or negative). A set of allowed values of kx, ky, kz

corresponds to a single normal mode of vibration satisfying the periodic boundary conditions.

The various allowed normal modes can thus be represented as points in an orthogonal k-space.

Therefore there is one allowed value of k per volume
zyx LLL

28
in k-space; or allowed values of k

per unit volume of k-space, for each polarization are

22 88 

VLLL zyx


Here Lx, Ly, Lz = V the volume of specimen.

------------- (10.32(a))
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The constant k value surface

V

nnn zyx

zyx

2

2222
8

 kkkk

in k-space are spheres and hence one may calculate D(k)dk the allowed number of normal

modes in an interval dk about the wave number k by evaluating the volume of k-space between

the spherical surface of radius k and k+dk. The required volume is 4k2dk. Hence the number

of allowed modes are

D(k)dk = 4k2dk k
k

d
VV

2

2

2 28 


For each allowed value of k (allowed point in k-space) there are three independent normal

modes, one corresponding to longitudinal vaibration and two others corresponding to two

mutually orthogonal transverse vibrations. To take them into account the right-hand side of the

above equation should be increased by a factor of 3 giving

D(k)dk = k
k

d
V

2

2

2

3


In order to find D() knowing the relation for D(k) requires the knowledge of dispersion

relation. Unfortunately such a relation is not known in any convenient form. Further, the

mathematical form of equation (10.30) is such that if the actual variation is used even some how

or other, the problem of its integration stands up. Debye simplified the problem by assuming the

continuum approximation in which phase velocity (v0) is taken to be constant which he assumed

to be equal to the velocity of long wave-length elastic vibrations propagating through the crystal

i.e.

(k) = v0k

Substituting this in the above equation we have

D()d =
2

3
3
0

2

2





d

v

V
---------------- (10.32c)

Debye formula for specific heat:

Substituting 10.23 and 10.32c in 10.30 we obtain

 











m

B
d

v

V

e
U

Tk











0 3
0

2

2

/ 2

3

12

1





 











m

B
d

ev

V
Tk









 0 /

2
2

3
0

2 12

1

2

3



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 


m

B
d

ev

V

v

V
Tk

m










0 /

2

3
0

23
0

2

4

12

3

16

3



--------------- (10.32d)

The first term (10.32d) is zero point contribution to the internal energy which, however, is

independent of temperature and contributes nothing to the specific heat. Let us now put

Tk
x

B




and

3/12
0 6











V

N

Tk

v

Tk
x

BB

m
m

 
--------------- (10.33)

and

3/12
0 6











V

N

k

v

k BB

m
D





--------------- (10.34)

The parameter D usually refers to as the Debye temperature, is seen to have dimensions of

temperature and plays the role of characteristic temperature in much the same way as does the

Einstein’s temperature E in Einstein theory. It is of course independent of temperature except

for slight temperature variation introduced by the variation of v and v0 with temperature.

Substituting (10.34) (10.32d) along with (10.31) gives

 









mx

x
D

BDB dx
e

xT
TNkNkU

0

3
3

1
9

8

9


 ----------------- (10.35)

Differentiating (10.32d) w.r.t temperature, the heat capacity can be found. The result is

 


m

B

B

d
e

e

Tkv

V
C

Tk

Tk

B

v










 0 2/

/4

23
0

2

2

)1(2

3




 









T

x

x

D

B

D

dx
e

exT
Nk

/

0 2

4
3

)1(
9




----------------- (10.36)

Tables have been calculated on the Debye theory for U, C and other quantities and are given in

the Landolt-Bornstein tables and also in the Jahnke-Emde-Losch tables. The heat capacity is

plotted in fig (10.4). At DT  , the heat capacity approaches the classical value 3NkB
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Let us try to evaluate the integral in equation (10.35) at the extreme value of temperature i.e.,
T and T . As T , x  imply T  D. Here we can write

ex = 1+x

 





mm x
m

x x
dxxdx

e

x
0

3
2

0

3

31
---------------- (10.37)

TNkNk
T

T
TNkNkU BDB

D

D

BDB 3
8

9

3

1
9

8

9
32


















 




 --------------- (10.38)

and RNkC Bv 33  ----------------- (10.39)

The Dulong and Petit law in agreement with both classical and Einstein approximations.

Physically this means that at high temperatures (T  D) there is sufficient thermal energy to

excite all 3N modes regardless of their frequency so that they are contributing to Cv. It is thus

equivalent to the Einstein approximation because the frequency is unimportant and to the

classical approximation because the quantum discontinuities are negligible.

At low temperatures T  implies that x  so that we can let the upper limit of the integral

can be solved by contour integration method and comes out to be equal to
15

4
i.e.

151

4

0

3 







dx

e

x
, giving

15
9

8

9 4
3




 










D

BDB

T
TNkNkU

3

4

5

3

8

9










D

BDB

T
TNkNk


 --------------- (10.40)
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Fig 10.4: Heat capacity Cv of a solid according to Debye approximation.
The region of T3 law is below 01D. The asymptotic values of T/D is 3NkB (~25
Jmol –1deg –1).
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Kx

≃ kBT/ ħKy

Fig 10.5: The thermal sphere which is the

frequency contour  = kBT/ ħ .

.

and

3

4

5

12










D

Bv

T
NkC


 --------------- (10.41)

This exhibits the Debye T3 law. Its predictions for specific heat in the low temperature region

are in good agreement with experimental data for many substances. The cubic dependence may

also be appreciated from the following qualitative argument.

At low temperatures only a few of these modes are excited. These are the

modes whose quantum energy  is less than kBT. The number of these modes may be

estimated by drawing a sphere in the k-space whose frequency  = kBT/ħ, and counting

the number of points inside as shown in fig (10.5). This sphere may be called as thermal

sphere. The number of modes inside the thermal sphere is proportional to K3~3~T3.

Each mode is fully excited and has an average energy equal to kBT. Therefore the total

energy of excitation is proportional to T3.

The value of the Debye temperature D

may be calculated from (10.33).

Methods for determination of a suitable

average sound velocity to be used in

calculating D have been given by

Blackmann. The value of D can also be

obtained experimentally by choosing

that value of D, which leads to the best

fit between the experimental data and the

theoretical expression (10.35). For the

most common metallic elements the

Debye temperature generally lies in the

range 150–450K.

For actual lattice, the temperature at which the T3 approximation holds true are quite

low. It may be below T = D/50 to get reasonably pure T3 behaviour. The heat capacity

is, however, relatively insensitive to changes in the density of modes.

Criticism of Debye model:

1) The continuum model is valid for long wave-lengths i.e., the model assumes that only

low frequencies are active in the solid.
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2) Debye assumed that the number of modes of vibrations are 3N but this is contradictory

to the assumption that solid is an elastic continuum, which is supplied to possess infinite

frequencies i.e., there is little justification for the equation

 
m

NdD



0

3)(

3) m is taken to be the same for longitudinal and transverse waves. But this assumption

can not be justified on physical grounds because of the difference in nature of the two

waves. Born however proposed to cut off the spectrum in such a manner that the

longitudinal and transverse modes have a common minimum wavelength (min). So that

one obtains two Debye frequencies one for longitudinal modes (vt = ct/min) and other for

transverse modes (vt = ct/min). This is actually more sound theoretically speaking and in

line with the theory of lattice vibrations developed by Born and von Karmann.

4) If the Debye model were strictly valid, the values of D varies with temperature

(table 10.1). The deviation reaching as much as 10% or even more in some cases.

5) Actually crystalline nature of the solid has not been taken into account.

TABLE 10.1: Deviation from the T 3 law

10.5 Summary:

 Experiments show that the heat capacity of conduction electrons is much smaller

than predicted by classical statistical mechanics. This is explained on the basis of

exclusion principle. All the energy levels up to the Fermi level are occupied and

when the system is heated, only those electrons near the Fermi levels are excited.

The electron heat capacity
F

B

T

TNk

2

2
.

 The Fermi energy Ef(0) is function of temperature and varies as

NaCl LiKCl

T

200K

150K

100K

T

140K

80K

40K

30K

D

2880K

2970K

3080K

T

300K

200K

150K

D

2880K

2970K

3080K

D

2130K

2220K

2360K

2270K

104Cv/T
3

0.388

0.356

0.334

104Cv/T
3

0.960

0.832

0.708

0.798

104Cv/T
3

0.101

0.118

0.131
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
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




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











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




2

)0(

2

)0(
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1
f

B
ff

E

Tk
EE


.

 The atoms in the lattice are arranged as a set of harmonic oscillators and the

thermal energy is the average energy of these oscillators.

 According to classical theory, the average energy for one dimensional oscillator is

KT and the total thermal energy per mole is U = 3NkBT and the molar specific

heat Cv =
T

U




= 3NkB M = 3R.

 This result, known as Dulong and Petit law, asserts that Cv is a constant

independent of temperature. This is found to be valid only at high temperatures

and at low temperatures the specific heat decreases and then vanishes at T = 0K.

 Einstein rectified this discrepancy by treating the oscillator quantum

mechanically. The average thermal energy for the oscillator is then given by

1/ 


Tkh Be

h



 which approaches the classical value kBT only at high

temperatures. At low temperatures, the quantum mechanical energy decreases

very rapidly because of the freezing of the motion.

 Treating the atoms as independent oscillators, vibrating with common frequency,

Einstein found that the specific heat is
1

3
/

/2












T

T
E

v
E

E

e

e

T
RC




.

 Specific heat approaches the classical value 3R at high temperatures and vanishes

at T = 0K. Both these facts are in accord with experiment.

 Careful measurements show that the decrease in Cv near absolute zero is slower

than predicted by Einstein. Debye explained this by treating the atoms not as

independent oscillators but as coupled oscillators vibrating collectively as sound

waves.

 Making the long-wavelength approximation, Debye found that the specific heat is

given by  









T

x

x

D

v

D

dx
e

exT
RC

/

0 2

4
3

)1(
9




.

 This expression for Cv approaches the classical value 3R at high temperatures but

at low temperatures Cv ~ T 3. This latter result is known as Debye T3 law and is in

agreement with observation.
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 The agreement of Debye model with experiment is good through out the entire

range of temperature. Better agreement can be achieved only by removing the

long wave-length approximation and treating the crystal as discrete lattice.

10.6 Key words:

Drude – Lorentz model – The Einstein model – The Debye model – Thermal sphere.

10.7 Review Questions:

1. Explain in detail the thermal capacity of free electron system.Draw the plot of T 2

versus Cv and explain the comparison between theory and experiment.

2. Distinguish between classical and quantum mechanical aspects of heat capacity.

3. Explain Einstein model, draw the merits and demerits of Einstein model of specific

heat of solids.

4. Explain Debye model of heat capacity, draw the merits of Debye model over Einstein

model and also explain the criticism of Debye model.

5. Derive an expression for the electronic contribution to the specific heat of a metal.

How is it verified experimentally?

6. Explain phonon dispersion curves. How are they studied experimentally?

7. Derive an expression for the specific heat of a solid on the Einstein model and show

that at low temperatures it drops exponentially with decreasing temperature.

8. What are Einstein and Debye models for the specific heat of solids?. Derive T3 law for

the specific heat of solids at low temperatures.

9. What are optical and acoustc phonons?. Discuss with theory any experiment to

determine the properties of individual phonons.

10.Discuss the specific heat of a 2-D square lattice on the basis of Debye approximations.

Compare the Debye, Einstein and lattice mode theories of specific heats of solids.

Comment on Reshtrhlen frequency.

10.8 Text and Reference Books:

1) Elements of Solid State Physics by J P Srivatsava (PHI)
2) Solid State Physics by M A Wahab (Narosa)
3) Elements of Solid State Physics by A. Omar (Pearson education)
4) Solid State Physics by S O Pillai (New age)
5) Solid State Physics by C Kittel (Asian students edn.)
6) A Text Book of Solid State Physics by S.L.Kakani & Hemrajani (S.Chand)
7) Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT – III
LESSION: 11

Thermal properties of solids - III

Aim: To explain the thermal properties of solids on the basis of lattice vibrations

in the harmonic approximation and to consider the anharmonic effects.

Objective of the lesson

 To distinguish between classical and quantum mechanical concept of heat

capacity.

 To consider anharmonic effects of lattice vibration to look into thermal expansion,

finite value of thermal conductivity, temperature dependence of elastic constants.

To know about the phonon collision process, phonon thermal conductivity, Size

effect.

Structure of the lesson:

11.1 Classical heat capacity

11.2 Quantum theory of heat capacity

11.3 Anharmonic effects

11.3.1 Thermal expansion

11.3.2 Phonon collision process

11.3.3 Phonon thermal conductivity

11.4 Summary

11.5 Keywords

11.6 Review questions

11.7 Text and reference books
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Introduction:

Thermal properties of solids can be classified into two groups.

1. Properties whose broad features can be explained in the harmonic approximation.

2. Properties whose broad features have to be explained considering anharmonic effects

also

11.1 Classical heat capacity:

The major contribution to the heat capacity of solids comes from the lattice vibrations. In

non-magnetic insulators, lattice vibrations are the only contributors. Other contributions

come from conduction electrons in metals and ordering in magnetic materials. Here we

deal with lattice vibrations only.

Classically, the energy of solid, can be expressed as

 = s + v ------------ (11.1)
where

s is the energy of the static lattice

and v is the vibration energy of the solid.

The classical equipartition energy of vibration of atom is kBT at temperature T, kB

being the Boltzmann constant. This gives the total vibration energy 3NkBT. If there are

N atoms in the solid,.substituting this into (11.1) We have

= s + 3NkBT ------------ (11.2)

At T = 0, = s which does not include the zero point energy and in classical theory, there

is no concept of zero point motion. The heat capacity is defined as (the value at constant

volume).

Cv =
VT












------------- (11.3)

Using (11.2), we can have
Cv = 3NkB --------------- (11.4)

The experimentally measured value of heat capacity is referred as the heat capacity at

constant pressure CP. But for a harmonic solid CV = CP, since the difference between the

two is known to depend on the square of the temperature coefficient of linear expansion

which is zero for harmonic crystal. Later it will be known that the expansion of solids

occurs because of the anharmonic motion of atoms. The equation of heat capacity given
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by (11.4) was originally derived by Dulong and Petit in 1869. This is known as the

Dulong–Petit law. It states that the heat capacity is constant for a solid and independent

of temperature. The measured value of heat capacity approaches this value at high

temperatures and remains constant thereafter in the solid state (Fig11.1). Dulong and Petit

explained the behavior of solids at high temperatures. This law, however, fails to explain

the variation of heat capacity with temperature. Most significantly, the heat capacity

drops to zero at 00K. The failure of Dulong–Petit law’s to hold at all temperatures is later

explained only with the use of quantum theory

11.2 Quantum Theory of Heat Capacity:

Here we build up the structure for calculating the heat capacity on the principles of

quantum theory. Since lattice vibrations are pictured as quantized in this theory, the term

phonon heat capacity is more appropriate than the conventional term. Phonon heat

capacity is mainly concerned with the evaluation of the average thermal energy, which in

turn requires the knowledge of the vibration spectrum of solid under study. Our first

attempt would be to calculate the average thermal energy of harmonic oscillator.

11.2.1: Average Thermal Energy of a Harmonic Oscillator:

The energy levels of a quantum harmonic oscillator are given by

 









2

1
nn -------------- (11.5)
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Fig 11.1 A comparison of the experimental curve (represented by the circles) with
Einstein’s theoretical curve (dotted) for molar heat capacity of diamond with QE =
1320K. The horizontal line gives the classical Dulong-Petit value.
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where  is the angular frequency of the oscillator.

The average thermal energy of the oscillator  in thermal equilibrium at temperature T is

nn
n

P   --------------------(11.6)

Where Pn represents the probability of finding the oscillator in the energy level n. It is

given by











Tk
P

B

n
n


exp (the Boltzmann distribution) -------------- (11.7)

The proportionality constant ensures that the oscillator is in one of the allowed levels.

Therefore

1
0





n

n
P -------------- (11.8)

or
 

1exp 2
1

0
0








 




 Tk

n

B
n


P

where P0 is the constant of proportionality. Therefore,

1)/exp()2/exp(
0

0 



TknTk B

n
B  P

or
)/exp(1

)2/exp(
0

Tk

Tk

B

B










P -------------- (11.9)

Therefore,

))/exp(1)(/exp( TkTkn BBn   P -------------- (11.10)

Substituting Pn from (11.10) in (11.6), we get

)/exp(
2

1
)]/exp(1[)(

0
TknnTkT B

n
B   














Putting exp (ћ /kBT) = x, we have

n

n

n

n
nxx

x
nxxT





















00
)1(

2

1

)1(2

1
)()1(),(   ------------- (11.11)

Since

x
x n

n 




 1

1

0
---------------- (11.12)

on differentiating (11.12) and then multiplying both sides by x, we get

2
0 )1(

1

x
nx n

n 





---------------- (11.13)

From (11.13) and (11.11), we have
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


 
 












1)/exp(

1

2

1
),(

Tk
T

B

--------------- (11.14)

or

 
2

1
),( 








 nT --------------- (11.15)

where

1)/exp(

1




Tk
n

B
--------------- (11.16)

n must denote the phonon occupancy. This is also known Planck’s distribution

function obtained by Planck for the radiation oscillators. The above exercise is a simple

demonstration of the fact that lattice vibration one quantized the same way as the

radiation oscillators. The n stands for the occupancy of phonons in the energy level n

which is also interpreted as the expected number of photons in energy state n of an

oscillator in thermal equilibrium at temperature T.

The calculation of total thermal energy of solid is, not a straightforward one.

Practically it is done by making use of dispersion curves which provide the valuable

information on the number of modes per unit frequency interval. The term giving this

information is known as the density of states. This model proposed by Einstein, serves as

a landmark in the progress of the theory of phonon heat capacity.

10.3 Anharmonic effects:

While dealing with lattice vibrations, the harmonic vibration is the basis for discussion.

Keeping aside the exceptions like solid helium in which harmonic approximation is not

applicable, we come across a number interesting physical phenomena that cannot be

explained without relaxing the approximation. Some of these are

(1) Thermal expansion

(2) Thermal conductivity has a finite value

(3) The temperature dependence of elastic constants

(4) The failure of Debye heat capacity to attain the classical value at high

temperatures (T>>D)

(5) The line broadening or measurable width of one phonon peaks in the neutron

inelastic scattering pattern.
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The cause of failure of the harmonic approximation in explaining the above

phenomena rests in questionable relevance of two basic assumptions.

1. Vibrations of atoms may be treated as small oscillations in which the displacement of

atoms from their respective equilibrium positions are small.

2. Only the leading non-vanishing term in the expansion of potential energy about its

equilibrium is retained.

The validity of the first assumption is always questionable at high temperatures where

the amplitude of vibration is large. And when the displacements become large, we

cannot afford to ignore the higher order terms in displacement beyond the quadratic term

in potential energy expansion. In this situation both the assumptions become irrelevant.

This is indicated by the shape of the potential energy curve at large interatomic

separations (fig11.2).

Where it is more asymmetric showing thereby deviation from the harmonic nature. This

is understandable as atoms can never oscillate like independent harmonic oscillators in a

real crystal because the motion of the adjacent atoms is always correlated. In general we

must accept the presence of anharmonicity to a certain degree in the vibrations of a solid.

U

U0

A

B

C

D

R0
R

Fig 11.2: An exaggerated potential energy curve based on Lennard-Jones potential
for real crystals. The asymmetrical nature of the curve at higher energies does not
allow the motion to be interpreted in parabolic approximation. The increase in the
interatomic separation R at high energies (excited at high temperatures) produces
thermal expansion. The R0 is the interatomic distance in the ground state. Because
of anharmonicity, the vibration quantum (the spacing between vibrational levels)
does not remain constant. It decreases with increase in energy
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The physical phenomena stated earlier are explained successfully when connections on

the requirement of anharmonicity are included in the calculations.

The anharmonic effects are most reasonably accounted when the potential energy

expansion is truncated not before the quartic term. Dropping the constant equilibrium

term, we write potential energy as

U(x) = fx2 – gx3 – hx4 -------------- (11.17)

Where x is the deviation from the equilibrium separation at absolute zero and all the

coefficients f, g and h are positive.

The first term in (11.17) is the usual harmonic component and the other two refer to

the anharmonic effects. The cubic term stands for the asymmetry of the mutual repulsion

of the atoms and the quartic term represents the softening of the vibration at large

amplitudes.

As the applications of anharmonic potential we will deal with first two of the

phenomena cited earlier as examples. While the thermal expansion refers to an

equilibrium property the thermal conductivity is a well-known transport phenomenon.

11.3.1 Thermal Expansion:

It is an established fact that solids expand on heating. In the harmonic approximation, all

atoms vibrate about their equilibrium positions within a perfectly symmetric well

(parabola) of interatomic interaction. But the potential energy curve (fig.11.2) as derived

from a Lennard–Jones potential type for real solids, matches this behaviour only in the

range low thermal excitations that correspond to low temperatures.

The potential well gets asymmetrical for larger interatomic separations (fig11.2)

occurring at higher energies. The mean interatomic separations at a few vibrational

energies taken in increasing order are denoted by points A, B, C, D respectively. The

values represented by these points are in increasing order as shown by the trend of shift

forward larger values relative to the mean equilibrium separation R0 in the ground state.

It is then imperative that at higher temperatures when higher vibrational states are

sufficiently populated, solids would show expansion. The range of vibration frequencies

of solids is such as can be excited by the thermal energy. These arguments explain the

thermal expansion of solids. Since this property follows from the anharmonic nature of
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the potential energy curve, the thermal expansion is attributed to the presence of

anharmonicity in atomic vibrations.

Now we use (11.17) to calculate the thermal expansion in terms of the mean

displacement x of the atoms in a solid. It is nonzero because of the cubic term. A crude

way of determining x is to use the condition,

0




x

U

and ignore the term in h. This gives

f

xg
x

2

3 2 
 ---------------- (11.18)

If the mean square displacement is calculated classically in the harmonic approximation,

we get

Tkf

Tkff

Tk

dxTkfx

dxTkfxx

x

B

B

B

B

B

/2

1

/4

)/(exp

)/exp(

2

22

2
























or

f

Tk
x B

2
2  ----------------- (11.19)

Substituting (11.19) into (11.18), we express the mean displacement as

24

3

f

Tgk
x B ----------------- (11.20)

The relation (11.20) shows an increase in the interatomic separations and therefore, a

thermal expansion of solid.

We may define the coefficient of linear expansion  as

T

x




 --------------- (11.21)

Using (11.20), we have

24

3

f

gkB ---------------- (11.22)

Though changes in size because of thermal expansion are small in solids, the

knowledge of their expansion coefficients in none the less of great practical value in

industry where even simple jobs like making a permanent joint between two materials

have their tactical importance
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Another striking feature that is associated with the thermal expansion, has reference to

the change of characteristic frequency in a solid. The levels of vibrational energy come

closer at high-energy values (fig.11.2). In the harmonic approximation the levels are

expected to remain evenly spaced and unaffected by the change of temperature. The

spacing can alter only of the energy quantum h changes. By taking anharmonic

considerations into account with the use of (11.17), it can be shown that the characteristic

frequency  decreases with the increase in temperature. This is consistent with

observation of closer energy levels at high energies to which the thermal excitation can

be made by raising the temperature one must appreciate that the anharmonic

contributions at these values of energy and temperature are at their maximum.

The above frequency effect may as well be interpreted as the change in characteristic

frequencies in a solid because of the change in its volume. It is conventionally put in the

form of an assumption that allows both the characteristic frequencies and the volume V to

suffer the same relative change. That is,

V

V








or

V

V








--------------- (10.23)

Where the proportionality constant  is called meisenuGr  constant. It is a measure of the

anharmonic coupling. This anharmonic effect, though small, may be studied by neutron

scattering measurements that provide the change in characteristic frequencies with

temperature.

An exact treatment of anharmonic effects is not so easy. We have to take recourse to

some approximate method like perturbation method of quantum mechanics. As a first

approximation to the true solution, we start with solutions of harmonic potential (the

phonons). Obviously, the phonons are not the exact eigensolutions to the equation of

motion. The description of a state of motion in an anharmoinic solid in terms of a

phonon or a plane wave changes with time and the accuracy of the description drops

progressively. For an accurate description with time, it is required to recognize the status

of a spectrum of some other phonons. It means that the anharmonic phonons, unlike

harmonic ones, have only a limited lifetime after which they merge or decay to produce
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new phonons. In the next section we discuss these phonon processes as they enable us to

explain the basis for thermal resistance and related features in the next section.

10.3.2 Phonon Collision Process:

An exact quantum mechanical treatment based on the first order perturbation theory

shows that:

a) The cubic term in the potential energy accounts for the following processes.

i) One phonon decay into two

ii) Phonons merge into one

b) The quantum term in the potential energy accounts for the following processes:

i) One phonon decays into three

ii) Two phonons gets converted into two others

iii) Three phonons merge into one.

We observe that the cubic term is related to the three-phonon processes and the quartic

to the four-phonon processes. It is now necessary to examine the probable collision

processes, especially in the context of thermal resistance which is in our plan of

discussion. Let us consider the collision involving three phonons. The use of the term

collision should not be objectionable as phonons are treated as particles. If two phonons

have wave vectors k1 and k2 collide or merge to produce a new phonon with a wave

vector k3, the momentum conservation requires that

k1 + k2 = k3 --------------(11.24)
The total energy of the initial phonons is completely held by the final phonon. The net

phonon momentum is written as

ss
s
n kj k

k
 -------------(11.25)

where nks is the number of phonon with wave vector k in the branch s.

The net phonon momentum j constitutes the phonon thermal current in a solid

between whose two ends a difference of temperature is maintained. In view of (11.24)

the net phonon moment is a constant and, therefore, the phonon current j remains

unchanged. The distribution of phonons (or the distribution function) at any stage when j

 0 tends to appear its equilibrium value (condition of zero temperature). But in the

present case it is not permitted as j has to remain unaffected. Any distribution of phonon
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flows down the solid unhindered. As if the phonon mean free path were infinite.

Consequently the thermal resistance, a measure of the rate at which equilibrium

distribution is approached, becomes zero. This gives an infinite value of thermal

conductivity an unacceptable result. Therefore the collision processes described by

(11.24) do not give rise to thermal resistance. These processes are called normal

processes or simply N-processes. Figure 11.3(a) shows a normal process of collision in a

two dimensional square lattice.

It should be, however surprising to note that N-processes explain the conduction of

heat in gases where we deliberately impose the conditions that no mass transport of

particles takes place. In this picture, the hot particles while moving along one direction

lose their energy to the cold particles moving in the opposite direction [fig 11.4(a)].

ky

kx

k1

k2

k3

ky

kx

k1

k2

k3
k1+k2

g

Fig 10.3: Phonon scattering processes in k-space for a two-dimensional square lattice: (a)
normal process. (b) Umklapp process – two phonons with wavevector k1 and k2 merge
into k3 with the help of a reciprocal lattice vector g (= 2/a in this case). Note that the
direction of the x-component of the phonon flux has been reversed.

(a) (b)

(a) (b)

Fig 11.4: (a) Conduction of heat in a gas: hot electrons moving in one direction lose
their energy to cold electrons moving in the opposite direction. During the
conduction process the number of electrons is conserved. (b) Conduction of heat by
phonons in a solid: There is no net particle conservation. Phonons carrying heat
from the hot end get destroyed at the cold end.
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But these ideas are not tenable in the case of phonon gas where there is no net particle

conservation in the true picture. The phonons that carry heat from the hot end one

destroyed at the cold end [fig 11.4 (b)].

The phonons could also suffer collisions with the immobile imperfections and the

crystal bounding surface. But these collisions are known to be elastic in nature, meaning

there by that the collisions do not change the frequency of the individual phonons. This

makes impossible for an equilibrium distribution of phonons to be established locally.

The puzzle of thermal resistance is solved by a different kind of collisions expressed

as

k1 + k2 = k3 + g --------------- (11.26)

Where g is a reciprocal lattice vector.

Since in a periodic lattice the energy of a phonon with a wavevector (k3 + g) is the

same as that for a phonon with a wavevector k3, the phonon k3 in (11.26) must be

carrying total energy. The specific feature of (11.26) is that it destroys the momentum ћg

and changes the direction of energy flow as show in fig 11.4(b). The x-component of k1

and k2 are directed opposite to the x-component of k3. Peierls called such collisions by

the name ‘Umklapp processes’ or ‘U-processes’. Umklapp is the German term for

‘folding over’. Because of the non-conservation of the net momentum, the equilibrium

distribution of phonons can be restored by these processes at a certain rate that

determines the thermal resistance. This confirms that the U-processes of collisions give

rise to thermal resistance, limiting the value of thermal conductivity to a finite value.

For the condition (11.26) to be satisfied, the sum of k1 and k2 must extend beyond the

first Brillouin zone and the individual values should not be less than ½ g. The sum of (k1

+ k2) can be translated to the first zone by the reciprocal lattice vector – g [fig 10(b)].

The k3 is called the reduced value of (k3 + g) and belongs to a set of unique k-values. U-

processes can be taken up while discussing the effect of temperature on thermal

conductivity. In the refined theoretical picture, a phonon collision is referred to as the

scattering of phonons because of phonon–phonon interaction.

11.3.3 Phonon Thermal Conductivity:

Metals are good conductors of heat and electricity. The energy is transported mainly by

the electrons. But it must not be constructed that thermal conductivity depends mainly on
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the number of available free electrons. Some of the insulators for example the crystalline

sapphire (Al2O3) and quartz (SiO2) possess high thermal conductivity than copper at low

temperature. The maximum value of thermal conductivity of sapphire is 200 Wcm-1k-1 as

against corresponding value 100 Wcm-1k-1 of copper. The observations indicate to the

involvement of some other carriers in addition to the free electrons for the heat transport.

These carriers are phonons as confirmed by the theory explaining the experimental data.

Thus the phonons are unambiguous by the main carriers of heat in insulators and in some

of the insulators the passage of phonons is smooth enough so as to result in large values

of thermal conductivity.

An exact treatment of phonon thermal conductivity is a problem of great mathematical

complexity, we present an elementary classical based on kinetic theory of gases.

Consider an insulating solid cylinder (fig11.5) whose two ends are maintained at

different temperatures T1 and T2 (T2>T1). Let the temperature gradient down its length be

defined as
x

T




 . At steady state there is a steady flow of heat from the hot and to the

cold end maintaining the temperature difference (T2-T1) at a constant value.

It is observed that the energy flowing down the cylinder per unit of its circular cross

section per unit time j is proportional to the temperature gradient
x

T




 . That is

x

T




j --------------- (11.27)

or

 v


 cos 

x0
x

T2>T1

T1
T2

– dT/dx

Fig 11.5: Conduction of heat by phonons in an insulating solid cylinder along its length
when a temperature gradient is maintained between the two ends of the cylinder.
Phonons approaching the point x0 at an angle  with the cylinder’s axis (x-direction)
and moving with velocity v make a collision at the point. The temperature at the point
is T.
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













x

T
K phj --------------- (11.28)

where Kph is called thermal conductivity and j is the thermal flux per unit time.

The flow of heat cannot be linear as in that case j would have been proportional to T.

The heat energy differs from the hot end to the cold end through a random process. As

we consider here only the phonons as heat carriers, the random process involve mainly a

phonon-phonon collisions. The extra phonons created at hot end are destroyed at the cold

end this picture of phonon gas better suited to be treated by the kinetic theory of

molecular gases.

Frequently collisions among phonons limit the phonon mean free path. In a rigorous

theory the mean freepath is treated as a function of the temperature and the phonon

frequencies. But we take an average value () over the length of the solid cylinder. Let

the non-equilibrium energy density contributed by phonons coming out collisions at the

point x be denoted by u(x). If T be the temperature at x, u(x) is supposed to be

proportional to the equilibrium energy density u[T(x)]. Then, the contribution to thermal

current density j from a single phonon is vx u(x), where vx is the x-component of the

phonon velocity v.

Fig 10.5 shows that the collision at x0 involves the phonons approaching it at an angle

 with the x-axis. The immediate last collision of these phonons on the average should

have occurred at a point whose x-coordinate is shorter by cos, i.e. at x = (x0 – cos ).

The net thermal current j can be calculated by using the fact that j is proportional to the

product vx u(x0cos) average over all solid angles. Accordingly,

j = vx u(x0 – cos)

= dttxvtudxuv )(
2

1

4

sin2
)cos(cos 0

1

1

0

0

 










---------------- (11.29)

Expanding u(x0 – t) absent u(x0) and retaining only the first order terms in the derivative,

we have

x

u
v

t

x

u
vdt

x

u
txuvtj

x 



































 3

1

32

1
0)(

2

1
1

1

3

0

1

1 0

or




















x

T

T

u
vj

3

1
---------------- (11.30)
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Comparing (11.30) with (11.28), the contribution of phonons to the thermal conductivity

may be expressed as

T

u
vK






3

1
ph

or

2ph
3

1

3

1
vCvCK VV  --------------- (11.31)

Where CV denotes the phonon heat capacity and  is the relaxation time (v = ).

We can define the phonon collision frequency as  1. The variation of thermal

conductivity with temperature in terms of the parameters  and CV is explained below.

At high temperatures (T>> D)

In its temperature range, the thermal equilibrium phonon occupation numbers given by

1))(exp(

1




Tk
n

B

k
k

reduce to

)(
~

k

TkB --------------- (11.32)

The total number of phonons is proportional to the temperature. Therefore, the higher the

temperature, the more will be the collision frequency, resulting in smaller mean free

paths. Since CV approaches the constant Dulong-Petit value, the change in the thermal

conductivity is predominantly controlled by the change in the mean free path. Thus, the

thermal conductivity decreases with increase in temperature. Though this trend is

confirmed by experiments, the observed rate of fall is given by

mT
K

1
ph  --------------- (11.33)

where m lies between 1 and 2.

At low temperatures (T<<D)

The phonon occupying in thermal equilibrium may be taken as ~ exp (–ћ(k)kBT ). The

probability of occurrence of U-process [as expressed by (11.26)] is written as

)/exp()/exp(
2121

TkTknn BB kkkk   

)/exp(/)(exp[
321

TkTk BB kkk   
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Which shows that U-processes are almost frozen at low temperatures and the thermal

conductivity exponentially approaches infinity.

But, in practice, all solids have finite conductivity even in the ranges of lowest

temperatures. Since no perfect crystal exists in nature, there may be collisions of

phonons with imperfections, impurities or even with the bounding surfaces. At certain

temperature the mean free path on account of these collisions becomes so large that it is

comparable with the size of the sample. This being the maximum realistic value, the

mean free path assumes the temperature independent behaviour below this temperature.

This is known as the size effect. Then (11.31) is replaced by

DvCK V
3

1
ph  --------------- (11.34)

Where D stands for the size (diameter in the case of rod).

The behaviour of thermal conductivity in this temperature region is mainly determined

by the Debye heat capacity which drops as T 3. In fact, a competition between the

exponential nd the T 3 terms sets in at the temperature below which the mean free path is

temperature independent. The drop of T 3 being faster than the exponential increase the

thermal conductivity is limited to a finite value.
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Fig 11.6: Thermal conductivity of isotopically pure LiF crystals as a function of
temperature. The curve are the beautiful demonstration of size effect on thermal
conductivity. The large the cross-sectional area of the sample, the higher the thermal
conductivity.
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Fig11.7: The influence of isotope scattering on the maximum of thermal conductivity.
The phonon scattering from isotopes lowers the thermal conductivity as is observed for
the sample composed of 7Li and 6Li isotopes. The other sample almost free of 6Li
isotope shows a sharper and higher maximum. The presence of the rival phonon
scattering mechanisms softens the sharp conductivity maximum.

The scattering of phonon from crystal walls was suggested by Casimir. The nature of

the curves of Fig11.6 below 10 K provides a sound proof to the ideas of Casimir. The

larger the cross-sectional area of the sample, the higher the conductivity. From below 10

K as the temperature rises, the U-processes become more frequent and the conductivity

attains maximum value when the mean free path because of the phonon-phonon

scattering becomes comparable with that owing to the scattering from the crystal’s

surface. With further rise in temperature the conductivity falls because of the increasing

phonon-phonon scattering and assumes the expected exponential drop at higher

temperatures where the heat capacity tends to be on level with the constant Dulong-Petit

value.

The presence of rival phonon scattering mechanism is found to soften the ‘sharp

conductivity maximum’ in most of the samples, irrespective of the material. The

scattering from isotropic impurities is well identified among these. Its effect is

demonstrated in fig 11.7 by the experimental curves of two samples of LiF crystals, one

of which contains a mixture of 6Li and 7Li isotopes. On cooling, the rise of conductive is

less steep in the sample having both isotopes than in the sample which is almost free from

6Li isotope. In addition it has a lower and flatter maximum. The sharp maximum in the

pure sample is almost totally contributed by U-processes in absence of the rival isotropic

scattering.
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Insulators characterized by large values of thermal conductivity have found wide

applications in the field low temperature physics.

11.4 Summary:

1. For a harmonic crystal, heat capacity at constant volume, CV is equal to heat capacity at

constant pressure Cp because the difference between the two depends on the square of the

temperature coefficient of linear expansions which is zero for a harmonic solid.

2. The achievements of Einstein model of phonon heat capacity are:

(i). It explains behaviour of heat capacity at room temperature and above. In the high

temperature limit it gives the classical value (3NKB) which the experimental value

approaches at these temperatures.

(ii). It shows that the heat capacity approaches zero as T  0 K, at a fact that agrees with

the experiment.

3. The limitation of Einstein model of phonon heat capacity is that the heat capacity at

low temperatures decreses as exp(ћ/kBT) is contrast to the observed T 3 dependence.

The Debye T3-law based on a continuum model explains very well at low temperatures

at low temperature. The Debye model enjoys success over the entire useful temperature

range.

4. The anharmonic effects are most reasonably accounted when the potential energy

expansion is truncated not before the quadratic term. That is,

U(x) = fx2 – gx3 – hx4

5. Two phonons of wave vectors k1 and k2 may scatter against each other (or collide) and

merge to produce a new phonon by either of the two types of scattering processes

Normal process: k1 + k2 = k3

(N-process)

Umklapp Process: k1 + k2 = k3 + g
(U-process)

6. At high temperatures (T>>D), the phonon thermal conductivity (Kph) changes

according to

mT
K

1
ph  where 1 < m < 2
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At low temperatures (T<<D), the U-process are almost frozen and Kph for ideal crystals

exponentially approaches infinity. Real crystals have, however, finite Kph because of

collisions of phonons with imperfections, impurities and bounding surfaces of specimens.

At very low temperatures, the phonon mean free path is comparable with the size of

specimen (or a constant), so that

DvCK V
3

1
ph 

where D is the diameter in the case of a rod. or

Kph  T 3 (since v and D are constant and CV T 3)

11.5 Keywords:

Harmonic approximation – Anharmonic Effect – Vibrational energy – Heat capacity –

Dulong-Petit law – Quantum theory of Heat capacity – Plank’s law – Phonon heat

capacity – Potential energy curve – Thermal expansion – Lennard – Jones Umklapp

Process – Size effect.

11.6 Review Questions:

1. Distinguish between classical and Quantum theory of heat capacity of solids.

2. How thermal expansion of solids play an important role in the Heat capacity of solids.

3. How anharmonic effects explain heat capacity more effectively than harmonic

approximation.

4. Describe the variety of phonon collision processes in the theory of heat capacity of

solids.

5. How do you account the phonon thermal conductivity at low and high temperature

region.

11.7 Text and Reference Books:

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)
2. Solid State Physics by M.A.Wahab (Narosa)
3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C. Kittel (Asia Publishing House)
6. Solid State Physics by S.L. Kakani and C. Hemrajani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J.Dekker (Macmillan)
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UNIT – III LESSON: 12

Energy band theory

Aim: To know about the Electron Energy Bands.

Objectives of the lesson:

 To know about the failure electron theory in explaining conductivity of materials.

 To know about the Bloch theorem and its proof, the consequences of periodicity.

 To know about wave mechanical interpretation of energy bands through Kronig

Penney model.

 To know about the velocity of Bloch electrons and the dynamical effective mass m*.

 To know about momentum, crystal momentum and physical origin of effective mass.

 To understand the concept of Hole.

 To know about the limiting cases of periodic potential.

Structure of the lesson:

12.1 Failure of free electron theory

12.2 Consequences of the Periodicity: Bloch theorem.

12.3 The Bloch Theorem.

12.4 Kronig Penney model: Wave mechanical interpretation of Energy Bands.

12.5 Velocity of Bloch electron and the dynamical effective mass.

12.6 Crystal momentum and physical origin of the effective mass.of electron

12.7 Concept of Hole.

12.8 Easy limiting cases of the periodic potential.

12.9 Summary.

12.10 Key words.

12.11 Review questions.

12.12 Text Books and reference books.
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12.1 Failure of free electron theory:

In lesson 11 we learnt how the free electron model in great detail gave invaluable

information in accounting for the observed metallic properties. Nevertheless this model

is an approximation and has its limitations and even the quantized free electron theory is

unable to explain some property. Let us consider some of the limitations.

1. The method is unable to explain why some materials are metals why others are

good insulators. Their electrical conductivity may differ by a magnitude of order

1030 which is unusually high for any physical property.

2. The model suggests that other things being equal, electrical conductivity is

proportional to electron concentration. But it is surprising that the divalent metals

(Be, Cd, Zn etc) and even trivalent metals (Al, In) are consistently low conductive

than the monovalent metals (Cu, Ag and Au) despite the fact that the former have

higher concentration of electrons.

3. A far more damaging testimony against the model is the fact that some metals

exhibit positive Hall Coefficient, for example Be, Zn, Cd. The free electron

model always predicts a negative Hall coefficient.

4. Complex transport phenomena in the presence of a magnetic field to, do not find

satisfactory explanation.

5. The continuous parabolic energy curve renders us helpless in finding a clue to the

sharp resonance like structures observed in the optical spectra of solids.

6. Measurements of the Fermi surface indicate that it is non spherical in shape. This

contradicts the model, which predicts spherical Fermi surface.

These difficulties and other, which were not mentioned here, can be resolved by a

more sophisticated theory, which takes into account the interaction of the electron with

lattice.

12.2 Consequences of periodicity –The Bloch Theorem:

To understand the difference between insulators and conductors, one must extend the

free electron model to take account of the periodic potential with periodicity of the

lattice. In one electron model the periodic potential may be thought of arising from

periodic charge distribution associated with ion cores situated on the lattice sites plus the
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constant (average) contribution due to all other free electrons of the crystals. The later

contribution to the potential accounts in an average sense, the interaction effects of the

single electron with all others. A one dimensional representation of a periodic crystal of

a cubic crystal of lattice constant ‘a’ is shown in Fig 12.1. So far as the one-electron

quantum-mechanical picture is concerned, the crystal periodicity will usually be assumed

to extend to infinity in all directions, but at surface of any actual crystal the periodicity

will be interrupted, the potential function then behaving somewhat as shown at the left-

hand edge of the Fig 12.1. The lattice spacing will be quite uniform near such a surface,

but practically the periodicity will be usually found to be almost perfect after a few

atomic spacings with in the crystal.

We can see on the basis of above description that electrons in crystal are arranged in

energy bands (fig 12.2); separated by regions in energy for which no wave like electron

orbitals exists. Such forbidden regions are called energy gaps or band gaps; and will be

shown to result, from the interaction of conduction electron waves with the ion cores of

the crystal. The important question for electrical conductivity is how the electrons

a

x

V(x)

Surface

Fig 12.1 Schematic representation of the potential within a perfectly periodic crystal
lattice. The surface potential barrier is shown at the left.

Insulator Metal Semi
Metal

Semi
Conductor

Semi
Conductor

Fig 12.2 Schematic electron occupancy of allowed energy bands for an insulator,
metal, semimetal and semiconductor. The vertical extent of the boxes indicates the
allowed energy regions; the shaded areas indicate the regions filled with electrons.
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respond to an applied electric field. The crystal will behave as an insulator if the number

of electrons is such that the allowed energy bands are either filled or empty, for then no

electron can move in an electric field. The crystal will act as a metal if one or more

bands are partly filled. The crystal is a semi conductor or semimetal if all bands are

entirely filled, except for one or two bands slightly filled or empty.

The possibility of band gap is the most important new property that emerges when we

extend the free electron model to take into account of the periodicity of the lattice of the

solid. We shall encounter other remarkable properties of electrons in crystals. For

example, they respond to applied electric or magnetic field as if the electrons were

endowed with an effective mass m*, which may be larger or smaller than the free electron

mass, or even may be negative.

12.3 The Bloch Theorem:

The Bloch Theorem is a mathematical statement regarding the form of the one-

electron wave functions for a perfectly periodic potential.

Let the potential energy of an electron satisfy the equation

V(x) = V(x+a)

where ‘a’ is the period. The Sehrodinger wave equation is than

0)]([
2

22

2








xVE

m

x 
------------ (12.1)

With reference to the solution of the equation, there is an important theorem known as

Bloch theorem ; which states that the solutions are the plane waves modulated by the

functions Uk(x) that has the same periodicity as the lattice. In the theory of differential

equations it is known as Floquet’s theorem. Mathematically the solutions are of the form

)()( xUex xi
k

k ------------- (12.2)

where Uk(x) = Uk(x+a)

The wave functions of the type (12.2) are called Bloch functions. We note that Bloch

functions (12.2) have the property

)()()( )( xeaxUeax aiaxi  k
k

k  

Thus the Bloch functions have the property that

)()( xax   -------------- (12.3)

where constant  is
aie k



ACHARYA NAGARJUNA UNIVERSITY 5 CENTER FOR DISTANCE EDUCATION

If we imagine the crystal to be a form of a ring, N steps of the above displacement or

translation will bring the electron back to the same atom at x from where it started.

It means that (x + Na) = (x + L) = (x)

But the net phase shift in the wave function requires that (x + L) = CN(x).

So CN must be equal to 1 or ei2n or C = ei2n/N with n = 0, 1, 2, …… N/2. It implies

a
;

2
nfor;

2 



 k

N

L
nk .

It is clear that if we can show that the Schrodinger equation (12.1) has solutions with the

property (12.3), the solutions can be written as Bloch functions and the theorem is

proved.

Since (12.1) is a linear second-order differential equation, there are two independent

solutions g (x) and h (x) such that

(x) = Ag (x) + Bh (x) --------------- (12.4)

represents the most general solution of (12.1) with A and B arbitrary constants. Since

(x) = (x + a), not only g (x) and h (x) but also g (x + a) and h (x + a) also satisfy

(12.1). Any solution of (12.1) is expressible as a linear combination of the independent

solutions g (x) and h (x). Hence we must have the relations









)()()(

)()()(

21

21

xhxgaxh

xhxgaxg




----------------- (12.5)

where 2 and 2, are constants and real functions of energy E. Then

(x + a) = Ag (x+ a) + Bh (x+ a) = (1 A + 1 B) g (x) + (2 A + 2 B) h (x) ------- (12.6)

Now (x + a) can always be expressed in the form

(x + a) =  (x) =  Ag (x) +  Bh (x) -------------- (12.7)

Comparing co-efficients of g (x) and h (x) in (12.6) and (12.7) we have









0)(

0)(

22

11

BA

BA




---------------- (12.8)

This system of homogenous equations in A and B has solutions other than A = B = 0 only
if

0
22

11 








or 0)()( 122122
2  
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Now we can easily prove that (12 – 21) = 1. Thus we have

2 – (1 + 2)  + 1 = 0 ----------------- (12.9)

The solution of this quadratic equation in  serves to determine the two possible values of

 for which Equation (12.7) is true. Hence there are two functions 1 (x) and 2 (x)

which exhibit the property (12.7). Hence we consider two cases.

(1) For energy ranges in which (1 + 2)
2 < 4

The two roots 1, 2 of equation (12.9) will be complex and since 12 = 1, they will

be conjugates. In those regions of energy we may write

and









 ai

ai

e

e
k

k

2

1




--------------- (12.10)

The corresponding functions 1(x) and 2 (x) then have the property

)()( 11 xeax ai  k and )()( 22 xeax ai  k and thus are Bloch functions. We can

also prove this starting with g (x), h (x) as given below;

Since g (x) and h (x) are real solutions of (12.1) we have

 

  0)()(
2)(

0)()(
2)(

22

2

22

2





xhxVE
m

dx

xhd

xgxVE
m

dx

xgd





multiplying former by h (x) and latter by g (x) and subtracting we have

constant.
)(

)(
)(

)()(Wor

0
)(

)(
)(

)(
2

2

2

2





dx

xdh
xg

dx

xdg
xhx

dx

xhd
xg

dx

xgd
xh

This is known as Green’s identity. R.H.S. of this equation is called Wronskian, W(x) of

the two solutions and is constant in this case. Further, from equation (12.5) we have

1or

)()()(or

.
)(

)(
)(

)()(
)(

)(
)(

)(

1221

221

1221



























xWaxW

dx

xdh
xg

dx

xdg
xh

dx

axhd
axg

dx

axgd
axh










 )()(and

)()(

22
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xeax

xeax
ai

ai




k

k

--------------- (12.11)
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Such functions are called Bloch functions. The functions are written in the form

)()( xUex xi
k k

k ----------------- (12.11a)

where Uk(x) is a periodic function of period ‘a’. Thus the solutions of Schrodinger wave

equation in this region can be expressed in the form of Bloch function

(2) For energy range in which (1 + 2)
2 > 4

In this case the two roots 1 and 2 are real. The solutions of Schrodinger equation are of

the type










 )()(and

)()(
x

2

1

xUex

xUex x








--------------- (12.12)

where  is a real quantity. Although such solutions are mathematically sound, they can

not in general be accepted as wave functions describing electrons; since they are not

bounded. Thus there are no electronic states in the energy region corresponding to real

roots 1 and 2. The above discussion thus leads also to the notion that the energy

spectrum of an electron in a periodic potential consists of allowed and forbidden energy

regions or bands.

In three dimensions the Bloch theorem becomes

k (r) = eik r Uk (r) --------------- (12.13)

The wave vector, k used to label the Bloch functions has the properties

(a) Under a crystal translation which carries r to r + T we have

k (r + T) = eik T eik r Uk (r + T) = eik Tk (r) ---------------- (12.14)

because Uk (r + T) = Uk (r). Thus eik T is the phase factor by which a Bloch function is

multiplied when we make a crystal lattice translation T.

(b) If the lattice potential vanishes Uk (r) is constant. We must have

k (r) = eik r

as for a free electron.

(c) The value of k enters into conservation laws for collision processes of electrons in

crystals. For this reason ћk is called the crystal momentum of the electron. When an

electron k collides with phonon of wave vector. kf, the selection rule is

k + kf = k+G
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If the phonon is absorbed in the collision the electron has been scattered from a state k to

a state k and G is any reciprocal lattice vector.

12.4 Kronig-Penney model: Wave Mechanical Interpretation of Energy

Bands:

In view of the discrete energy levels scheme of isolated atoms, it is unlikely

possibilities that the energy bands would be infinitely continuous. This is really the case.

In general, there is a region of forbidden energies between the two successive bands.

However the bands overlap in some cases. Energy band is almost centered around its

parent level, the N fold degenerate level in an isolated atom of a crystal composed of N

atoms. Kronig and Penney (1930) demonstrated that regions of forbidden energies

intervene the regions of allowed energies. They accomplished this task using a one

dimensional square well crystal potential depicted in fig 12.3.

The period of potential is (a + b) in region such as o < x < a, the potential energy is

assumed to be zero and in regions such as – b < x < a the potential energy is V0. For such

an array of periodic square potentials the exact solution of Schrodinger equations is

possible. Although the potential represented by fig12.3 is some what idealized periodic

potential which is only a crude approximation to that found in the actual crystal, it is very

useful because it serves to illustrate in a most explicit way many of other important

characteristic features of the quantum behaviour of electrons in periodic lattice.

The wave function associated with this model may be calculated in the one-electron

approximation by solving Schrodinger equation,

  0)()(
2)(

22

2





xxVE

m

x

x





--------------- (12.15)

a+b
(unit cell)

u2(x) u1(x)

V(x)

–V0

a b

x

Fig 12.3 Ideal periodic square well potential well used by Kronig and Penney to illustrate
the general characteristics of the quantum behaviour of electrons in periodic lattices.
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Since the potential is periodic, the wave function must have the Bloch form and we have

(x) = eik x U(x) --------------- (12.16)

Substituting (12.16) in (12.15) and putting ,
2

2/1

2











mE
 It is found that the function

U(x) must satisfy

0)(
)(2

2
2

22

2

2










 xU
xmV

k
dx

dU
ik

dx

Ud


 ------------------ (12.17)

If U1(x) and U2 (x) represent the values of U(x) in the two regions of potential function

i.e. in the intervals (0 < x < a) and (- b < x < 0) respectively, we have

)0(0)(2 1
221

2

1
2

axUk
dx

dU
ik

dx

Ud
  ------------------ (12.18)

)0(0)(2 2
222

2

1
2

 xbUk
dx

dU
ik

dx

Ud
 ------------------ (12.19)

where

2/1

2

0 )(2







 




VEm
 and is purely imaginary quantity for 0 < E < V0. The

solutions of the differential equations (12.18) and (12.19) are

U1 = Aei (  k)x +Bei ( +k)x (0 < x < a) --------------- (12.20)

U2 = Cei (  k)x +Dei ( +k)x (b < x < 0) --------------- (12.21)

where A, B, C, D are constants. The continuity of the wave function  and its derivative

at x = a and x = b and remembering that U(x) has the periodicity of the lattice demands

that the wave function U(x) satisfies the boundary condition
























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





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











 bxaxxx dx

dU

dx

dU

dx

dU

dx

dU

bUaUUU

21

0

2

0

1

2121

,

)()()0()0(

---------------- (12.22)

Using boundary conditions (12.22) we find that

A + B = C + D

( –k)A ( +k)B = ( –k)C ( +k)D

Aei (  k) a +Bei ( +k) a = Cei (  k) b + Dei ( +k) b

( –k) Aei (  k) a ( +k) Bei ( +k) a - -------------- (12.23)

=( –k) Cei (  k) b  i( +k)Dei ( +k) b

The coefficients A, B, C and D can thus be determined and the wave function can be

calculated. For our purpose we are more interested in determining the values of energy
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for which satisfactory solutions are obtained. The equations (12.23) have non-vanishing

solutions if and only the determinant of coefficients vanishes. This requires that

0

)()()()(

)()(

1111

)()()()(

)()()()(



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



bkibkiakiaki

bkibkiakiaki

ekekekek

eeee
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







Expanding the determinant, it can be shown that this leads to the following conditions.





2

22 
 sin a sin b + cos a cos b = cos k(a + b) ---------------- (12.24)

Since in the range 0<E< V0, as defined earlier is imaginary, for these values of energy it

is most convenient to express  = i

in this region, and noting that cos ix = cosh x and sin ix = i sinh x, equation (12.24) can be

written as





2

22 
sinh b sin a + cosh b cos a = cos k (a + b) --------------- (12.25)

where  is a real quantity in the interval 0 < E < V0 just as  is in the interval V0 < E < .

Thus we may use (12.24) most conveniently when V0 < E <  and (12.25) when 0 < E <

V0.

The wave function (12.16) must, like all wave functions, be a well behaved function

as x approaches . Since U(x) is a periodic function whose values are the same in each

unit cell, no difficulty arises on its account provided that the factor eikx in (12.16) is well

behaved under these conditions. But eikx is well behaved at both + and  only if k is

real, whereby eikx is oscillatory. If k were imaginary eikx would diverge to infinity either at

+ or  and resulting expression for (x) would not behave properly as a wave

function. We must, therefore accept only functions of the form (12.16) with real values

of k. The expressions (12.24) and (12.25) have on left hand side a function of the form

k1sin a + k2 cos a which must the equal to cos (a + b)k. If for a given value of energy,

the function on the left hand side of these equations should have a value in the range

between +1 and –1, there the required value for cos (a + b)k is obtained with a real value

of k(a + b). On the other hand, if the value of the function on the left hand side of (12.24)

and (12.25) should be outside that range, it would mean that, cos (a + b) k would have to
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be greater than +1 or less than –1 which would in turn, requires that, argument k(a+b) be

complex number with imaginary part other than zero. Under these circumstances the

solution (12.16) would not behave properly at infinity and would not satisfy the physical

requirement for wave functions of the system. The energies associated with such values

of k would simply be forbidden to the electron.

The equations (12.24) and (12.25) can be written as

)(cos)cos(sin
4

)(
1

2/1

2

22

22

bakab 






 
 




------------- (12.26)

where tan )(tan
2

0

22
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

 EVb




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)(cos)cos(sin
4
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1
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





 
 




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where tan )0(tan
2

0

22

VEbh 


 





From these expressions it is clear that in both cases the left hand side has the form of

cosine function times a modulating factor whose amplitude is invariably greater than

unity. The value of this modulation factor is actually maximum for  = 0 (hence for E =

0) and approaches unity in the limit of large energies ; where    .

When left hand side of (12.26) and (12.27) are plotted as a function of energy keeping

in mind that 2 2 = 2 + 2 = 2mV0/ћ
2 = constant, the results are as illustrated in fig

(12.4). When the ordinate of the curve lies between +1 and –1, there exists a real value

of k corresponding to physically possible wave functions.

Out side of these limits however k must be complex with a non zero imaginary part.

Such values of k can never lead to physically well-behaved wave functions; the

corresponding ranges of energy are forbidden and are shown in fig12.4, as shaded

regions. There are thus formed alternate regions of allowed energy eigen values and

forbidden regions. These regions are usually referred to as allowed and forbidden energy

bands, and the grouping of the permitted energy values into these bands is one of the

most important characteristic feature of the behaviour of electrons in periodic lattice. It

can be shown that energy bands having the same qualitative aspects as those shown in fig
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12.4 are formed no matter what the form of the potential is, so long as it is periodic.

From the fig 12.4 the following conclusions may be drawn.

1. The energy spectrum of electrons consists of a number of allowed energy bands,

separated by forbidden regions.

2. The width of the allowed energy bands increases with increasing values of

energy.

3. The width of a particular allowed band decrease with increasing binding energy

V0. In extreme case with V0   the allowed regions become infinity narrow and

the energy spectrum becomes a line spectrum.

These conclusions can be appreciated much more easily by rewriting the equation 12.25

with the condition that even though as V0   and b approaches zero the product V0b

remains finite. Under these circumstances (12.25) reduces to

kaxaabmV coscossin)/( 2
0 

Let us now define the quantity
2

0 / bamVP 

which is evidently a measure for the “area” V0b of the potential barrier. In other words,

increasing P has the physical meaning of binding a given electron more strongly to a

particular potential well. From the last two equations we find that solutions for the wave

functions exist only if

kaa
a

a
P coscos

sin
 




---------12.25a

the above conclusions are summarized in fig 12.4a.

0

–1

+1

/a+b

f(E)

2/a+b

 3/a+b

4/a+b
k=0

Fig 12.4 A plot of the functions on the left hand side of (12.26) and (12.27) versus
energy. The shaded regions show forbidden energy bands where the value of k is
complex, the unshared regions allowed energy bands corresponding to real value of k.
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where the energy spectrum is given as function of P. For P = 0, we simply have the free

electron model and the energy spectrum is (quasi) continuous; for P = , a line spectrum

results as discussed under (3) above. For a given value of P the position and width of the

allowed and forbidden bands are obtained by erecting a vertical line; the shaded areas

correspond to allowed bands.

Using (12.26) and (12.27) and the value of  = (2mE/ћ2)1/2 and

2/1

2

0 )(2







 




VEm
 it is

possible to plot a curve showing the energy E as a function of k. The result is shown in

fig12.5. The dotted curve is for large energies for which the function E (k) approaches

the free electron relation

m

k
E

2

22


4. The discontinuities in E versus k curve occur for

ba

n
k





, n = 1, 2, 3, 4………

There k- values define the boundaries of 1st, 2nd, 3rd etc. Brillouin zones. The first zone

extends from
ba 


to +

ba 


. Similarly the second zone consists of two parts, one

extending from
ba 


to

ba 

2
and the other part extending between

ba 


to

ba 

 2
.

0 01

E

P/4 4/P

Fig 12.4a Allowed and forbidden energy ranges (shaded and open respectively) as function
of P. The extreme left corresponds to P = 0(free electrons). The extreme right to P = 
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5. With in a given energy band the energy is a periodic function of k. For example, if one

replaces k by k+
ba

n



2
, where n is an integer, the right hand side of equation (12.26) and

(12.27) remains the same. In other words k is not uniquely determined. It is therefore

frequently convenient to introduce the “reduced wave vector” which is limited to the

region

–
ba 


 k 

ba 



The energy versus reduced wave vector is represented in fig 12.6

0

E(k)

k(E0) k(E0)

 Free Particles

m

k
E

2

2


ba

4



 

ba

4





ba

3



 

ba

2



 

ba 



ba

3





ba

2





ba 



Fig 12.5 The energy E plotted as a function of k according to 12.26 and 12.27.

E(k)

k
0

ba 



ba 



Fig 12.6 Schematic representation of the E versus a plot of figure 12.5, transformed
to the reduced zone representation.
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6. The number of possible wave functions per band can easily be shown to be equal to the

number of unit cells N. Now as a result of spin of the electrons and the Pauli’s exclusion

principle each wave function can be occupied by at most two electrons. Thus each energy band

provides for a maximum number of electrons equals to twice the number of unit cells. In other

words, if there are 2N electrons in a band, the band is completely filled.

This conclusion as we shall see has far reaching consequences for the distinction between

metals, insulators and semi conductors.

Properties of Bloch functions:

It has the form of a traveling plane wave, as represented by the factor eik.r, which implies that the

electron propagates through the crystal like a free particle. The effect of the function uk(r) is to

modulate this wave so that the amplitude oscillates periodically from one cell to the next, as but

this does not affect the basic character of the state function, which is that of a traveling wave.

Because the electron behaves as a wave of vector k, it has a deBroglie wavelength

 = 2/k , and hence a momentum p = ћk, according to the deBroglie relation. We shall call the

vector the crystal momentum of the electron.

The Bloch function of k is a crystal orbital, as it is delocalized throughout the solid, and not

localized around any particular atom. Thus the electron is shared by the whole crystal.

The free electron and Bloch function electrons are not identical in their behaviour. The Bloch

function of electron exhibits in many intriguing properties not shared by a free electron,

properties which result from the interaction of the electron with the lattice.

12.5 Velocity of the Bloch electrons and the dynamical effective mass:

For convenience in visualizing the motion of Bloch electrons in solids we shall have

to localize the wave function by superposing the solutions having different values of k.

If this is done, then the group velocity associated with electron wave packet is

dk

dE

dk

d
vg



1



----------------- (12.28)

Where of course E and  are connected by Planck relation E = ћ. This in itself shows

the importance of E versus k curves. In the case of free electrons
m

k
E

2

22
 and (12.28)
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simply leads to the identity .
m

P

m

k
v 


In the band theory, however E is in general not

proportional to k2 as may be seen from fig (12.6). Employing an E(k) curve such as

represented in fig 12.7(a) one obtains according to (12.28) for the velocity as a function

of k, a curve of the type illustrated in fig 12.7(b). For the free electron v is proportional

to k and is represented by dashed line in 12.7(b). At the top and bottom of the energy

band v = 0, because from periodicity of the E(k) curves it follows that dE/dk = 0, the

absolute value of the velocity reaches a maximum for k = k0 where k0 corresponds to the

inflection point of the E(k) curve. It is of importance to note that beyond this point the

velocity decreases with increasing energy; a feature which altogether different from the

behaviour of free electrons.

Suppose that the electron is acted upon by an external electric field E0 acquiring an

increase in velocity dv0, over a distance dx in time dt, it has gained an energy

dt
dk

dEeE
dtveEdxeEdk

dk

dE
dE


0

000 

where by

dt
eE

dk


0

or FeE
dt

dp

dt

dk
 0 ----------------- (12.29)

Where we now use the symbol p to denote the crystal momentum. The equation (12.29)

shows that the ratio of change of k is proportional to and lies in the same direction as the force F.

This relation is a very important one in the dynamics of Bloch electrons and is known as

acceleration theorem.

Let us know consider consequence of the acceleration theorem. Considering the one-

dimensional case, equation (12.29) can be written in the form



F

dt

dk


showing that the wave vector k increases uniformly with time. Thus as t increases, the

electron traverses the k-space at uniform rate as shown in fig 12.8. If we choose the

repeated zone scheme, the electron starting from k = 0 for example moves up the band

until it reaches the top (point A) and then starts to descend along the path BC.



ACHARYA NAGARJUNA UNIVERSITY 17 CENTER FOR DISTANCE EDUCATION

If we use the reduced zone scheme then once the electron passes the zone edge at A, it

immediately reappears at the equivalent point A, then continues to descend along the path A B

C. Recalling the translational symmetry property the points B, C are respectively equivalent to

the points B, C so that we may use either of the

schemes.

In the presence of electric field, the electron is in constant motion in k-space and never

it is at rest. Fig (12.8) shows the velocity of electron as it traverses the k-axis. Starting at

k = 0, as time passes the velocity increases, reaches maximum, decreases and then

vanishes at the zone edge. The electron then turns round and acquires a negative velocity

and so forth. The velocity we are discussing is the velocity in real space i.e. the usual

physical velocity. It follows that a Bloch electron, in the presence of static electric field,

executes an oscillatory periodic motion in real space, very much unlike a free electron.

This is one of the surprising conclusions of electron dynamics in crystal.

If one differentiates (12.28) with respect to time, the result is

dt

dk

dk

Ed

dk

dE

dt

d

dt

dvg

2

211













A
B 

C 
B
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C

k
0

E

E0

Electron

a



(a)

a



a



(b)

0 k

v

Fig 12.8 (a) The motion of an
electron in k-space in the
presence of an electric field
(directed to the left) (b) The
corresponding velocity.

Fig 12.7 (a) The band structures, and (b)
the corresponding electron velocity in a
one dimensional lattice. The dashed line
in (b) represents the free electron
velocity.
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a



(b)

a



m

k
0

Fig 12.9 (a) The band structure and (b) the effective mass m* versus k.
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By using (12.29) this can be written as

*2

2

2

00

m

F

dk

EdeE

dt

dv



----------------- (12.30)

Where the effective mass m* is given by

2

2

2

*

dk

Ed
m


 ------------------ (12.31)

Thus, in so far as the motion in an electric field is concerned, the Bloch electron behaves like a

free electron whose effective mass is given by (12.31). The mass m* is inversely proportional to

the curvature of the band, where the curvature is large that is d2E/dk2 is large-the mass is small, a

small curvature implies a large mass. Thus if the energy is quadratic in k

E = k2 ------------------- (12.32)
Where  is a constant, then equation (12.32) yields

2
*

2
m

Which is equivalent to
*2

22

m

k
E


 .

Figure 12.9(a) and (b) shows respectively the band structure and the effective mass m*, the

latter calculated according to (12.31). Near the bottom of the band the effective mass m* has a

constant value which is positive, because quadratic relation (12.32) is satisfied near the bottom of

the band. But as k increases, m* is no longer a strict constant being now a function of k, because

the quadratic relation is no longer valid.

Beyond the inflection k0 the mass m* becomes negative since the region is now close to the top

of the band, and a negative mass is to be expected. The negative mass can be seen dynamically

by noting that the velocity decreases for k > k0. Thus acceleration is negative i.e. opposite to the

applied force, implying a negative mass. This means that in this region of k-space the lattice



ACHARYA NAGARJUNA UNIVERSITY 19 CENTER FOR DISTANCE EDUCATION

exerts such a large retarding force on the electron that it overcomes the applied force and

produces a negative acceleration.

12.6 Crystal Momentum and Origin of the Effective Mass:

What has been said is that Bloch electron in the state k behaves as if it had a momentum ħk.

Basically, there are three different reasons to support this statement.

(1). The Bloch function has the form (12.13).

k = eik. r Uk(r)
which, since Uk is periodic, appears essentially as a plane wave with k a constant of motion and

that ħk will have the dimensions of momentum. As the energy of electron increases (The particle

becomes there by nearly free) the value of k in general approximates that of free-particle

momentum divided by ћ.

(2). When an electric field is applied, the wave vector varies with time according to equation

(12.29)

extF
dt

kd


)(
.

again indicating that ħk acts like a momentum. Here Fex t. refers to the external force applied to

the crystal.

(3). In collision processes involving a Bloch electron the electron contributes a momentum equal

to ħk.

It can easily be seen that these conclusions must hold no matter what particular form periodic

potential takes. It is therefore customary to refer ħk as the crystal momentum and is not equal to

the actual momentum of Bloch electrons. To make the distinction between the actual momentum

of electron (p) and the crystal momentum pc = ħk more clear, we evaluate the average

momentum using quantum mechanical method.

p = <kiħk  ------------------ (12.33)
Where iħ is the momentum operator and k is the Bloch function. On solving this integral

using the properties of the wave function k one finds that

p = m0v
Where m0 is the mass of the free electron and v is the velocity given by (12.28). Thus time

average momentum of electron is equal to the time mass m0 times the actual velocity v. If pc =

ħk were the true momentum, then the force appearing on the right of (12.29) should have been
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the total force and not just the external force, because there is a force exerted by the lattice, yet

this force does not influence pc.

The above idea may now be assembled to give a physical interpretation of the true momentum,

one may write

Lexttot FFF
dt

dvm
0 ------------------- (12.34).

Where Ftot and FL are, respectively, the total force and the lattice force acting on the electron. By

lattice force, we mean the force exerted by the lattice on the electron as a result of its interaction

with the crystal potential. Equation (12.34) can be expressed in terms of the effective mass as

*
00

m

F
m

dt

dv
m ext ,

where m* is given by

Lext

ext

FF

Fm
m


 0* ------------------ (12.35)

Now we see the reason why m* is different from m0, the free mass. If FL were to vanish the

effective mass would be come equal to true mass.

The effective mass may be smaller or larger from than m0, or even negative depending on the

lattice force. Suppose that the electron is “Piled up” primarily near the top of the crystal

potential as shown in figure 12.10a. When an external force is applied it causes the electron to

“roll down hill” along the potential curve.

As a result, a positive force becomes operative and hence, according to (12.35) m* m0. This

is what happens in alkali metals for instance in the conduction band in semi conductors. Here

m* is less than m0 because the lattice force assists the external force.

On the other hand, when electron is filled mainly near the bottom of the potential curve figure

(12.10b) then clearly the lattice force tends to oppose the external force; resulting m*  m0 . This

is the situation in alkali halides. If the potential curve is sufficiently steep, then FL becomes

larger than Fext and m* becomes negative.

Potential

Electron Fext

(a)
Electron(b)

Fext

Potential

Fig 12.10 (a) Electron spatial distribution leading to an effective mass m*
smaller than m0 (b) A distribution leading m* > m0
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However, the crystal momentum Pc = ħk is still a very useful quantity. In problems of

electron dynamics in external field, the crystal momentum is much more useful than true

momentum, since it is easier to follow motion in k-space than in real space. Therefore we shall

continue to use Pc and refer to it as the momentum, when there is no ambiguity and even drop

the subscript c.

In other words, the effective mass m* and the crystal momentum ħk are artifices which allow

us - formally at least- to ignore the lattice force and concentrate on the external force only. This

is very useful, because lattice force is not known a priori, nor is it easily found and manipulated

as is the external force.

12.7 Concept of Hole:

In a one dimensional crystal some of the allowed bands will be entirely filled, some will be

entirely empty and one may be partially filled, because at absolute zero the electrons of the

system will occupy the states, one per state as required by the Pauli’s exclusion principle from

the lowest state up to a given energy determined by the number of available states, their

distribution in energy, and number of electrons in the crystal. This energy is, of course, the

Fermi energy of the crystal at zero temperature. If an electric field is applied, it is obvious that

no current can be contributed from filled bands. This can be understood by nothing that the

current density arises from a given band will be

I =  ne v
where v is the average velocity and n is the number of electrons per unit volume belonging to

that band. But v can be expressed as

i
i

v
nV

v 
1

where the summation is taken over all the velocities associated with individual electrons with in

the volume V of the material. Hence current density I can be expressed as

i
i

v
V

e
I  --------------- (12.36)

This, however, must yield zero when summed over full band, because due to the symmetry of the

curves of figure (12.6) about the E(k) axis, for every state of positive velocity ħ-1 E/k

corresponding to a +ve slope, there is a state corresponding to a negative velocity of equal

magnitude (negative slope) at k = k. We must conclude that only bands which are partially

filled can contribute to current flow. This can be understood on physical grounds by observing
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that in a partially filled band there are always electrons which can be excited gradually to

unoccupied states of higher energy and momentum, where as in a filled band, on a account of

Pauli’s exclusion principle, their gradual field excitation can never occur since all the states are

occupied.

For a band containing a relatively small number of electrons, the current obtained when a

small voltage is impressed is most simply given by (12.36) summed over all the electrons in the

band. If the band is nearly full, however, and there are only a few states (which in equilibrium

state will be concentrated near the top of the band) the current equation (12.36) is best expressed

by writing in the form

k
k

k
k

j
j

i
i

v
V

e
vv

V

e
v

V

e
I 




  ------------------ (12.37)

Here the sum over i represents the sum over all velocity states occupied by electrons, the sum

over j represent the sum over all velocity states in the band and sum over k represents and the

sum over un occupied velocity states. As we have seen before the sum over j, taken over all

states in band, must vanish. The remaining sum over the unoccupied states correspond to a

current which could be produced by a corresponding number of positive charge carriers. It is

possible (and advantageous also) to express the current from almost full band as a current

derived from the motion of a comparatively small number of empty electronic states or holes

which behave like positive particles, rather than a very large number of electrons. The velocity

associated with a hole is that which an electron would have if it were to occupy the empty energy

state, which is ordinarily near the top of the energy band. But since the E versus k relation there

is concave downward, d2E/dk2 is negative, giving a negative electron effective mass from

(12.31). A particle with negative effective mass experiences acceleration in a direction opposite

to that of applied force. A negative charge particle with negative effective mass would thus be

accelerated in the same direction as applied field and would thus exhibit the same dynamical

behaviour as a positive particle of positive mass. We may, thus, regard the situation in a nearly

filled band as one involving a relatively small number of positive particles of positive mass,

which we shall refer to as holes, whose velocities and momenta are those corresponding to the un

occupied electronic states in the band. We shall see later that in certain materials the physical

nature and the dynamical behaviour of holes is very easily visualized in terms of defects in the

electronic valence bonds which connect nearest neighbour atoms and provide the cohesive forces

which hold the crystal together. We have not discussed in detail the behaviour of electrons and
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holes under the influence of magnetic force, but it can be shown that they move as would

negative or positive particles of effective mass m* under the influence of usual magnetic force

).( Hv
c

q

12.8 Easy Limiting Cases of the Periodic Potential:

The periodic potential model led to the formation of allowed and forbidden energy bands

resulting in the energy (E) versus k relation of the form shown in fig 12.5. The resulting

electronic behavior was similar to free electron picture except that an effective mass had to be

viewed as positive holes. We have emphasized these quantitative conclusions, which are

independent of potential function as long as it is periodic.

The potential (fig 12.3) taken was only illustrative and is poorly related to the actual form of

the potential, and consequently these qualitative conclusions are only illustrative. An exact

description of the electronic behavior in a crystal must take into account the actual potential

experienced by electron due to the ion cores and all other electrons in the crystals. This is a very

complicated problem and an exact solution of the problem, even in one electron approximation is

impossible. However two easy limiting approximations:-

(1) Nearly free electron approximation

(2) The light binding approximation

are of considerable interest. When the periodic potential is very weak, we can treat it as a

perturbation and we have the “nearly free electron approximation”. When the periodic potential

is very strong each electron is almost bound to a minimum in the potential and so the rest of the

lattice may be regarded as a perturbation on the above minimum. This is known as “tight binding

approximation”.

It may be remarked that in some solids the former approximation is quite good, while in

others the latter one is more nearly correct. There are also solids where neither is adequate and

the situation being intermediate between these two extreme cases. In this intermediate range we

must use much more complex methods such as, orthogonalised plane wave (OPW) or an

augmented plane wave (APW) method.

12.9 Summary:
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1. The solutions of the wave equation in the periodic lattice are of the Bloch form k(r) =

eik.r Uk(r), where Uk (r) is in variant under a crystal lattice translation.

2. The energy spectrum of the electron is comprised of a set of continuous bands

separated by regions of forbidden region are complex.

3. The number of orbitals in a band is 2N, Where N is the number of unit cells in the

specimen.

4. Regarded as a function of k, the energy E(k) satisfies several symmetry properties. First it

has transitional symmetry properties.

E (k + G) = E (k)
which enables us to restrict our consideration to the first Brillouin Zone only. The

energy function E (k) also has inversion symmetry, E (–k ) = E (k) and

rotational symmetry in k-space.

5. An electron in Bloch state  k moves through the crystal with a velocity

)(
1

kEv m


This velocity remains constant so long as the lattice remains perfectly periodic.

6. In the presence of an electronic field, an electron moves in k space according to the

relation

k = – eE0/h
The motion is uniform and its rate proportional to the field. One obtains this

relation if one regards the electron as having momentum ħk.

7. The effective mass of Bloch electron is given by

m =ħ2/(d2E/dk2)
The mass is positive near the bottom of the band, where the curvature is positive. But near

the top, where the band curvature is negative, the effective mass is also negative. The fact

that the effective mass is different from free mass is due to the effect of lattice force on the

electron.

8. A hole exists in a band, which is completely full, with one vacant site. The hole

acts as a positive particle of positive charge +e.

12.10 Key Words:

Positive and negative hall coefficient – The Bloch Theorem – Periodic crystal potential – Energy

gaps or band gaps – Kronig – Penney model – Dynamical effective mass m* – k-space.
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12.11 Review Questions:

1. Investigate the motion of electrons in a periodic field discuss the electronic energy

levels in a crystal

2. Prove that effective mass of an electrons in energy band is given by

jiij kk

E

m 











2

2

1

*

1



3. Distinguish between extended zone, reduced zone and periodic zone scheme of

plotting energy bands. Derive an expression for the effective mass m* of the

electron in a crystal and explain the physical basis of m*

4. Discuss the essential features of the electron energy band structure on the basis of

Kronig-Penney model.

5. (a) Prove the Bloch theorem and explain the reduced zone scheme.

(b) Explain the significance of the effective mass of the electrons.

12.12 Text and Reference Books:

1. Elements of Solid State Physics by J.P .Srivatsava(PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C. Kittel (Asia Publishing House)
6. Solid State Physics by S.L. Kakani and C. Hemrajani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)
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UNIT – IV LESSON: 13

BAND THEORY OF SEMICONDUCTORS

Aim: To know about energy bands, free electrons model and zone schemes for energy

bands, free electrons model and zone schemes for energy band.

Objective of the lesson:

 To know about the nearly free electrons model and to show that the band gap

energy is equal to twice the magnitude of the leading Fourier coefficient of the

crystal potential is to show E = 2V.

 To identify the three different zone schemes for energy bands i.e. the extended

zone scheme, the reduced zone scheme and the periodic zone scheme.

 To know the energy bands in a general periodic potential and to find solution

near the boundary.

 To distinguish in between insulators, semi conductors and metals.

 To consider the tight binding approximation and to show m =
2

2

2ra


, where

m is the effective mass of the electron, a is the lattice constant, r is the overlap

of atomic orbitals.

 To consider the Wigner – Seitz cellular method and to show
m

k
k

2

22

0


 

and also to show about estimation of cohesive energy.

 To depict qualitative method of band structure of calculation.

Structure Of The Lesson:

13.1 Nearly free electron model.

13.2 Zones shemes for energy bands.

13.3 Energy bands in a general periodic potential.

13.3.1 Solution near the zone boundary.
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13.4 Insulators, semi conductors and metals .

13.5 The Tight – Binding Approximation.

13.6 The Wigner – Seitz cellular method.

13.6.1 Estimation of cohesive energy .

13.7 Methods of band structure calculation in use: A qualitative view.

13.8 Summary.

13.9 Key words.

13.10 Review questions.

13.11 Text and reference books.

Introduction:

In lesson 12, we considered the consequences of the periodicity of crystalline lattice.

There we observed that the potential energy function is a periodic function satisfying

V( r ) = V(r + tn) ------------ (13.1a)

Where tn is an arbitrary translation vector in the direct crystal lattice.

Being periodic in the crystal lattice, the potential V( r ) may be expanded in a Fourier

series and expressed as


g

rig
g eVrV .)( ------------ (13.1b)

where g denotes a reciprocal lattice vector.

To find an appropriate solution to the following one electron time independent

Schrodinger equation.

)()(
2

2

)( )(
2

rrr r 







 V

m
H


----------------- (13.1c)

we can try the plane wave expansion

(r) = rk
k

k

 ieC

solution and obtained

0
2

22









 gCVC

m

k
kg

g
k


----------------- (13.1d)
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E

k

a

4


a

4

a

2


a

2

a

2
g 

Fig 13.1: Periodic occurrence of the parabolic energy curves of a free electron in
one-dimensional reciprocal space. The periodicity in the real space is ‘a’. The
electron is supposed to be placed in a periodic lattice with a vanishing potential.

when subject to Born-von Karman periodic boundary condition, the number of allowed k

values for the electrons waves will be equal to the number of unit cells, say N

the wave function with eigen value k may be written as

rkrgk
gk

g
rr 

  i
k

i
k eueC )()( )( --------------- (13.1e)

with rg
gk

g
r 

 i
k eCu )( --------------- (13.1f)

From (13.1e) we infer that uk(r) modulates the plane wave eik.r to a form that serves as a

solution to the wave equation (13.1c) for single electron state k it is essentially the

statement of Bloch function k(r) which is written as

k(r) = uk(r) eik.r -------------- (13.1g)

we note that uk(r) is periodic in the direct crystal lattice. That is,

uk(r + tn) = uk(r) -------------- (13.1h)

In lesson 12 we applied Kronig penney model to obtained band structure in one

dimension solids. Which was rather a crude approximation. The practical situation in

this lesson we try to remove some approximation by using more appropriate models.

13.1 Nearly free electron model:

The energy bands of solids have generally complex structures. Therefore, it would be

appropriate to study the influence of a crystal potential on electron in a certain limiting

case and then extend the ideas to a general situation. Let us assume that the crystal

potential grows slowly from zero value. In the limit of a vanishingly small potential, the

Fourier coefficients Vg may be equated to zero in the first approximation. The

descriptions of free electron states as given by the energy parabola (fig 13.1) is bound to

alter in view of equation (13.1i).

kgk   --------------- (13.1(i))
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The allowed energy states are no more confined to a single parabola in the k-space. The

states are represented by other parabolae as well, that are displaced by any reciprocal

lattice vector g.

2
2

2
gk

m
gkk  


 --------------- (13.2)

On the ground of simplicity, the parabolae for one-dimensional crystal are drawn in

fig (13.1). The periodicity in real space is ‘a’ and in the k-space it is given by the

reciprocal lattice vector 









a
g

2
n ; n being an integer. At zone boundaries the energy

values are degenerate as two parabolae intersect here. The first zone boundaries occur at

k = 
2

1
g = 

a


. Therefore the electron wave function with these k-values must be

represented by a superposition of at least two plane waves which for a small potential

may be taken as





































2
exp

2

1
expand;

2
exp

x
gxgg

x
g iii ------------- (13.3)

The waves move in opposite directions.

But here, the reciprocal lattice vectors larger than
a

2
should also be considered. The

value of Ck as determined from (13.1d) is appreciably large when k and k+g both

approach the value 








m

k

2

22
. In this, the absolute magnitude of Ck – g is approximately

equal to that of Ck. The two plane waves (13.3) at the first zone boundaries ideally

correspond to this condition. Hence other reciprocal vectors can be ignored in the

approximation for the construction of wave functions at the zone boundary. The wave

functions may be expressed as

(+) ~ eig  x/2 + eig  x/2 ~ cos
a

x
------------- (13.4)

() ~ eig  x/2  eig  x/2 ~ sin
a

x
------------- (13.5)

These standing waves appear as a result of Bragg reflection occurring
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at k =  g/2 =  a. The electron plane waves when Bragg reflected superpose the

waves moving towards the same zone edge where the former suffered Bragg reflection.

The probability densities of the two sets of standing waves are

*
(+)(+) = |(+)|

2 ~ cos2

a

x
---------------- (13.6)

*
()() = |()|

2 ~ sin2

a

x
--------------- (13.7)

The electron potential energy in one-dimensional crystal is shown in fig 13.2

The potential field belongs to the positive ion cores whose valance electrons move in

this field. The figure also depicts the probability distributions of the standing waves and

the simple plane waves. The plane waves exp (ikx) have the same probability density at

all points since exp (-ikx). exp (ikx) = 1. The distribution for (+) favours the piling of

; probability energy

Plane wave

a

x

(b)

|()|2
|(+)|2

Fig 13.2 (a) Qualitative form of the electron potential energy V(x) in a one-
dimensional crystal lattice. Dark circles denote the positions of the positive ion
cores. (b) Distribution of probability density for the standing waves () and the
plane wave inside the crystal lattice.

V(x), potential energy

Ion core
a

x

(a)
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electronic charge exactly above the ion cores. On the other hand the (-) waves push the

electronic charge away from the iron cores. The eigenvalues of (+) and (-) differ,

though both correspond to the same k-value 









a
or

a


. The energy dispersion curve

which is continuous throughout the zone shows a gap with two unequal roots at the zone

boundaries (fig 13.3). This explains the origin of the band gaps observed in the energy

band structure.

The Eigenvalue of (+) is lower in energy since the maxima of its probability density

occurs at the points of minimum potential energy. The plane wave energy at the zone

edges is centred between the two eigenvalues  (+) and  (-) corresponding (+) and (-) in

that order. Now, we are in a position to make an approximate measure of the band gap.

The Fourier expansion of a one-dimensional crystal potential has the form

).exp()( xgg
g

iVxV  --------------- (13.8)

Appreciating that the potential energy function is real, one can rewrite (13.8)

considering only the shortest reciprocal lattice vector as

a

x
VxV

2
cos2)(


 --------------- (13.9)

with V = |Vg| = |V-g|.

k0



2

2|V|

1

a

2


a

2

a


a




a

2
g 

Fig 13.3 Discontinuity in the energy parabola of the free electron at the
edges (k = /a) of the first Brillouin zone in a one-dimensional lattice.
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Since the magnitude of Vg is known to decrease as g increases, for an approximate

calculation one can ignore the contribution from the larger reciprocal vectors.

Using the first order perturbation theory, the band gap is written by

 dx
a

x
VE

2
cos2 )(

*
)()(

*
)()()(   


 --------------- (13.10)

Normalizing the wave function at k =
a


 over the crystal’s length L, one can have





































a

x

L

a

x

L





sin
2

~

cos
2

~

2/1

)(

2/1

)(

--------------- (13.11)

Using(13.11) one can have from (13.10)

 









L

dxx
aL

V
E

0

4
cos1

2 

or
E = 2V --------------- (13.12)

Thus, the band gap is equal to twice the magnitude of the leading Fourier coefficient of

the crystal potential. The range of allowed energy states covered by the dispersion curve

Fig (13.3) in the first Brillowin zone constitutes the first energy band. Similarly, the

higher bands are identified with respective dispersion curves in other zones.

13.2 Zone Schemes For Energy Bands:

There are 3 schemes in which the energy bands are drawn.

1. The extended zone scheme. 2. The reduced zone scheme. 3.The periodic zone scheme

The Extended Zone Scheme

In this scheme different energy bands are drawn in different zones in the k space.

The first band is shown in the first zone (/a  k  /a) and the next higher in the second

zone (/a  k  2/a and 2/a  k  /a), and so on.

The Reduced Zone Scheme

All energy bands are shown in the first Brillouin zone in this scheme. As an example,

the free electron parabola is shown in this scheme by fig13.4. The curves in the two
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segments of the second zone are translated to the first zone by reciprocal vectors 2/a and

2/a, separately. Similarly the energy pictures in other zones are translated to the first

zone by appropriate reciprocal lattice vectors.

The Periodic Zone Scheme:

Every band is drawn in every zone in two schemes. The first three energy bands of a

linear crystal as drawn in the three schemes are shown figure 13.5 for the purpose

comparison.

Extended zone
scheme

Reduced zone scheme

Periodic zone scheme

k

k

k

k

0
Fig 13.5 First three energy bands of a one-dimensional crystal in the extended,
reduced and periodic zone schemes.

a




a



First Brillouin zone

k

C

k

A A

Fig 13.4 The free electron energy parabola plotted in the reduced zone scheme for a
one-dimensional lattice. The curve AC, when translated by –2/a, reproduces the
usual free electron curve for the negative k-values represented by the dashed curve.
Similarly, the translation of AC by 2/a will give the curve for the positive k-values.
This often gives a useful description of the band structure of a crystal.
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13.3 Energy Bands in a general Periodic Potential:

The wave equation









 )(

2
2

)( )(
2

rr r V
m

H


--------------- (13.13)

in principle can be replaced by

0
2

22









 gCVC

m

k
kg

g
k


--------------- (13.14)

with out any loss of generality. Hence, the process of treating a general periodic potential

in continuum with (13.14) can be written as

0)(  gCVC kg
g

kk  --------------- (13.15)

with

m

k

2

22
k --------------- (13.16)

Equation (13.15) is called the central equation. It represents a set of simultaneous linear

equations that couple the coefficients Ck – g for all reciprocal lattice vectors. The number

of these equations equals the number of reciprocal lattice vectors. The equations are

consistent if the determinant of the coefficients of Cs vanishes. Considering only one

Fourier component Vg, we write three consecutive equations which yield the following

determinant

)(0

)(

0)(

















gk

k

gk

V

VV

V

--------------- (13.16a)

with

|Vg| = |V– g| = V.

It is a small portion of a huge determinant that is evolved from the set (13.15). By

equating (13.16a) to zero and solving for  we get three roots that fall in three different

energy bands at a certain value of k. The size of the determinant is chosen according to

the extent of the energy spectrum that is required. But the size factor is no more a

consideration now, with the availability of fast computers.
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On choosing k that differs from a value in the first Brillouin zone by a reciprocal lattice

vector, there occurs no change in the energy spectrum as the same set of equations in a

different order appear giving the same roots of energy. Therefore, very often the k-values

within the first zone alone are considered.

Roots that refer to a wave vector k are designed as nk with n = 1, 2, 3… for the first,

second, third…. Bands, respectively, forming the energy spectrum whose different levels

belong to different energy bands. The roots nk are evaluated by varying k over the

allowed set of values. These when arranged on an energy scale produce the fall band

structure. The pictures in the three dimensional space are fairly complex. On the account

of k being direction dependent, the band structure in general appear differently in

different directions.

13.3.1 Solution near the Zone Boundary:

It is important to study the solution of the central equation near the zone boundary

because of the large deviations in the behavior of free electrons in this region. According

to (13.15) if Ck-g is an important coefficient then Ck is equally important.

In the two-component approximation, the electron wave functions is taken as

  Ck exp (ik  x) + Ck-g exp [(i(k . g))  x] -------------- (13.17)

The two equations coupling Ck and Ck-g are obtained from the central equation (13.15),

we have a solution if

0
)(

)(






 



gk

k

V

V

with

2
2

||
2

gk
m

gk 




Solving it for  , we obtain
2/1

22)(
4

1
)(

2

1
)( 





  Vk kgkkgk  -------------- (13.18)

The roots k () when plotted as a function of wavevector give dispersion curves for

the first two energy bands as shown in fig 13.6.
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The corresponding roots at the zone boundary [k=
2

1
g] may be written as

() =   V --------------- (13.19)
where

22

2

1

2








 g

m


 --------------- (13.20)

The  is the free electron energy at the zone boundary. We find that the band gap

obtained from (13.19) is identical with the one given by (13.12). It is instructive however

to express the roots near the zone boundary in terms of the wave vector k
~

as measured

from the zone boundary. The k and k
~

one related by

gkk
2

1~
 ----------------- (13.21)

Using (13.21), (13.18) can be expressed as











Vm

k
k




2
1

2
)()(

22

~


----------------- (13.22)

Thus in this definition of the wave vector, the dependence of energy on wave vector is

similar to that for the free electrons. When V is negative, )(~ 
k

 corresponds to the upper

band.

13.4 Insulators Semiconductors and Metals:

The Electronic transport in solids is found to be closely controlled by their band

structures. With the knowledge of the band structure it is possible to predict whether a

Zone boundary

Free electron

Second band

First band

k  (½ g1)




Fig 13.6 Qualitative form of solutions of (13.18) in the periodic zone scheme
near the boundary of the first Brillouin zone. The free electron curve is drawn
for comparison.
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solid is good conductor of electricity. By basing on qualitative difference in the band

structure we distinguish between Insulator, semiconductor and metals.

We know that the number of energy states in a band is equal to the number of

primitive cells (say N) in the crystal. Since each state can accommodate two electrons of

opposite spins a number of (2N) electrons would be required to fill the band completely.

Therefore if a primitive cell contributed an even number of electrons to a band, the band

would be completely filled. For example, in a monoatomic crystal in which each atom

has one valance electron, the band would be fully occupied if there are two atoms in the

primitive cell. With two valence electrons per atom, only one atom in the cell will fill the

band completely. Solids in which one or more bands are completely filled and all others

are empty, behave as insulators at 0 K. The lowest allowed empty band is preceded by a

region of forbidden energy gap, across which electrons need be excited for electric

conductions. Since the usually applied electric field are not large enough to provide to

this excitation, the material behaves as an insulator. When the energy gap is in the range

of an eV, the material shows a conductivity intermediate to values of insulator and metals

and the material is classified as a semiconductor. The difference between insulator and

semiconductors is one of degree and not of type.

On the other hand if the number of valence electrons per primitive cell in an odd

number, the top most occupied band is only partially filled. Such a material shows the

flow of current on the application of an electric field. These solids are thus good

F

E
n

er
g

y

0 k  /a
(a)

E
n

er
g

y

0 k  /a
(b)

E
n

er
g

y

F

0 k  /a
(c)

Fig 13.7 Qualitative band schemes for insulators and metals: (a) insulators – the
lower band and all below it are completely filled; all higher bands are empty, (b)
metals – a partially occupied band, and (c) metals of relatively low conductivity –
overlap between, a filled band and an empty band.
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conductors of electricity and are called metals. Alkali metals and noble metals are the

best example of this class where one valence electron is contributed by each primitive

cell and the highest occupied band is exactly half filled. Now take up few specific cases

to see how far the actual band structures conform to the above principle.

Sodium: It belongs to the group of alkali metals all having the bcc structure with a

rhombohedral primitive cell that contains effectively one atom. The electronic

configuration of a sodium atom is [1s2 2s2 2p6] 3s1 since there is a correspondence

between the discrete states of an isolated atom and the Brillouin zones in a solid, we

expect that the 10 electrons in the closed inner shells form narrow bands in the sodium

metal occupying the first five zones (1 for each s–shell and 3 for the p–shell) in the

extended zone scheme .the single outermost (3s1) electron produces the half filled band in

the next zone. Accordingly the sodium is metallic and so are other alkali metals.

Magnesium: It is a member of alkaline earth metals all of which have two valence

electron per primitive cell irrespective of the symmetry. The magnesium atom has

electronic configuration [1s1 2s2 2p6] 3s2which would apparently give the insulating

behaviour to the solid magnesium, contrary to the observed metallic character. The

metallic character arises because of the overlapping of the empty 3p band with the filled

3s band. Thus the 3s electrons can be almost continuously excited to states in the 3p

band. The overlap only saves the alkaline earth metals from being branded as insulator.

They are not the same good conductors of electricity as the alkali metals. They are rather

classified as semi-metals. A quantitative demonstration of the band overlap is shown in

figure 13.7 (c). The Fermi energy F in magnesium occurs at an energy which fills the 3s

band about 90% with just a small % occupancy for the overlapping sp band.

Diamond:- The isolated carbon atoms have the electronic configuration –1s2 2s2 2p2.

The mixing of 2s and 2p wave functions in the tetrahedrally bonded diamond crystal is

well known to result in the sp3 hybridization. The sp3 hybrid band further splits into two

because of the modification of the s- and p-levels in the crystal. Each of the two hybrid

sub bands can accommodate 4 electrons. The 4 electrons belonging to the 2s- and 2p-

states fill the lower sub-band, leaving the upper one empty. There exists a forbidden gap



M. Sc., PHYSICS 14 BAND THEORY OF SEMI..

Eg of 5eV at 0 K between the two sub-bands. These features that account for the

insulating property of diamond are shown in fig13.8. Band structures of the semi

conductors Ge and Si are characterized by similar feature.

13.5 The Tight-Binding Approximation:-

In the NFE model plane wave part exp (ik.r), of the Bloch function [uk(r) exp (ik.r)], is

emphasized and the atomic part is overlooked. But electrons in the low-lying inner core

levels of a free atom are strongly localized in space. The property is largely retained by

these electrons when atoms are assembled to form the solid. It points out to the

inadequacy in describing every band character in terms of quasi-free electrons. In order

to deal with localized electron, an alternative approach, is followed in which the atomic

part of Bloch function is stressed. This approach is known as tight binding

approximation. The single electron wave function in the crystal is expressed as a linear

combination of the atomic orbitals (LCAO) that the electron occupies in a free atom. The

forms of Bloch function in a linear crystal for k = 0 and k  0 are drawn in figure 13.9.

The tight-binding approximation is ideally suited to deal with the inner core electrons.

It has been successfully been applied to the d-electrons in transition metals and to the
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Fig 13.8 Behaviour of energy bands as a function of interatomic separation for
diamond (C), Si and Ge. The band gap Eg is defined at the equilibrium separation
r0. The figure shows that the band gap is not tied to the periodicity of the lattice.
Amorphous solids can also show a band gap.
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valence electrons in the diamond live and inert gas crystals .We give below the simplest

case of s-state electrons.

Consider an s-electron in an isolated atoms positioned at rn with the ground state wave

functions r-rn where r determines the electrons position in space. Then the one

electron schrodinger wave equation for free atom is

H0r - rn = 0 (r - rn) ---------------- (13.23)
Where H0 and 0 are Hamiltonian and the ground state energy of the electron in a free

atom. The Hamiltonian for an electron in the crystal is expressed as

H = H0 + vr- rn) 







 )()(

2
0

2
2

nn vv
m

rrrr


------------------ (13.24)

With

)()( 0 m
nm

n vv rrrr 


------------------ (13.25)

In the above equations, v0r- rn) denotes the potential energy of an electron when

localized at the isolated atom positioned at rn. The influence of atoms in the vicinity of

rn, where the electron in question is strongly localized on relative terms, is treated as a

perturbation on H0 and represented by vr- rn). Now, our aim is to look for solutions of

the following Schrödinger equation:

Hk(r) = k k(r) ------------------ (13.26)

(c)

(a) (b)

Fig 13.9 (a) Bloch functions corresponding to k = 0 state, built from atomic orbitals
(dashed) with small overlap. (b) Bloch functions for a large overlap of the atomic
orbitals (dashed). (c) Schematic representation of wave functions corresponding to k
 0. Its form is approximately the product of (b) and cos k (shown as dashed). The
real part of the wave function is shown.
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Where k is the electron energy in the crystal and k(r) the Bloch wavefunction.

In trying the solution

k(r) = )().exp( nn
n

i rrrk   ------------------ (13.27)

The above function satisfies the properties of a Bloch function. For example it is quite

simple to check that the function is periodic in the k-space, useing

exp (ig  rn) = 1

According to the perturbation theory, the first order energy is given by









dVrr

dVrHr

kk

kk

k
)()(

)()(

*

*

 ------------------ (13.28)

Using (13.27), we have

   dVrrrrrrikdVrr nmmn
mn

kk )()()](exp[)()( *

,

*  ------------------ (13.29)

For a strongly localized electron, (r-rm) is significant only in the proximity of rn.

Therefore, we evaluate (13.29) by putting m = n in the first approximation. If there are N

atoms in the crystal, we have

NdVrr
n

kk  1)()(* ------------------ (13.30)

Making use of (13.23),(13.24) and(13.30) electron energy k is written as

dVrrrrvrrrrik
N

nnmmn
mn

k )()]([)(*)](exp[
1~

0
,

   -------------- (13.31)

For the term containing 0, we again neglect the overlap between the nearest neighbors,

putting m = n. Therefore

  0
,

0 )()(*)](exp[ 


dVrrrrrrik
N

nmmn
mn

------------------ (13.32)

Including the overlap upto the nearest neighbors for the perturbation term, we write

   dVrrrrvrr nnn )()()(* ----------------- (13.33)

(on the same atom)

   dVrrrrvrr nnm )()()(* ----------------- (13.34)

(between the nearest neighbours)

All terms in the summation over n , each of which is evaluated over all m (either the

same atom or the nearest neighbor) are equal in magnitude on the demand of periodicity.
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Since the summation over n runs over all atoms in the crystal, the sum is simply N times

the value of single term. This factor of N cancels with the factor N in the denominator. In

view of this and relations (13.32) (13.33) and (13.34), the electron energy k assumes the

form

)(
0~ mn rri

m
k e  k -------------- (13.35)

The sum in (12.35) is carried only over the nearest neighbors. In a simple cubic crystal

with lattice constant a the nearest neighbor atoms are at

rn – rm = (a, 0, 0); (0, a, 0) (0, 0, a)

This gives s-state energy in the crystal as

)coscos(cos2~ 0 akakak zyxk   -------------- (13.36)

When the atoms are brought together to form a crystal, the single atomic energy level 0

broadens to constitute an energy band whose component levels are defined by (13.36).

We can determine the bandwidth as follows.

Energy of the band at its bottom:

The bottom lies at k = 0, giving
bott = 0    6 ---------------- (13.37)

Energy of the band at its top:

The top occurs at k =  /a, giving
top = 0   + 6 ----------------- (13.38)

Therefore, from (13.37) and (13.38),
the bandwidth = 12 ------------------ (13.39)

Thus the bandwidth is proportional to  which represents the overlap of atomic

orbitals (13.34). A qualitative illustration of the results of tight-binding calculation for a

simple cubic crystal is made in fig 13.10. Where as  determines the bandwidth  is

interpreted as the lowering of the center of gravity of the free atomic level on forming the

solid. As one proceeds from inner to outer shells in an atom, the width of the respective

energy bands goes on increasing because of more and more overlap. This is consistent

with the result of the Kronig-Penney model and also confirmed by experiments. It is

amply clear from even Fig (13.10) where the second band appears as much wider.
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Furthermore, the effect of tight binding on the energy surfaces of a simple cubic

crystal can be examined with the help of (13.36). It is instructive to do this for the

limiting k-values in the reduced zone scheme, i.e. near the centre and the boundary of the

first zone. Near the centre ka  1 and we expand the cosine function to obtain

22
0 6 akk   ----------------- (13.40)

These values refer to the bottom region of the band and conform to the constant

spherical energy surfaces. But as the wavevector increases, the shape gets distorted and

deviates sufficiently from the spherical nature at large value of k [fig 13.10(a)].

In order to investigate the region near the zone boundary, we express k in terms of its

value k as measured from the zone boundary:

k
a

k 


-------------- (13.41)

Substituting (13.41) in (13.40) and appreciating that ka  1 near the zone boundary, we

obtain

k  0  + 6  k2a2 ------------------ (13.42)
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
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

Wave vector k along [111]
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Fig 13.10 Illustration of the result of a tight-binding approximation for a primitive cubic
lattice of lattice constant ‘a’. (a) Position of energy levels 1 and 2 in the potential V(r) of
the free atom. (b) Variation in broadening of the levels 1 and 2 as a function of the
reciprocal atomic separation r –1. (c) Variation in one electron energy  as a function of
the wavevector k (1, 1, 1) in the direction of the body diagonal [111].
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(a) (b)

Fig 13.11 (a) Constant energy curves for the tight-binding approximation for a simple
cube crystal in the plane kz = 0. Energy surfaces are spherical around the zone centre
for only small k-values. The surfaces are again spherical with centers at the corners of
the zone for small k-values, measured from the corners. (b) Constant energy curves in
the NFE model. Energy surfaces are spherical up to fairly large values of k. Notice the
changes caused by the zone boundary.

The above result is similar to that of (13.40) with the difference that the spherical

surfaces are centred at the corners of the zone (fig 13.11a). We may compare the energy

surfaces in the TBA with those in the NFE model, shown in (fig 13.11b). The main

difference lies in the fact that the spherical shape is maintained to much larger values of k

in the NFE model. This only shows that the results in the two models are almost similar

for small wavevectors. In view of this fact, the k-dependent part of the energy dispersion

(13.40) near the zone’s centre is comparable with ћ2k2/2m (for the free electrons), and we

have

*2

22
22

m

k
ak


 --------------- (13.43)

giving

2

2

2
*

a
m




 --------------- (13.44)

where m* is identified as the effective mass of the electron, implying that electron mass

should be treated as variable. Equation (13.44) predicts m* is larger for electrons in the

inner shells whose overlap is far less. We consider this as an invaluable result of the

theory of tight bounding approximation, especially because the concept of effective mass
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has remarkably improved the understanding of several physical properties ranging from

electronic conduction to the complex optical phenomena.

13.6 The Winger–Seitz Cellular Method:

The significance of the Wigner-Seitz model is substantiated by the impressive success it

achieved in accounting for the band structure and the cohesive energy of alkali metals.

The first systematic calculation of energy bands appeared in the form of this model. The

technique of calculation, referred to as a cellular method, is based mainly on the

symmetry properties of a certain primitive cell designed by Wigner and Seitz themselves.

The method of construction of this cell has been described earlier. The alkali metals have

the bcc Structure for which the Wigner-Seitz is a polyhedron and is shown in fig 13.12.

The entire crystal volume is imagined to have been filled up with identical polyhedra,

assuming that there is only one electron in a given polyhedron at a time, together with the

positively charged metal ion at the centre. The polyhedra being neutral, the interactions

among themselves are initially neglected and only the interaction within each polyhedron

is considered. The electron is supposed to move in the spherically symmetric potential

field of the ion. The field is assumed not to extend past the boundaries of the polyhedron.

We consider the extreme case of the k = 0 state. Then the Bloch wavefunction k(r)

has the form

(r) = u0(r) ------------------ (13.45)

Fig 13.12 The first Brillouin zone of a BCC crystal. It is
rhombododecahedral in shape.
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This wave function itself is periodic in the crystal i.e. the wave function remains

unchanged when translated from one face to the opposite face of the cell. It requires that

0




n
at the boundary of the polyhedron, with n as a direction normal to any of the

faces of the polyhedron. The above condition in the crystal replaces the free atom

boundary condition, (r)  0 as r , by

0












 srrr
---------------- (13.46)

where rs is the radius of a sphere to which the polyhedron may be approximated.

Accordingly, the volume of the polyhedron may be given by 4rs
3/3.

The solution of the one-electron Schrodinger wave equation is much easier for k = 0

than for any general k-value because u0(r) is non-degenerate and observes the full

symmetry of the crystal. Wigner and Seitz gave an accurate estimate of u0(r). In view of

the boundary condition (13.46), the exercise simply reduces to solving the radial

Schrodinger wave equation:
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where V0(r) is the potential energy of an s-electron and 0 is the energy eigenvalue in the

field of a crystalline ion within one of the polyhedra.

However, for a general wavevector we have to solve,
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But,
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Putting (13.49) in (13.48), we get
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It must be observed that u0(r) is not an exact solution to (13.50) which is in fact

satisfied by uk(r), the periodic part of the general Bloch function.
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Metal, k = 0
Free atom

r/a0

 

0 1 32 4

0

Fig 13.13 Variation of the radial wavefunction for the 3s electron in sodium.
The continuous curve describes the Wigner-Seitz wavefunction (cellular
wavefunction) at the Brillouin zone center (k = 0). The lower of the dashed curve
represents the cellular wavefunction at the zone boundary. The dashed curve in
between the cellular plots denotes the wavefunction in the free atom. The
distance r of the electron from the centre of the atomic polyhedron is measured
in units of the Bohr radius a0

We treat the k terms as a perturbation and insist that uk(r) obey the boundary

condition (13.46). This gives electron energies k in the form.

m

k
k

2

22

0


  ------------- (13.51)

which gives energies in the shape of a band as measured from the level of 0.

We must appreciate that these calculations depend only on the atomic volume and are

independent of the crystal structure. Therefore, for a solid metal and a liquid of equal

density we expect the same results in this model.

The 3s radial wave function in sodium metal as estimated in the Wigner-Seitz model at k

= 0 (the Brillouin zone centre) and at the Brillouin zone boundary is plotted in Fig.13.13.

The 3s atomic wave function is also drawn for comparison when the wave function is

subject to the boundary conditions (13.46). Midway between the neighbouring atoms (r

= rs), the radial Schrodinger equation (13.47) for k = 0 yields the eigenvalue (0) as –8.2

eV. This value is considerably lower than the ground state energy of the free atom (–5.15

eV), obtained by applying the boundary condition d/dr  0 as r  . The calculated



ACHARYA NAGARJUNA UNIVERSITY 23 CENTER FOR DISTANCE EDUCATION

energy of 3s orbitals at the zone boundary is found to be +2.7 eV. It should be realized

that these orbitals are empty because the 3s energy band in sodium is only half-filled and

the corresponding states are located near the top of the band. The negligible amplitude of

the Wigner-Seitz wavefunction (often referred to as the cellular wavefunction) at the zone

boundary is consistent with this fact since it gives little probability for the states in this

region to be occupied. It is significant to notice that all the three wavefunctions are

identical in the core of the metal ion.

The shape of the cellular wavefunction at the zone centre (k = 0) carries the most vital

information about the behaviour of the 3s electron in sodium metal. The plot in fig 13.13

shows the variation of the wavefunction as a function of the distance of the electron from

the centre of the atomic polyhedron. The wavefunction is flat over about 90 percent of

the atomic volume. The total charge distribution in the flat region corresponds to the

charge on an electron. This takes us to the conclusion that uk(r) remains constant (u0)

over most of the atomic volume and the plane wave part of the wavefunction alone

determines the electron motion in this region. Thus the valence electrons of sodium

behave mostly as free electrons. This is found to be true for other alkali metals too. But

the results for the noble metals, also monovalent, are on the other extreme. The ratio of

the ionic to the atomic radius is close to unity making them act like hard spheres.

Because of this reason, the noble metals in contrast to the alkali metals cannot be treated

in the frame work of the free electron approximation.

13.6.1 Estimation of Cohesive Energy:

Concepts of cohesive energy were discussed earlier. We know that binding of atoms

results in the lowering of their ground orbital energy. Thus the ground state energy of an

electron in the crystal is lower than that in the free atom. This lowering in energy, taken

as a measure of the cohesive energy, is a consequence replacing the Schrodinger

boundary condition in the free atom by the periodic boundary condition (13.46). On the

demand of energy conservation, an increase in the binding energy is offset by the Fermi

energy contribution to the kinetic energy of valence electrons. The spherical
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approximation of the Wigner-Seitz theory works satisfactorily in the bcc and fcc crystals.

We take sodium metal, a bcc structure for our discussion.

The electron energy in the crystal is given by (13.47). The value of  is estimated

from the Wigner-Seitz model. The second term in (13.47) denoting the average kinetic

energy per electron, is obtained from the free electron theory. The ground state energy of

the valance electrons in the crystal is then,

Fk
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22
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

--------------- (13.52)

For sodium,  = – 8.2 eV, F = 3.1 eV (from tables). These values give, k = – 6.34 eV.

The above value of k when subtracted from the corresponding value in the free atom

(-5.15 eV) gives the cohesive energy as equal to 1.19 eV. The close approximation value

(1.13 eV) demonstrates the success of the Wigner-Seitz approximation in alkali metals.

The model provides additional information from the k versus rs plot. The minimum

value of k (13.52) defines the theoretical lattice parameter. For this value of rs, the

cohesive energy and compressibility of alkali metals have been calculated and found in

good agreement with the experiments.

13.7 Methods of band structure calculation in use: a qualitative view

We discussed two extreme cases of band structure calculation in the form of tight

binding and Wigner-Seitz approximation. While one overstresses the atomic aspect, the

other over stresses the plane wave aspect of the Bloch function. The tight binding

approximation is useful for interpolation and the Wigner-Seitz approximation gives a

good account of several properties of alkali metals. But the methods that actually work

for a variety of solids are some what much different. Though these methods are

mathematically tedious, the problem has eased considerably with access to modern

computers. Of these the orthogonalized plane wave (OPW) and the augmented plane

wave (APW) methods are most prominent and advanced. The pseudo potential method is

also often used on account of its ability to predict the energy-wavevector relationship

with acceptable accuracy.
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The knowledge of atomic orbitals at each site readily enables us to distinguish

between a plane wave and the complete wavefunction. Based on this idea Herring

formulated the OPW method. The orthogonalized plane waves are in fact linear

combination of plane waves and mixtures of atomic wave functions of the occupied states

of the cores. This takes care of the electron behaviour both within and outside the core

regions. The method has been applied to several metals and non-metals with reasonable

success in getting the band shapes.

With a large value of the parameter P, the Kronig-Penney model changes over to

a one-dimensional form of the APW method. It is another way to improve upon the NFE

model by approximating the periodic potential suitably in the regions within and outside

the cores. The potential within a sphere around each ion core is taken as the usual atomic

potential and assumed constant outside the core regions. The Schrodinger wave equation,

when solved in the two regions, yields two separate solutions that are matched on the

spherical boundaries between the region. The wavefunction within the core is expanded

in spherical harmonics. But outside the core region it is represented by a combination of

plane waves, known as an augmented plane wave. The matching of the plane waves on to

the atomic functions is the most difficult aspect of the exercise.

The Pseudopotential approach has its roots essentially in the effectiveness of the NFE

model in many solids. The admixture of core states shows, surprisingly little effect on the

energy of higher states in many metallic materials. In this approach the periodic potential

energy function is replaced by a modified potential energy function with a few Fourier

coefficients Vg that refer to only short reciprocal lattice vectors. The modified potential is

called Pseudopotential. In the well-known Empirical Pseudopotential Method (EPM), the

Fourier coefficients are deduced from the theoretical fits to the optical reflectance and

absorption data of the crystal of interest. The potential is fairly smooth and free from the

deep wells of the free potential. Success in the interpretation band structure not

withstanding difficulties in the description of some other properties of electron come to

surface. It is likely to happen since the method may yield an in correct wave function.
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Such a problem is resolved by correcting the wave function for the due representation of

the atomic component.

The band structure as derived from calculations are too complicated to be discussed.

13.8 Summary:

1. The statement of Bloch theorem is

k(r) = uk(r) exp (ikr)
where k(r) denotes an electron wave describing an electron with wave vector k at r

in the crystal and uk(r) is the periodic in the crystal lattice. That is uk(r + tn) = uk(r)

where tn is an arbitrary translation vector. The function k(r) is called the Bloch function.

2. Bloch function k(r) and their eigenvalues k are periodic in the reciprocal lattice.

That is,

k + g (r) = k(r)
k + g = k

3. In a crystal of N primitive cells, there are 2N independent orbitals in an energy band.

4. Energy bands are separated by regions in which no solution to electron wave functions

exist. These regions are called band gaps.

5. The bandwidth is proportional to the overlap of atomic orbitals.

6. The electron effective mass (m*) is inversely proportional to overlap i.e. m* is large for

electrons in inner shells.

7. The cohesive energy of simple metals is estimated by calculating the lowering of the

k=0 orbital in the conduction band. In the calculations, the boundary conditions on the

wave function is changed from Schrodinger (  as (r   to Wigner-Seitz

[(d/dr)r = rs = 0] condition.

13.9 Keywords:

Fourier coefficients – Brillouin zone –NFE model – Central equation – Insulator – Metal

– Semiconductor – Tight binding approximation – Effective mass of electron – The

Wigner-Seitz cellular method – Cohesive energy – OPW method – APW method – EPM

method.
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13.10 Review Questions:

1. Describe the nearly free electron model and show that the band gap energy is equal to

the twice the magnitude of Fourier coefficient of the crystal potential.

2. Define different zone schemes for energy bands and describe the energy bands in a

general periodic potential and obtain the solution near the zone boundary.

3. Distinguish in between insulators, metals and semiconductors based on band theory of

solids.

4. Explain the tight binding approximations and obtain the expression for the effective

mass of the electrons.

5. Explain the Wigner-Seitz cellular method and obtain the energy k. Illustrate the plot

of variation wave function versus ra0.

6. Explain how to estimate the cohesive energy. Give a brief account of the various

methods for band structure calculation.
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UNIT – IV LESSON: 14

INTRINSIC SEMICONDUCTORS

Aim: To learn about intrinsic semiconductors

Objectives:

 Classical semiconductors through their band structures.

 Deriving expressions for carrier densities.

 Studying the behaviour of Fermi level.

Structure of the Lesson:

14.1 Introduction

14.2 Semiconductors – classification

14.3 Examples of band structure

14.4 Intrinsic semiconductor

14.5 Electron and hole densities in intrinsic semiconductors

14.6 Fermi level in Intrinsic semi conductor

14.7 Summary

14.8 Key words

14.9 Review questions
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14.1 Introduction:

The values of electrical conductivity of solids are spread over almost the widest range for

any common physical property. Hence these form a basis for classifying solids. Solids

characterized by extremely high and extremely low values of electrical conductivity are

identified as metals and insulators, respectively. A pure metal at 1K may have a

conductivity of the order of 108 ohm-1 m-1 against a low of 10–20 ohm-1m-1 for an extreme

insulator. Materials with conductivity values intermediate to these extreme orders of

magnitude are called semiconductors. Typical conductivity values for semiconductors lie

in the range from 10-7 to 1 ohm-1 m-1. The most useful feature of semiconductors is that

their electrical conductivity generally decreases with increasing purification in contrast to

metals where the conductivity always increases with increasing purification.

Notwithstanding the enormous technological importance of semiconductors, their

study is even more crucial to the understanding of electronic properties of solids. We

will see that it is possible to apply the Maxwell-Boltzmann statistics to deal with charge

carriers in semiconductors. This gives exact analytical solutions of many problems that

can be solved only by approximate or numerical methods in metals where the Fermi-

Dirac statistics has to be used. Furthermore, with remarkable progress having been made

in the technology of growing semiconductor crystals, the degree of purity and perfection

achieved in growing single crystals of semiconductors is much higher than that in metals

and insulators. It is a matter of absolute importance to the study of electronic properties,

some aspects of which are obscured by effects arising because of the presence of

impurities and crystalline imperfections. It simply amounts to say that the quantitative

studies of some phenomena that are generally difficult or cannot be made accurately in

metals, are easily carried out in semiconductors with the required precision. Thus the

study of semiconductors is helpful in interpreting the electronic properties of solids in

general. In this lesson we concentrate on shaping the basic theoretical ideas in the

framework of the band theory of solids.

14.2 Semiconductors – classification:

The classification of solids made on the basis of their band structures gives a lead to

exploiting the band theory for the interpretation of many solid state properties. We learnt

in lesson 13 that completely filled and completely empty bands do not contribute to the
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flow of current. The highest filled band (the valence band) in metals is only partially

filled and the flow of current occurs on account of almost continuous excitation of

valence band electrons to empty states of the band under the influence of an electric field.

Therefore, a material that has only completely filled and completely empty bands

behaves as a perfect insulator at absolute zero when there can hardly be found any

electrons in the lowest empty band (the conduction band) as a result of the thermal

excitation of electrons in the valence band. But if the difference between the upper edge

of the valence band and the lower edge of the conduction band is not large and less than

2 eV, there is a finite probability for a small fraction of electrons occupying the

uppermost states of the valence band to be thermally excited to the conduction band at

moderate and high temperatures. At these temperatures the width of the energy range

over which the Fermi distribution function rapidly changes is relatively substantial. This

enables the consequences of the change in the distribution function easily observable. A

representative band scheme for metals, semiconductors and insulators is drawn in fig

14.1. The figure portrays a qualitative difference in the band structures of these solids.

There is a long list of semiconductor materials. Only a few of them are elements. Si,

Ge, grey Sn and grey Se are some examples. The first three are in Group IV and Se is in

Group VI of the periodic table. Rest of them are mostly binary compounds, mainly of

two types. In one type (e.g. GaAs, InSb, GaP) one element from Group III (e.g. B, Al,

Ga, In) is combined with an element from Group V (e.g. N, P, As, Sb). The other type of

binary compounds are formed with one element from Group II (e.g. Zn, Cd, Pb) and the

Fig 14.1 Comparative energy band schemes for metals, semiconductors and
insulators at T = 0 K. The valence band is completely filled in semiconductors
and insulators but only partially filled in metals. A relatively much smaller band
gap Eg in semiconductors distinguishes them from insulators.
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other from Group VI (e.g. S, Se, Te). Some important examples of this type are ZnS,

CdSe, PbTe. SiC is the lone example of binary semiconductors whose both components

are from Group IV. Some oxides also show semiconducting behaviour – TiO2, Cu2O and

ZnO are prominent examples of this class. A list of technologically important

semiconductor materials is given in Table 14.1 which also contains the relevant data on

these materials.

Semiconductors are primarily of two types – intrinsic and extrinsic. The intrinsic

semiconductors are usually pure monatomic or diatomic solids. An intrinsic material is

converted into the extrinsic type (or the impurity type) by adding traces (~1 part in one

million) of a suitable impurity with the aim to enhance the level of the charge carrier

density. Values of electrical conductivity of intrinsic semiconductors lie far below the

range that is useful for the purpose of applications. But semiconductors are gifted with

the unique quality that their electrical conductivity can be increased by several orders of

magnitude by mixing with them suitable impurities in small concentration. This has

enormously increased their technological importance. Thus it is mostly the extrinsic

semiconductors that form the basis for semiconductor devices.

Crystal Type of gap
Eg (eV)

0 K 300 K

Si

Ge

Grey Sn

GaAs

GaSb

GaP

InSb

InAs

InP

ZnS

SiC

I

I

D

D

D

I

D

D

D



1.11

0.67

0.00

1.43

0.68

2.25

0.17

0.36

1.27

3.6

2.86

1.17

0.75

0.00

1.52

0.81

2.32

0.23

0.43

1.42

3.91



Table 14.1 Data on the band gap of some important semiconductors (D = direct gap,

I = indirect gap)
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14.3 Examples of band structure:

We know from Lesson 13 that the band structure of a solid is closely related with its

crystal structure. Not many crystalline structures are favourable to the semiconducting

behaviour. Most of the thoroughly investigated semiconductors have a diamond type

lattice. We take examples of Si, Ge and GaAs which are distinguished for their large

number of applications. The Si and Ge crystals have diamond structure. The crystal

lattice of GaAs is zinc blende type which is only a modified diamond lattice. We

describe below the band structures of these crystals.

14.3.1 Silicon and Germanium:

The outer electron configurations of Si and Ge are 3s23p2 and 4s24p2, respectively.

The origin of band structure of these materials has been discussed in Lesson 13. The

tetrahedral bonding orbitals (sp3) are formed because of the mixing of s- and p- wave

functions. Near the bonding distance, at equilibrium, these orbitals were shown to split

into bonding and antibonding orbitals which constitute the valence band and the

conduction band, respectively. All the four s- and p- electrons occupy states in the

valence band, filling it completely. The completely empty conduction band should

combine with this picture to produce an insulating behaviour. This is really the case with

the diamond crystal (carbon) which has a similar band scheme. But on account of small

band gap (Eg), Si and Ge show semiconducting properties.

Figure 13.8 in lesson 13 reveals an important feature of the band gap regarding its

dependence on temperature. The observation that the size of the energy gap (or the

splitting) between the valence and conduction bands decreases with increase in the

interatomic separation, indicates that the gap is smaller at higher temperatures where the

interatomic separation becomes larger because of thermal expansion. This fact is

confirmed by the measured values of the band gap Eg at different temperatures (see table

14.1).

Band structure are calculated by fitting the measured physical quantities, such as the

band gap, the positions of points of high symmetry in the Brillouin zone (critical points),

and the curvature of energy surfaces (the effective mass). The calculated band structures

of Si and Ge are shown in fig 14.2. The features of the two band schemes appear quite

different in contrast to the qualitative similarity as expected on the basis of fig 13.8. This
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is obviously the effect of the difference in electron wavefuctions associated with 3s23p2

and 4s24p2, configurations.

The symbols, , X and L stand for positions of certain points of high symmetry in the

Brillouin zone. They refer to the points at the zone centre (000),
a

2
(100) and










2

1

2

1

2

12

a


, respectively, where ‘a’ is the lattice constant. The valence band maximum

occurs at the zone centre, i.e. k = 0 for both Si and Ge. But the conduction band

minimum occurs for k along the [100] direction in Si and for k along the [111] direction

in Ge. This amounts to saying that electrons of the lowest energy in the conduction band

have their wavevectors oriented along the [100] direction in Si and along the [111]

direction in Ge. In both materials the valence band maximum and the conduction band

minimum thus occur at different values of k. Semiconductors having this type of band

structure are minimum thus occur at different values of k. Semiconductors having this

type of band structure are called the indirect gap semiconductors and those for which the

maximum and minimum in question fall at the same value of k are referred to as the

direct gap semiconductors.

The first Brillouin zone of Si and Ge crystals is a truncated octahedron appropriate to

the fcc symmetry of their unit cell. In parabolic approximation (i.e. retaining terms up to

E
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Fig 14.2 Calculated band structures of Si and Ge later J.R. Chelikowsky, M.L.
Cohen, phys. Rev. B14, 556 (1976). The structures confirm the indirect gap
nature for both Si and Ge. For Ge, the spin-orbit splitting is also considered.
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the order k2 in the expression for k), the surfaces of constant energy are ellipsoids as

confirmed by cyclotron resonance studies

In Si there are six symmetry – related minima of the conduction band at points in the

[100] directions. Each of the six ellipsoids is an ellipsoid of revolution about a cubic axis

by symmetry. They appear as cigars elongated along the cube axes as shown in Fig

14.3(a). The electron has two effective masses – the longitudinal ml* (along the axis) and

the transverse mt* (perpendicular to the axis). Their values in terms of the free electron

mass m are given as - ml* = 0.98m and mt* = 0.19m. The valance band shows two

degenerate maxima both located at k = 0 with spherical symmetry within validity of the

ellipsoidal expansion (fig 14.2). The two effective masses are 0.49m and 0.16m.

The conduction band minima in Ge occur at the zone boundaries in the [111]

directions. The minima on parallel hexagonal faces of the zone correspond to the same

energy levels giving four symmetry-related conduction band minima [fig 14.2b]. The

constant energy surfaces are ellipsoids of revolution with elongation along the [111]

directions and effective masses, ml* = 1.57m and mt* = 0.082m. The two degenerate

valence band maxima in this case give the characteristic effective masses of 0.28m and

0.44m.

Properties of holes are equally important as those of electrons for the study of

semiconductors. Details of the cyclotron resonance studies show that the structure of the

valence band maximum near (k = 0) in Si and Ge is more complicated than what

appears in Fig.14.2. In addition to the two degenerate bands at , there is a third one that

Fig 14.3 Constant energy surfaces for Si and Ge
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is split off slightly by energy band  towards a lower energy band (fig 14.4). The

splitting is caused by the spin-orbit interaction. On the basis of the effective mass values,

the two degenerate bands are attributed to the light and heavy holes. The holes associated

with the identity of the third band are named as ‘split-off holes’. The split-off energy 

has been estimated at 0.044 eV in Si and 0.29 eV in Ge.

14.3.2 Gallium Arsenide:

GaAs crystal enjoys a special status, firstly on account of its direct-gap and secondly

because of its band-gap energy being closely below the energy range of visible radiation.

These properties render it most suitable for the fabrication of efficient optical devices.

The crystal has zinc blende (ZnS) structure. It is an example of the mixed ionic and

covalent bonding. The chemical bonding is interpreted as the superposition of these two

extreme cases of bonding. In ionic bonding, an electron is transferred from Ga to As to

give the ionic structure Ga+ As–. On the other hand in the second extreme case, with the

displacement of an electron from As to Ga, the number of electrons in the outer shell of

both Ga and As atoms becomes four which results in the sp3 hybridization as in the case

of Si and Ge. The observed tetrahedrally coordinated ZnS structure of GaAs serves as a

certain proof to the effect that the effects of covalent bonding dominate.

The band structure of GaAs is shown in Fig 14.5. All the valence band maxima and

conduction band minima occur at  (k = 0) showing its direct gap nature with a gap of

1.43 eV at 300 K. The constant energy surfaces are accordingly spherical. The

conduction band effective mass *
em is 0.07m. There are three distinct valence bands

kEv

Light
holes
(m*

lh)

Heavy
holes
(m*

hh)

“split-off”
holes

(m*
soh)





Fig 14.4 Structure of the valence band (qualitative) in Si or Ge near the top.
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similar in form to those for Si and Ge at . The three respective effective masses are

given as *
lhm = 0.12m, *

hhm = 0.68m and *
sohm = 0.2m with  = 0.34 eV.

14.3.3 Determination of Band Gap:

A number of methods are used to determine the band gap of semiconductors. The

technique of continuous optical absorption is more often used on account of its accuracy

and the important information gained about the band structure. An abrupt increase in the

absorption of optical radiation takes place as soon as the energy of the incident radiation

ћ becomes large enough to exceed the energy gap.

In direct-gap semiconductors (e.g. GaAs, InSb), where the conduction band minimum

and the valence band maximum occur at the same k-value in the k-space, the optical

threshold at  (= Eg/ћ) directly gives the band gap [fig 14.6(a)]. But in indirect-gap

materials (e.g. Si, Ge, GaP), the direct photon absorption accompanied by the transfer of

an electron from the top of the valence band to the bottom of the conduction band would

not conserve the crystal momentum because the initial and final points of the transition in

the k-space do not have the same k-value. Hence such a direct transition is not allowed.

The transition process will have to be indirect in which the absorption of an optical

photon must be accompanied by some other process with whose involvement the

Fig 14.5 Calculated band structures of GaAs, a representative of III-V semiconductors.
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condition of momentum conservation may be satisfied. The intensity of a continuous

absorption spectrum gets sufficient contribution from phonons. With the involvement of

a phonon in the indirect transition under discussion, the sum of wavevectors before the

transition becomes equal to their sum after the transition, showing the momentum

conservation. There can be two possibilities–one in which a phonon is emitted (created)

after the transition and the other in which a phonon is absorbed (destroyed) along with

the optical photon to materialize the transition.

Let us denote the wavevector of the optical photon by Kop and that of the phonon by

Kph. If the wavevector at the conduction band minimum as measured from the valence

band maximum be represented by Kc, then in the case of phonon emission [Fig 14.6(b)],

we have

Kop = Kc + Kph -------------- (14.1)
(before the transition) (after the transition)

But the photon wavevectros Kop are negligibly small in the range of energies

concerned. Therefore, from (14.1),

Kc ≃  Kph -------------- (14.2)

Relation (14.2) states that the increase of crystal momentum by ћKc during the transition

is offset by an equal amount owing to the emission of a phonon with wavevector (Kc).

Since the phonon takes away a part of the energy of the incident photon (though very

small), the optical threshold energy is greater than Eg [see fig 14.6(b)]. In this case,

ћop = Eg + ћph -------------- (14.3)

k

ћop = Eg



k kKph Kop Kc

ћop

ћph



Fig 14.6 (a) Absorption of a photon in a direct-gap semiconductor.
(b) The photon absorption in an indirect-gap material.
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At high temperatures a good number of phonons are present in the crystal. With the

absorption of phonon during the transition, the momentum conservation is given by

Kop + Kph = Kc -------------- (14.4)

(before the transition) (after the transition)

This gives the optical threshold as

ћop = Eg – ћph -------------- (14.5)

So, the optical threshold is lower than Eg. The change in optical threshold in these

proceses is generally of little consequence because the phonon energies are

characteristically small (~a few hundredths of an eV) as compared to the size of the band

gap. This change, however, is of considerable value in semiconductors having a small

band gap.

Since the indirect transitions generate heat when phonons are created, the direct-gap

materials are preferred in order to have efficient devices. A mixture of the two types of

materials is a desired manipulation in some devices such as injection lasers where it is

practiced on account of the demand for higher power.

Another method commonly used for determining the band gap is based on the

temperature dependent study of the electrical conductivity . The electrical conductivity

of semiconductors depends on temperature according to the following proportionality:

  exp (– Eg/2kBT ) --------------- (14.6)

An approximate value of Eg is given by the ln() versus 1/T graph. The gap is also

determined from the intrinsic carrier concentrations derived from the experimental values

of Hall coefficient. The value of band gap and nature of gap for a number of important

semiconductors are given in Table 14.1.

14.4 Intrinsic semiconductor:

The difference between the electrical conductivity of semiconductors and metals in the

form of former’s strong dependence on temperature indicates that thermal excitations

control the conductivity of semiconductors in a big way. The thermal excitation of an

electron from the valence band across the forbidden energy gap Eg to the conduction band

creates a hole in the valence band. The number of these carriers that contribute to the

flow of electric current increases more and more with a continued thermal excitation. In
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this section we calculate the density of these carriers in the state of thermal equilibrium in

an intrinsic semiconductor considered as highly pure such that the contribution to the

carrier concentrations from impurities may be neglected. Calculations based on

appropriates statistics show that the electron and hole concentrations equal in the present

case, are strongly temperature dependent which thus accounts for the conductivity

behaviour. The conductivity of a semiconductor may be expressed as

 = |e|(nn + pp) -------------- (14.7)

where n and p are electron and hole densities (per unit volume), respectively, and n and

p represent the corresponding mobilities. The contribution from electrons and holes in

(14.7) simply add up because of the opposite sign of their charge and opposite directions

of their drift velocities.

It is easy to appreciate that in excitations of our interest the carriers near the band

edges or the parabolic part of the valence and conduction bands are involved. In this

region the effective mass can be treated as constant in the first approximation. This takes

care of the neglect of energy dependence of mobility in (14.7). For calculations in

semiconductors the chemical potential  appearing in the Fermi distribution function is

replaced by the Fermi energy F. But the level of chemical potential always lies in the

region of the forbidden energy gap where no single-electron energy levels exist. The

very definition of the Fermi level which is considered as the highest occupied level at

absolute zero, thus becomes redundant since no single-electron energy level is available

to coincide with the Fermi level. Therefore, in the fitness of things the Fermi level in

semiconductors should be interpreted as a synonym to the chemical potential.

14.5 Electron and hole densities in intrinsic semiconductors:

The occupancy of energy levels in semiconductors must be described the by Fermi-

Dirac distribution function f(, T) as in the other solids:

]/)exp[(1

1
),(

Tk
Tf

BF



 --------------- (14.8)

If Dc() and Dv() denote the density of states in the conduction and valence band,

respectively, the charge carrier densities are usually written as
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



cE

dTfDn  ),()( ec --------------- (14.9)

with fc as the electron occupancy and





vv

)],(1)[(),()( evhv

EE

dTfDdTfDp  --------------- (14.10)

with fh as the hole occupancy.

Here Ec and Ev refer to the energy values at the edges of the conduction and valence

band, respectively (fig 14.7). The electron energy as measured from the bottom (or edge)

of the conduction band is ( – Ec) where  is the absolute value of electron energy.

Similarly, the hole energy when measured from the top (or edge) of the valence band is

equal to (Ev – ). Applying the parabolic approximation, i.e. assuming the effective mass

to remain constant, the two density of states are written as
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When electron and hole energies are such that | – F| >> kBT, the respective

distribution
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(in the conduction band)
and
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(in the valence band)

In this condition the carrier density is not large and the semiconductor is called a

non-degenerate semiconductor.

Substituting (14.13) in (14.9), the electron density in the state of thermal equilibrium

at temperature T has the form,
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Using the substitution 2

B
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But,
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(from standard tables)

Using (14.17) in (14.16), we have
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Similarly for holes, using (14.14) and (14.10), we get
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By multiplying (14.18) by (14.19), we get the following generally valid relationship:
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Fig 14.7 A schematic behaviour of the Fermi function f(), the density of states D(),
and electron (n) and hole (p) densities in the conduction and valence bands when:
(a)the densities of states in the conduction and valence bands are equal and (b) the
densities of states in the conduction and valence bands are not equal.
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where we have used Ec – Ev = Eg.

Relation (14.20) represents the law of mass action. It states that the product of

electron and hole concentrations in a certain semiconductor that is completely

characterized by its band gap Eg and effective masses *
em and *

hm in the conduction and

valence bands behaves as a function of temperature and as independent of the position of

the Fermi level.

As already mentioned, the number of electrons is equal to the number of holes in an

intrinsic semiconductor. So, in this case if ni and pi denote the respective concentrations,

we get from (14.20)
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The numbers as determined at 300 K in Si, Ge and GaAs are 2.4  1023,1.5  1010 and

5  107 cm-3, respectively.

14.6 Fermi level in Intrinsic Semiconductors:

From 14.20 it is evident that np =
TkE

ii
Bgepnnp

/322 Tconst.


 .

Where ni is a constant depending upon the temperature and width of the forbidden gap. It

does not depend on the impurities introduced as long as the impurities do not change the

width of the forbidden energy gap.

In intrinsic materials the Fermi level at a certain temperature adjusts its position that is

required to maintain the charge neutrality condition consistent with (14.18) and (14.19).

This demands that

n = p
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Thus the Fermi level shows a weak temperature dependence. But if the electron and

hole effective masses are equal, F = Ev + g
2

1
E and the Fermi level lies exactly in the

middle of the gap. This is true at all temperatures.

But in general when the density of states of conduction and valence bands and the two

effective masses are unequal, the Fermi level is asymmetrically placed with respect to the

positions of Ec and Ev. It is demonstrated in fig (14.7(b)) where the two density of states

are unequal.

Intrinsic conductivity:

From equations (14.7) and (14.21) the electrical conductivity in the intrinsic region will

be
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As the mobilities are likely to depend on temperature only as a simple power law over

an appropriate region, the temperature dependence of the conductivity will be dominated

by the exponential dependence of the carrier concentration.

Mobility in the intrinsic region:

The mobility is defined as the drift velocity per unit electric field. In an ideal intrinsic

semiconductor the mobility is determined by lattice scattering; that is, by collisions

between lattice waves and electron waves. In actual intrinsic specimens there are always

some impurity atoms which may dominate the scattering of electrons at low temperatures

when the lattice waves are quiescent, but at higher temperatures the lattice scattering is

dominant.

The mobility associated with lattice scattering in a non-polar (covalent) crystal such as

diamond, silicon, or germanium has been calculated by Seitz and others. Seitz’ finds

2/328/5

2223/1

6/5

3/12/1

)(*4

62

kTCm

MkeN 





 ---------------- (14.23)

where  is the Debye temperature; k is the Boltzmann constant; N is the density of unit

cells; m* is the effective mass; M is the atomic mass; and C is defined using the Bloch

function u(r)eik.r by
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and is treated as an unknown parameter of value of the order of 1 to 10 eV.

Experimental values of the mobility at room temperature are given in table 14.2. In

most substances the quoted values are probably representative of lattice scattering. We

notice a tendency for crystal with small energy gaps to have high values of the electron

mobility. This is because small gaps imply small effective masses and (14.23) shows that

small masses favor high mobilities. The low mobilities generally characteristic of holes

in diatomic crystals are believed to be connected with the complex degenerate forms of

the energy surfaces in such crystals at the top of the valence band. By comparison the

mobility of metallic copper is 35 cm2/v-sec at room temperature.

14.7 Summary

Semiconductors are primarily of two types – intrinsic and extrinsic. The intrinsic

semiconductors are usually pure monatomic or diatomic solids.

Values of electrical conductivity of intrinsic semiconductors lie far below the range that

is useful for the purpose of applications

Not many crystalline structures are favourable to the semiconducting behaviour. Most of

the thoroughly investigated semiconductors have a diamond type lattice.

The outer electron configurations of Si and Ge are 3s23p2 and 4s24p2, respectively.

Crystal Crystal
Mobility (cm2/V. s) Mobility (cm2/V. s)

Electrons ElectronsHoles Holes

Si

Ge

GaAs

GaSb

AlAs

AlSb

InSb

InAs

InP

PbSe

PbTe

SiC

1350

3600

8000

5000

280

900

480

1800

300

1000

__

400

800

30,000

4500

1020

2500

100

450

450

100

930

1000

10 – 20

Table 14.2 Typical order of carrier mobilities at room temperature in some important

semiconductors.
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All the four s- and p- electrons occupy states in the valence band, filling it completely.

The completely empty conduction band should combine with this picture to produce an

insulating behaviour. This is really the case with the diamond crystal (carbon) which has

a similar band scheme. But on account of small band gap (Eg), Si and Ge show

semiconducting properties.

The valence band maximum occurs at the zone centre, i.e. k = 0 for both Si and Ge. But

the conduction band minimum occurs for k along the [100] direction in Si and for k along

the [111] direction in Ge. This amounts to saying that electrons of the lowest energy in

the conduction band have their wavevectors oriented along the [100] direction in Si and

along the [111] direction in Ge. In both materials the valence band maximum and the

conduction band minimum thus occur at different values of k. Semiconductors having

this type of band structure are minimum thus occur at different values of k.

Semiconductors having this type of band structure are called the indirect gap

semiconductors and those for which the maximum and minimum in question fall at the

same value of k are referred to as the direct gap semiconductors.

In Si there are six symmetry – related minima of the conduction band at points in the

[100] directions.

The conduction band minima in Ge occur at the zone boundaries in the [111] directions.

Properties of holes are equally important as those of electrons for the study of

semiconductors.

GaAs crystal enjoys a special status, firstly on account of its direct-gap and secondly

because of its band-gap energy being closely below the energy range of visible radiation.

These properties render it most suitable for the fabrication of efficient optical devices.

GaAs crystal has Zincblende (ZnS) structure. It is an example of the mixed ionic and

covalent bonding. All the valence band maxima and conduction band minima occur at 

(k = 0) showing its direct gap nature with a gap of 1.43 eV at 300 K. The constant energy

surfaces are accordingly spherical.

A number of methods are used to determine the band gap of semiconductors. The

technique of continuous optical absorption is more often used on account of its accuracy

and the important information gained about the band structure. An abrupt increase in the
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absorption of optical radiation takes place as soon as the energy of the incident radiation

ћ becomes large enough to exceed the energy gap.

Since the indirect transitions generate heat when phonons are created, the direct-gap

materials are preferred in order to have efficient devices. A mixture of the two types of

materials is a desired manipulation in some devices such as injection lasers where it is

practiced on account of the demand for higher power.

The law of mass action states that the product of electron and hole concentrations in a

certain semiconductor that is completely characterized by its band gap Eg and effective

masses *
em and *

hm in the conduction and valence bands behaves as a function of

temperature and as independent of the position of the Fermi level.

The Fermi level shows a weak temperature dependence. But if the electron and hole

effective masses are equal, F = Ev + g
2

1
E and the Fermi level lies exactly in the middle

of the gap. This is true at all temperatures.

But in general when the density of states of conduction and valence bands and the two

effective masses are unequal, the Fermi level is asymmetrically placed with respect to the

positions of Ec and Ev.

In a semiconductor at a given temperature, the product np of the electron and hole

concentrations is constant and independent of purity of crystal.

Effective density of states in the conduction band

2/3

2

*2
2 














Tkm
N Be

c



and the effective density of states in the valence band
2/3

2

*2
2 


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




Tkm
N Bh

v



Electrical conductivity of an intrinsic semiconductor.
 = |e| (nc + ph)

14.8 Key words

Valence band – Conduction band – Indirect gap semiconductors – Direct gap

semiconductors – Band gap – Mobilities of charge carriers – Fermi level – Optical

absorptions.
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14.9 Review questions

1. What are intrinsic semiconductors? Obtain expression for the intrinsic carrier

concentration in an intrinsic semiconductor. Under what condition will Fermi

level be in the middle of the forbidden gap.

2. Derive the law of mass action in semiconductor.

3. Describe the band structure of Germanium and Silicon. Compare the band

structure of these with that of Gallium Arsenide.

4. Describe how you determine the band gap in indirect gap semiconductor.

5. Derive an expression for electrical conductivity of intrinsic semiconductors.

14.10 Text and Reference Books:

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)
2. Solid State Physics by M.A. Wahab (Narosa)
3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C. Kittel (Asia Publishing House)
6. Solid State Physics by S.L. Kakani and C. Hemrajani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J.Dekker (Macmillan)
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UNIT – IV LESSON: 15

EXTRINSIC SEMICONDUCTORS

Aim: To estimate the population of donor and acceptor levels and to study the Extrinsic

carrier densities and temperature dependence of electrical conductivity.

Objectives:

 To learn about the properties of extrinsic semiconductors.

 To obtain an expression to the population of donor and acceptor levels.

 To obtain an expression for the electrical conductivity of extrinsic semiconductor.

 To obtain an expression for the Fermi level in extrinsic semiconductors.

Structure of the Lesson:

15.1 Extrinsic Semiconductors

15.2 The n-type semiconductors

15.3 The p-type semiconductors

15.4 Population of Donor and acceptor levels in the state of thermal equilibrium

15.5 Extrinsic carrier densities

15.6 Fermi level in extrinsic semiconductors.

15.7 Temperature dependence of electrical conductivity

15.8 Hall Effect

15.9 Summary

15.9 Key words

15.10 Review questions

15.11 Text and reference books
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15.1 Extrinsic Semiconductors:

As mentioned in lesson 14, the extrinsic semiconductors were developed because the

electrical conductivity of intrinsic semiconductor is, generally, not large enough to meet

the requirement of devices. Besides, it is hard to imagine of an absolute intrinsic

material. Even the purest single crystals have impurity contents to a certain degree. But

these impurity contents normally do not increase the carrier concentration to a useful

level. GaAs is, however, an exception. The purest available single crystals of GaAs

show a carrier density of about 1016 cm-3 which is enormously high compared to the

intrinsic value (5  107 cm-3). In general, the standard method of increasing the

conductivity of an intrinsic material is to add to it a suitable impurity or electrically active

element in small concentration. The method is known as doping. Impurities that enhance

the carrier density by contributing additional electrons to the conduction band are called

donors and those which create additional holes in the valence band are known as

acceptors.

For example, let us consider the electrically active elements suitable for doping in Si

and Ge crystals. When pure crystals of Si and Ge are doped with any element from

Group III (e.g. B, Al, In), p-type semiconductors are formed.

15.2 The n-type Semiconductors:

Suppose a pure Ge crystal is doped with As, an immediate neighbour to the right of Ge in

the periodic table. The arsenic atom may enter the germanium crystal lattice either by

replacing a germanium atom (i.e.substitutionally) or by occupying a position where no

germanium atom is supposed to be located in a pure and perfect crystal (i.e. interstitially).

Data on lattice constant measurements show that the arsenic atom enters the crystal

substitutionally. The electronic measurements show that the arsenic atom enters the

crystal substitutionally. The electronic configurations in the outermost shells of

germanium and arsenic atoms are 3s2 3p2 and 4s2 4p2, respectively. The germanium

crystal has a diamond structure in which each atom forms tetrahedral bonds with its four

neighbours. When an arsenic atom that substitutes a germanium atom finds itself

surrounded by four germanium atoms, its four electrons get engaged in tetrahedral bonds

with all four neighbouring atoms as depicted in fig 15.1. The arsenic atom is left with an

extra loosely bound valence electron which may be easily freed and made available in the
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conduction band for the purpose of conduction. On account of having these additional

electrons for conduction, the doped crystal is called an n-type semiconductor where n

stands for electrons.

According to a model proposed to interpret the replacement of a germanium atom by

an arsenic atom the arsenic atom is pictured as an occasional germanium atom with an

additional positive charge of e fixed at its core to which an additional electron is bound.

Thus the donor impurity can be described as a hydrogen-like centre in which the

Coulomb attraction between the core and the valence electron is screened by the

neighbouring germanium electrons. The centre being a bound system is characterized by

a set of quantized energy levels whose scheme is qualitatively similar to that of the

hydrogen atom. The ionization energies of the hydrogen and the donor atoms are

expressed as

2
0

4

H
)4(2 

me
E  -------------- (15.1)

for the hydrogen atom
and

2
s

H
*
e

2
m

4*
e

d
)4(2  m

Emem
E 


-------------- (15.2)

for the donor atom

Here 0 is the permittivity of vaccum space and s is the relative permittivity or the static

dielectric constant of the medium of the germanium crystal. The constant m (= 0 s)

GeGe

Ge

Ge Ge

Ge GeGeGe

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge Ge

As+

GeGeGe

Ge

Ge

Ge Ge Ge Ge

Ge

Ge GeGe

Ge GeGeGe

_

Fig 15.1 A donor impurity atom As is shown to substitute a Ge atom in the
germanium crystal.
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represents the permittivity of the medium of the crystal. The values of the static

dielectric constant of some important semiconductors are given in Table15.1.

For calculating Ed we take the effective mass of the conduction electron in germanium

as *
em = 0.12m where m is the free electron mass. Using this substitution in (15.2), we get

2
s

H
d

)12.0(



E
E  --------------- (15.3)

With EH = 13.6 eV and 0 = 15.8 for Ge, Ed is found out to be about 6.5 meV. For Si,

*
em = 0.3m and s = 11.7 and, therefore, Ed comes to about 30 meV. The position of the

donor’s ground energy level ED with respect to the conduction and valence band edges is

shown in Fig.15.2(a). Its energy as measured from the conduction band edge is Ed. The

energy continuum of the energy level scheme begins at the conduction band edge.

Therefore, the electron from a donor atom can be transferred to the conduction band by

simply ionizing the donor atom at the expense of only a few meV (~ 6.5 meV in Ge and ~

30 meV in Si) and not of a few eV of energy as is the case with the intrinsic material.

This makes abundantly clear why the conductivity of an n-type semiconductor is several

orders bigger than that of the corresponding intrinsic material.

Donor level

n-type semiconductor

Ec

Ev

ED

Ed

(a)

E
le

ct
ro

n
en

er
g

y


p-type semiconductor

Acceptor level

Ec

Ev

EA

Ea

(b)

E
le

ct
ro

n
en

er
g

y


Fig 15.2 (a) A qualitative picture showing the position of the ground donor level ED

relative to the conduction and valence band edges Ec and Ev. The Ed denotes the
ionization energy of the donor atom. (b) A qualitative picture showing the position of the
ground acceptor level EA relative to the conduction and valence band edges Ec and Ev.
The Ea denotes the ionization energy of the acceptor atom
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An odd feature of the model described above is that it gives the same value of Ed for

all donor impurities such as P, As and Sb in a semiconductor host. The experimental

values, however, show a slight variation (see Table 15.2). The description of screening in

terms of the dielectric constant is rather crude and it restricts the operational domain of

the model. The limitations are reflected in the model’s failure to account for some of the

subtle consequences of the atomic effects. The effect of screening on the Bohr radius is

further revealing. The Bohr radius of the donor impurity atom is written as

0*
e

s

2*
e

2
s0

d

4
r

m

m

em
r 












 

where r0 is the hydrogen Bohr radius (0.53 Å).

Table 15.2 Ionization energies for a few donors and acceptors in silicon and germanium

(Ed: ionization energy of donors and Ea: ionization energy of acceptors)

Using the respective values of  and *
em , we get

rd ≃ 70 Å in Ge and ≃ 20 Å in Si

Crystal s

Si
Ge
AlAs
AlSb
GaAs
GaSb
InSb
InAs
InP
SiC

11.7
15.8
10.1
10.3
13.13
15.69
17.88
14.55
12.37
10.2

Table 15.1 Values of static dielectric constant s for some semiconductors

Impurity Impurity
Ed (meV) Ea (meV)

Si Ge Si Ge

P

As

Sb

B

Al

Ga

In

45

49

39

12

12.7

9.6

45

57

65

16

10.4

10.2

10.8

11.2
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So we see that screening increases the Bohr radius enormously. Increasing the Bohr

radius is the same thing as loosening the binding which is reflected in drastically reduced

values of the ionization energy Ed in proportion to that of hydrogen (13.6 eV). The

calculated large values of the Bohr radius rd are exhibition of the fact that the bound

valence electron of the donor impurity is smeared over thousands of lattice sites. This is

shown in fig 15.1, though not to scale. Thus the first Bohr orbits of impurity levels is

formed. It is referred to as the impurity band. Conduction occurs even in the impurity

band as soon as ionized donors are available to initiate the hopping of electrons from

donor to donor. It is a well-established mechanism of conduction in extrinsic

semiconductors and is known as hopping conduction.

15.3 The p-type Semiconductors:

The formation of p-type materials may be conveniently discussed by taking examples

of valence four elemental semiconductors, i.e. Si and Ge. The elements used for doping

to convert these materials into p-type are from Group III (e.g. B, Al, Ga, In) with sp3

electronic configuration of the outermost shell. The substitutional impurity in this case

completes only three of the four characteristic tetrahedral bonds of the host crystal. The

doped impurity atom lacks one electron to complete the bonding with its all the

neighbours. A valence electron of the host material may meet this requirement by

ionizing the impurity atom negatively and creating a hole in the vicinity. Since the

impurity atom is willing to accept an electron, the impurity atom is called an acceptor.

The acceptor model is similar to the donor model. For example, a boron atom substituted

in the germanium crystal is pictured as a germanium atom with a charge of (-e) fixed at

its core and a hole of charge (e) bound to it. The impurity acts as the centre of a bound

system whose energy level scheme is similar to that of the hydrogen atom. The ground

acceptor level EA lies close to the valence band edge as shown in fig 15.2(b). The

ionization energy Ea as measured from the valence band edge is again very small as

compared to the size of Eg. The values of Ea for some acceptors in Si and Ge are given in

Table 15.2. Arguments concerning large values of conductivity and hopping conduction

follow the same lines as those for n-type materials. With the latest methods of doping,

the lowest impurity concentrations that can be obtained in semiconductors are of the

order of 1012 cm–3. Hence Si that has an intrinsic concentration of 1.5  1010 cm–3 at
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300K does not show intrinsic conductivity though Ge does, on account of its higher

intrinsic concentration (2.4  1013 at 300K).

15.4 Population of Donor and acceptor levels in the state of thermal

equilibrium

Let us first define the symbols that will be used in our future descriptions:

ND/NA : density of all available donors/acceptors.

0
A

0
D / NN : density of the neutral donors/acceptors.


AD / NN : density of ionized donors/acceptors.

nD/pA : density of electrons bound to donors/density of holes bound to acceptors.

n : density of electrons in the conduction band.

p : density of holes in the valence band.

For small impurity concentrations (i.e. for non-degenerate semiconductors) the

occupancy of the conduction and valence bands is as usual described by the Boltzmann

distribution function. Therefore, at these concentrations the law of mass action (14.20) in

lesson 14 which was derived on the basis of the above conditions must apply even to

extrinsic semiconductors. But in the extrinsic case the value of the Fermi energy, not

figuring in the law of mass action, depends on a more complicated charge neutrality

condition. For homogeneous doping, the neutrality condition can be expressed as

n + 
AN = p + 

DN ---------------- (15.5)

with

ND = 0
DN + 

DN -------------- (15.6a)

NA = 0
AN + 

AN -------------- (15.6b)

The above terminology may be appreciated better with the help of fig 15.3.
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
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
AN 0

AN

0
DN

Fig 15.3 Electrons in the conduction band and holes in the valence band made
available either by inter-band excitation or by impurity ionization.
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Let us first consider the calculation of population of the donor levels. At low impurity

concentrations (up to 1017 cm–3), the interaction between electrons bound to separate

donors may be neglected. We further assume for simplicity of calculations that the

impurity introduces only a single one-electron level. Under these approximations the

level could either be empty, or contain one electron of either spin, or contain two

electrons with opposite spins. The double occupation is not favoured on account of its

high energy arising from the Coulomb repulsion between two localized electrons. In the

state of thermal equilibrium, the mean number of electrons in a system is expressed as

]/)(exp[

]/)(exp[

BF

BF

TkN

TkNN
n

jj
j

jjj
j








 -------------- (15.7)

where the sum is over all states of the system; the j and Nj denote the energy and the

number of electrons in state j. With a single impurity we have just three states: one with

no electrons, thereby making no contribution to the energy, and two distinguishable spin

states with a single electron of energy ED. Hence from (15.7), we have

]/)exp[(
2

1
1

1

]/)(exp[21

]/)(exp[2

BFD
BFD

BFD

TkE
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

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



 ----------------- (15.8)

The factor of ½ serves to modify the Fermi-Dirac distribution in this case. However, this

factor is generally ignored which amounts to treating two single electron spin states of

equal energy as one state. The population density of the donor level in the state of

thermal equilibrium is given by

nD = ND n
or

]/)exp[(1 BFD

D
D

TkE

N
n


 (ignoring the factor of ½ ) --------------- (15.9)

Also note that,

nD = 0
DN ---------------- (15.10)

Similarly, it can be shown that the population density of the acceptor level in thermal

equilibrium is given by

]/)exp[(1 BAF

A
D

TkE

N
p





---------------- (15.11)

and also,
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pA = 0
AN ---------------- (15.12)

15.5 Extrinsic carrier densities:

The case of an extrinsic semiconductor in which both donors and acceptors are present

is difficult to handle. Because of this reason we consider a pure n-type semiconductor

and calculate its carrier concentration that is contributed by donors alone. Generally,

every n-type material has a few acceptors and every p-type material has a few donors

because of practical limitations on growing 100 per cent pure crystals. But the

concentration of naturally present impurities in a pure crystal is expected to be negligibly

small compared to the concentration of the impurity doped. Therefore, the relation (15.5)

in the present case is rewritten as

n = 
DN + pi ---------------- (15.13)

The net electron density n has contributions of electrons from donors and from the

valence band (see fig 15.3). The density of the latter type (ni, being intrinsic) is equal to

the density of holes (pi). Normally 
DN >> ni (or pi). For example, in Si this condition is

satisfied even at low levels of the donor concentration since the intrinsic concentration is

mere 1.5  1010 cm–3 around room temperature. Therefore for our n-type material, pi in

(15.13) may be dropped giving,

n ≃ 
DN = ND – 0

DN [using (15.5)] ----------------- (15.14)

or n = ND –nD [since nD = 0
DN ]

= 











]/)exp[(1

1
1

BFD

D
TkE

N


[using 15.9]

=
]/)(exp[1 BFD

D

TkE

N


----------------- (15.15)

As already mentioned in the beginning of Section 15.4, the relations for n, p and np (the

law of the mass action) as derived in lesson 14 are applicable to extrinsic materials with

low doping levels. We rewrite the relation (14.18) as








 


Tk

E
Nn

B

Fc )(
exp)c(


----------------- (15.16a)

with
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2/3

2

B
*
e

2
2)c( 












Tkm
N ----------------- (15.16b)

and (14.19)as








 


Tk

E
Np

B

vF )(
exp)v(


----------------- (15.17a)

with
2/3

2

B
*
h

2
2)v( 












Tkm
N ----------------- (15.17b)

From (15.16a), we have

)c(

)/exp(
exp Bc

B

F

N

TkEn

Tk








 
----------------- (15.18)

Eliminating F in (15.15) with the help of (15.18), we get

)c(

)/exp(
1 Bd

D

N

TkEn

N
n



 (with Ec – ED = Ed)

or

0
)c(

)/exp(
D

Bd2 







Nn

N

TkE
n ---------------- (15.19)

Using the substitution,

)c(

)/exp( Bd

N

TkE
= X ---------------- (15.20)

we get
Xn2 + n – ND = 0 ----------------- (15.21)

The physically meaningful solution to the above equation is

X

XN
n

2

411 D
 ------------------ (15.22)

Rationalizing (15.22), we get

n = 2ND   1

D411


 XN

Using (15.20), we hve

n = 2ND

1

Bd
D

)c(

)/exp(
411
















N

TkE
N ----------------- (15.23)

There are three limiting cases of the above expression as discussed below:

Case I. At low temperatures,
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1exp
(c)

4
B

dD 
















Tk

E

N

N
----------------- (15.24)

This transforms (15.23) to the following form,








 


Tk

E
NNn

B

d
D

2
exp(c) ----------------- (15.25)

At these low temperatures a large number of donors stay in the unionized state. The

range of temperatures over which this condition exists is known as the freeze-out range.

We can notice the similarities between (15.25) and (14.21) that expresses the intrinsic

carrier density. Both depend exponentially on temperature since the exponential

dependence dominates the other dependence entering through N(c). In the donors’ case a

much smaller quantity Ed appears in the exponential as against Eg in the intrinsic case.

This accounts for a larger carrier concentration in the n-type material.

Case II. For temperatures at which

1exp
(c)

4
B

dD 
















Tk

E

N

N
----------------- (15.26)

the relation (15.22) reduces to

n ≃ ND ----------------- (15.27)

i.e. a constant.

This means that at these temperatures all donors are ionized and the electron density

reaches its maximum with the excitation of electrons from the valence band considered

negligible in the first approximation. This is referred to as the saturation range or

exhaustion range of carriers.

Case III. When temperatures is still higher, the concentration of conduction electrons

contributed by the valence band becomes appreciable. Since the concentration of donor

electron in the conduction band no more increases on account of saturation, the intrinsic

electron density overtakes the density of donor electrons at some stage. In this condition

an n-type semiconductor is characterized by intrinsic behaviour and we speak of the

intrinsic range of carriers. The variations of electron density and energy as functions of

temperature are sketched in fig 15.4, identifying the three ranges.
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The calculation of electron density in the conduction band as carried out above is

based on the assumption that there are no acceptor impurities in the n-type semiconductor

under consideration. Experiments, however, confirm that traces of acceptors are always

present. Therefore, quantitative estimates made on the basis of the above theory may

differ slightly from the experimental values.

There are several applications in which there is a need to monitor the electron and hole

concentrations. Since at low doping levels the law of mass action (14.20) is valid, it is

exploited to manipulate the carrier concentration in non-degenerate semiconductors.

When the electron concentration n is increased by adding the trace of a suitable donor

impurity, the hole concentration p goes down so that the product (np) remains constant at

a temperature in accordance with the law of mass action. This way it is possible to

reduce the sum (n + p) considerably. This method of reduction is in wide practice and

Gradient Eg/2kB

Gradient Eg/2kB

2
D

1
D NN 
2
DN

L
o

g
n

(a)

Fermi energy, F (T)
Eg

Ed

Ec

ED

Ei

Ev

E
n

er
g

y
,


Intrinsic
range

Saturation
range

Freeze-out
range

(b)

Reciprocal temperature, T–1

Fig 15.4 (a) A qualitative illustration of the variation of electron concentration (n) in
the conduction band with change in temperature in two samples of different donor

concentrations .and 2
D

1
D NN (b) A qualitative illustration of the temperature

dependence of the Fermi energy F in the same semiconductor. The Ei represents the
Fermi energy in the instrinsic material. All other symbols have their usual meaning.
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known as compensation. The sign of majority carriers is quickly determined by detecting

the sign of Hall voltage.

15.6 Fermi level in extrinsic semi conductor

We have seen that Fermi level is situated at the middle of the band gap in an intrinsic

semiconductor as the electron and hole densities are equal. When the intrinsic

semiconductor is doped the carrier densities change, consequently the position of the

Fermi level also changes. The shift in the position of the Fermi level can easily be related

to the majority carrier density in an extrinsic semiconductor if it is assumed that the

addition of the impurities do not affect the densities of energy states in the conduction

and valence bands.

Let Ne and Nv denotes the density of states in the conduction band and density of

states in the valence band, respectively. We have for an intrinsic semiconductor.

exppand

exp




















 









 


Tk

EE
N

Tk

EE
Nn

B

fiv

v

B

efi

c

Here fiE is the energy associated with the Fermi level in an intrinsic semiconductor. For

an intrinsic semiconductor, we have n = p and therefore from the above expressions,








 


Tk

EEE

N

N

B

fivc

v

c
2

exp

Let fnE be the energy associated with the Fermi level in an n-type semiconductor having

an electron density n, we have








 


Tk

EE
Nn

B

cfn

c exp

and 






 


Tk

EE
Np

B

fnv

v exp

Therefore, 






 








 


Tk

EE

Tk

EEE

N

N

n

n

p

n

B

fifn

B

vcfn

v

c

i

)(2
exp

2
exp

2

2

or 






 


Tk

EE
nn

B

fifn

i exp

Similarly for a p-type semiconductor
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






 


Tk

EE
np

B

fpfi

i exp

Thus the shift in the Fermi level in the n and p types of semiconductor can be expressed

as

















lnand

ln

i

Bfpfi

j

Bfifn

n

p
TkEE

n

n
TkEE

Fig 15.4.1 represents the shift in the Fermi level in the n and p type semiconductors.

15.7 Temperature dependence of electrical conductivity:

We refer back to relation (15.5) according to which the conductivity depends on the

carrier density and the mobility as

 = |e| (nn + pp) ------------------- (15.28)

The aim of this section can be fulfilled by establishing how the concentration and the

mobility of electrons and holes vary with temperature. The temperature dependence of

carrier concentration was treated in Section (15.5). Here, we set out to determine the

temperature dependence of mobility. Then, the temperature dependence of conductivity

will be interpreted by comparing the two contributions. The conduction in

semiconductors differs from the metallic conduction in the sense that electrons near the

Fermi level contribute to the metallic conductivity whereas in semiconductors electrons

near the bottom of the conduction band and holes near the top of the valence band take

part in the process. There are no charge carriers near the Fermi level in semiconductors.

In the approximation where the Fermi statistics can be replaced by Boltzmann statistics

for non-degenerate semiconductors, the Boltzmann equation is solved to get to the

expression for mobility of charge carriers. On demand of simplicity we present here only

a qualitative description of the scattering processes in which electrons and holes by and

n-type p-type

Fig 15.4.1 Shift in the Fermi level in the n- and p-types of semiconductors.

fnE

fpEfiE fiE
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large behave similarly. Several simplifications of the exact expression for mobility lead

to the result.

   -------------- (15.29)

where  is the relaxation time defined by the relation
thv


 where is the electron

mean free path and vth is thermal velocity of electron.

Since  is proportional to the average time between successive collisions,

 v


1
----------------- (15.30)

where  denotes the scattering cross-section of electrons and holes at a scattering centre.

Relation (15.30) gives a measure of the scattering probability with v treated as thermal

average over all electron or hole velocities in the lower conduction band or upper valence

band. The use of Boltzmann statistics in semiconductors gives

Tv  ----------------- (15.31)

Phonons happen to be the prominent source of carrier scattering in crystals. It is simpler

to calculate the phonon scattering cross-section L for acoustic phonons, (T >> D),

where D is the Debye temperature. This gives the dependence,

L  T (L stand for lattice or phonons) ------------------ (15.32)

Making use of (15.30), (15.31) and (15.32), we have from (15.29)

L  T–3/2 ------------------ (15.33)

In semiconductors, centers of ionized donors and acceptors serve as another important

source of scattering. As an electron or a hole approaches such a centre, it experiences a

Coulomb force and suffers scattering similar to Rutherford scattering. A rigorous

treatment shows that

1  v – 4 ------------------ (15.34)

where I stands for ionized impurity. Therefore, with the use of (15.30), (15.31) and

(15.34) in (15.29), we get

I  T–3/2 ------------------ (15.35)

For one type of carriers, say electrons, we can write contributions of phonons and ionized

impurities to resistivity as
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II

I

LL

L

11
and

11







nene
 ---------------- (15.36)

Applying the Matthiessen’s rule, the total resistivity is written as











IL

1111




nene
---------------- (15.37)

or

IL

111


 ------------------ (15.38)

A qualitative display of the temperature dependence of mobility in an extrinsic

semiconductor is made in fig 15.5.

The variation of conductivity  as a function of temperature is plotted for six samples

of n-type germanium in fig 15.6. The conductivity shows a maximum in the exhaustion

range where the electron concentration n becomes almost constant. The behaviour of 

in this range is governed by the characteristic temperature dependence of mobility as

shown in fig 15.5. In the intrinsic range (at high temperatures) and in the freeze-out (at

low temperatures), the variation in  is effectively controlled by the exponential

dependence of concentration n on temperature. The temperature dependence of mobility

has been derived from the curves of fig 15.6 and the Hall measurements. The donor

concentration ND in six samples ranges from 1013 to 1018 cm–3. The mobility in the purest

crystal with ND ≃ 1013 cm–3 shows ideal T –3/2 dependence whereas in a sample with

increasing values of ND the mobility approaches the expected T 3/2 behaviour. Typical

orders of electron and hole mobilities in some important semiconductors are given in

Table 15.3.

lo
g


log T

~ T+3/2 ~ T–3/2

Due to
ionized
defects

Due to
phonons

Fig 15.5 Qualitative temperature dependence of the mobility contributions from charged
impurities and phonons.
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15.8 Hall Effect

Suppose a semiconductor crystal carries a current of density jx along the x-direction

under the action of a steady electric field Ex directed along the x-direction. When a

Crystal Crystal
Mobility (cm2/V. s) Mobility (cm2/V. s)

Electrons ElectronsHoles Holes

Si

Ge

GaAs

GaSb

AlAs

AlSb

InSb

InAs

InP

PbSe

PbTe

SiC

1350

3600

8000

5000

280

900

480

1800

300

1000

__

400

800

30,000

4500

1020

2500

100

450

450

100

930

1000

10 – 20

Table 15.3 Typical order of carrier mobilities at room temperature in some important

semiconductors.

ND ~ 1013cm–3

ND ~ 1018cm–3

n–Ge

(1)

(2)

(3)

(4)

(5)

(6)

300 78 33.3 14.3 1020.4
1000

100

10

1

0.1

0.01

0.001
0 0.02 0.04 0.06 0.08 0.1

Reciprocal temperature, T–1 (K–1)

C
o

n
du

ct
iv

it
y

,


(o
hm

–1
cm

–1
)

Temperature (K)

Fig 15.6 Observed conductivity behaviour as a function of temperature for six samples
of n-type germanium.
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steady magnetic field Bz is applied along the z-direction, a Hall voltage develops between

the crystal’s faces along the y-direction due to the deflection of charge carriers by the

Lorentz force. The geometry of the experimental set-up is drawn in fig 15.7. If the

corresponding Hall electric field be denoted by Ey, the Hall coefficient is expressed as

z

H
Bj

E
R

x

y
 ---------------- (15.39)

For metals, where the current is generally carried by electrons, RH in small magnetic

fields is related to the election density n by

ne

r
R H ---------------- (15.40)

where r is called the Hall factor. Its value is usually close to unity. It is exactly equal to

1 if all electrons move at the same speed as is true in respect of the Drude model, or in

respect of the degenerate electron gas in which all electrons move with Fermi velocity.

The value of r was found as 3/8 (= 1.18) in the Lorentz model.

In semiconductors, things are somewhat different as every crystal in principle can

have both types of charge carriers. Nevertheless, the Hall factor remains close to unit for

both electrons and holes. The n-type and p-type crystals are quickly differentiated since

the sign of the Hall voltage is opposite in the two cases as may easily be made out from

fig 15.7. When both electrons and holes are present simultaneously, a partial

recombination of electrons and holes occurs on the crystal face onto which both are

reflected. As a result of this, the Hall voltage is reduced and its sign refers to the sign of

majority carriers. From the measured value of RH on the basis of (15.39), we can

+ +
++++++

x

y

z

Holes (p-type)

Bz

Ey Ex

Jx
 


 

x

y

z

Electrons (n-type)
Bz

Ey Ex

Jx

Fig 15.7 Directions of the applied electric and magnetic fields (E and B
respectively) relative to the direction of current flow in two samples of a
semiconductor. The current density j is along the x-direction. Note that the
polarity of the Hall voltage is opposite in p- and n-type samples.
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estimate the concentration of majority carriers using (15.40). However, the most general

expression for RH in semiconductors is found as

)( np

n
2
np

2
p

H




npe

rnrp
R




 ---------------- (15.41)

where all symbols have their usual meaning.

15.9 Summary

The standard method of increasing the conductivity of an intrinsic material is to add to it

a suitable impurity or electrically active element in small concentration. The method is

known as doping. Impurities that enhance the carrier density by contributing additional

electrons to the conduction band are called donors and those which create additional

holes in the valence band are known as acceptors.

When pure crystals of Si and Ge are doped with any element from Group III (e.g. B, Al,

In), p-type semiconductors are formed.

The energy of the impurity atom
22

4

2

*

nk

em
E

B

n 

The conduction electron concentration (n) in extrinsic semiconductor at high temperature

is equal to the donor concentration (Nd).

dBgf NTkEEnn  ]/)exp[(0

and at low temperatures








 


Tk

EE
nNn

B

g

d
2

exp)()(
22/1

0
2/1 .

Conduction occurs even in the impurity band as soon as ionized donors are available to

initiate the hopping of electrons from donor to donor. It is a well-established mechanism

of conduction in extrinsic semiconductors and is known as hopping conduction.

Silver
Copper
Gold
Sodium
Aluminium
Lithium
Zinc
Cadmium

–0.84
–0.55
–0.71
–2.50
–0.31
–1.70
+0.30
+0.60

Rn(Vm3 A–1wb–1) in10–10

0.0056
0.0032
0.0030
0.0052
0.0012
0.0018
0.0060
0.0080

 (m2 V–1s–1)Metal

Table 15.4 Hall coefficient and mobilities for some metals at 300 K
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The elements used for doping to convert these materials into p-type are from Group III

(e.g. B, Al, Ga, In) with sp3 electronic configuration of the outermost shell.

The case of an extrinsic semiconductor in which both donors and acceptors are present is

difficult to handle. Because of this reason we consider a pure n-type semiconductor and

calculate its carrier concentration that is contributed by donors alone. Generally, every n-

type material has a few acceptors and every p-type material has a few donors because of

practical limitations on growing 100 per cent pure crystals. But the concentration of

naturally present impurities in a pure crystal is expected to be negligibly small compared

to the concentration of the impurity doped.

the conductivity depends on the carrier density and the mobility as

 = |e| (nn + pp)
Donor impurities lead to an excess of electrons over holes and acceptor impurities lead to

an excess of holes over electrons. In an instrinsic semiconductor the number of electrons

is equal to the number of holes.

15.10 Key words

Doping – Donors – Acceptors – Pentavalent – Impurity – n-type semiconductor – p-type

semiconductor – Hopping conduction – Inter band excitation – Localized electrons –

Extrinsic carrier densities – Electron and hole mobilities.

15.11 Review questions

1. Indicate with the help of diagram how Fermi level changes as a function of

temperature in an n-type semiconductor.

2. Derive an expression relating to shift in the Fermi level and carrier density in an

extrinsic semiconductor.

3. In an n-type semiconductor the Fermi level lies 0.3 eV, below the conduction

band at 300 K. With the temperature is increased to 330 K, find the new position

of Fermi level.

4. Assuming a valence band above which there are na acceptor levels per unit

volume, derive an expression for the Fermi level and for the density of free holes

in the valence band as function of T.

5. If the Fermi level in a semiconductor lies more than a few kT below the bottom of

the conduction band and more than a few kT above the top of the valence band,
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show that the product of the number of free electrons and the number of free holes

per cm3 is given by
kTE

e
geTnn

/3311033.2


 where the Eg is the gap width.

Note that this holds irrespective of the presence of donors or acceptors in the gap,

as long as the condition imposed on the Fermi level is satisfied.

6. Prove that the minimum conductivity of an extrinsic semiconductor is given by

2/1)(2 pnin  

7. Show that the conductivity minimum occurs when
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8. (a) For an n-type semiconductor, show that














d

BcF
N

n
TkEE 0ln

(b) For a p-type semiconductor, show that












a

BvF
N

p
TkEE 0ln

9. (a) Describe any one experimental technique for determining the band gap of a p-

type semiconductor.

(b) State the conditions under which the Fermi level of an extrinsic semiconductor

can move inside either valence or conduction band.

(c) What are degenerate semiconductors? How does their conductivity vary with

temperature?

10. Discuss the Hall effect. Explain how the measurement of Hall coefficient helps

one to determine the mobility and sign of charge carriers.
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4. Solid State Physics by S.O. Pillai (New Age)
5. Solid State Physics by C. Kittel (Asia Publishing House)
6. Solid State Physics by S.L. Kakani and C.Hemrajani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)
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UNIT – IV LESSON: 16

JUNCTION DEVICES

Aim: To study the properties of p-n junction and understand the working of other

junction devices

Objectives:

 To understand the working of p-n junction and junction based semiconductor devices.

 To understand the principle of quantum hall effect

Structure:

16.1 p-n junction

16.2 Some examples of p-n junction

16.2.1 Junction rectifier

16.2.2 Junction transistor

16.2.3 The tunnel diode

16.2.4 Photo diodes

16.2.5 The injection laser

16.3 Thermo electric effects

16.4 Quantum Hall effect

16.5 Summary

16.6 Key words

16.7 Review questions

16.8 Text and reference books
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Introduction:

The comparative ease with which the electrical characteristic of semiconductors can

be monitored by controlling the traces of impurities being doped is simply striking.

Because of this property, semiconductors have emerged as the indispensable material

base for the development of Solid State Electronics. The dramatic and extensive

technological consequences of this property have given a tremendous boost to the

commercial interest in semiconductors.

16.1 The p-n Junction:

It is of significance to note that semiconductor devices generally exploit the

characteristics of inhomogeneous semiconductors in which the donor and acceptor

concentrations are not uniform. A common form in which they are used contains two

separate n and p type regions with an abrupt partition boundary (a junction) within a

single crystalline sample. This junction is known as the p-n junction. There can be more

than one junction in some devices. Characteristics of the p-n junction are crucial to the

fabrication and working of most of the semiconductor devices. It is an essential

component of the present electronics circuitry ranging from a simple rectifier circuit to

transistor circuits and integrated circuit used in sophisticated appliances like modern

computer. On the other hand, optical applications such as photo cell, LEDs and injection

lasers (laser diodes) are equally important today in view of the rapidly upcoming field of

opto-electronics. In this lesson we learn about the salient features of the working of a

selected few devices. Consider a p-n junction, for example of a Si crystal whose left

half is p-type and the right side is n-type. A p-n junction is never made by simply joining

the two types of a material. In actual practice a p-n junction is formed during the crystal-

growing process, diffused or alloyed. Other methods of actual junction formation are also

used.

Nonetheless, the supposition that a piece of n-type and a piece of p-type material are

brought into intimate contact helps in determining the electrostatic conditions present at a

junction. When the two regions are treated as isolated, the levels of Fermi energy in the

two regions are at different positions on the common energy scale [fig 16.1(a)]. Since the

two regions are parts of the same crystal, the Fermi energy (representing the

electrochemical potential in semiconductors) must have the same value in both halves in
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the state of thermal equilibrium. Near T ≃ 0 K the position of the Fermi level is near the

acceptor level in the p-region and near the donor level in the n-region.

Because the impurity levels are at the extremes of the gap, the Fermi level would not

have maintained a constant level unless the bending of conduction and valence band

edges occurred in the transition zone. [fig 16.1(b)]. Immediately after the junction

comes into existence, electrons from the n-region begin to diffuse into the p-region and

combine with the holes present in the vicinity of acceptors. This leaves behind the

positively charged donors in the n-region and produces negatively charged acceptors in

the p-region. The immobile ionized impurities are considered to form a charged double

layer of space charges across the junction in the doping profile [fig 16.1(c)]. The charged

donors and acceptors create an electric field across the transition region whose direction

is such as to oppose the diffusion of free charge carriers. Therefore, in the absence of any
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Fig 16.1 (a) Relative positions of the conduction and valence band edges, the donor and
acceptor levels; and the Fermi level in a p-n junction in the state of thermal equilibrium
when p-and n-type regions are treated as isolated. (b) All the above positions when the
p- and n-type regions are brought in contact. (c) The space charge distribution at p-n
junction. When the effect of the mobile carriers is neglected, i.e. lN ND = lpNA. (d)
Variation of the space charge electric field E across the junction plane (x = 0).
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external field the diffusion current stops as soon as the field of ionized impurities

becomes big enough just to keep the diffusion in complete check. The electric field in

question is basically interpreted as the consequence of a macroscopic potential V(x)

varying over the transition region. In a one-dimensional model with an abrupt change

from p-type to n-type at x = 0, the potential V(x) is related to the space charge by the

Poisson equation.
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-------------- (16.1)

where the subscripts n and p refer to concentrations in the n- and p-type regions,

respectively, and –lp < x < lN defines the space charge region.

The exact solution of (16.1) is almost impossible, since the carrier concentrations

depend on position. To make the solution feasible, we simplify (16.1) by assuming that

the electric field is strong enough to keep all mobile free carriers away from the space

charge region. The variation of electric field E across the junction is shown in Fig

16.1(d). It is maximum at x = 0. Thus the density of space charge is given by simply


DN in the n-region and by 

AN in the p-region. This approximation is good except at the

boundary of the space charge region for a small current across the junction. In this

assumption the space charge region is depleted of free carriers and, therefore, is also

identified as the depletion layer. The relation (16.1) is solved under the boundary

conditions:

0
dx

dV
at x = lN and x = – lp

with
dx

dV
continuous at x = 0 and V(lN) –V(–lp) = VB, where VB is the height of the

potential step, known as the barrier height. It is also called the diffusion voltage.

Well outside the space charge zone, 
DN and 

AN are compensated by equally large

free carrier concentrations nn and pp, respectively. In accordance with the type of doping,

electrons serve as majority carriers in the n-type region and holes as majority carriers in

the p-type region. There may always be present small concentration of holes in the n-
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region (pn) and of electrons in p-region (np), contributed by the naturally occurring

impurities in the host crystal.

An estimate of VB is made in terms of carrier concentrations in the state of thermal

equilibrium. These concentrations are given by (15.16a) and (15.17a) which we rewrite

below:






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 


Tk

E
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n
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B

Fc )(
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
-------------- (16.2a)
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
-------------- (16.2a)

Their relationship with the intrinsic concentration ni is then given by








 


Tk

EE
NNpnn

nn

nni

B

vc2 )(
exp)c()v( -------------- (16.3)

Here nEc , nEv , pEv are conduction band edges (in the n-region) and valence band edges

(in the n- and p-regions), respectively [see fig 16.2(b)].

From (16.2b), we have











)v(
lnBFv

N

p
TkE

pp  -------------- (16.4)

likewise,











)v(
lnBFv

N

p
TkE nn  -------------- (16.5)

Subtracting (16.5) from (16.4) and using (16.3), we get













2Bvv ln
i

npnp

n

np
TkEE -------------- (16.6)

But VB is equal to the difference between the maximum and minimum of the

macroscopic potential V(x). Hence,









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











2

B
B ln

i

np

n

np

e

Tk
V -------------- (16.7)

Other important properties of a p-n junction are the maximum value of the electric

field Ex and the space charge width l(=lN + lp). The expressions for them can be obtained

from (16.1).
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When an external steady voltage is applied across a p-n junction, the barrier step

height changes. In a forward-biased configuration it decreases to value,

VBF = VB – Vext -------------- (16.8)
Where Vext denotes the applied voltage.

The ‘flow of current changes’ in the band edges and the Fermi level are depicted in fig

16.2(a).

On the other hand, for a reverse-biased connection in contrast to the forward-biased

case, the direction of the applied field does not favour the flow of majority carriers across

the junction, thus increasing the barrier height to

VBR = VB + Vext -------------- (16.9)
the electronic conduction and changes in the band scheme structure are illustrated in fig

16.2(b).

In the forward-biased configuration the current is carried by majority carriers and is of

the order of a few mA which is much higher than that in the reverse-biased case (~A).

The current in a reverse-biased junction is low as it is contributed by the flow of minority

carriers that are relatively very small in number and are required to cross a higher

potential barrier. The property that a p-n junction favours the flow of current in one

direction across the junction forms the basis for using it as a rectifier. The knowledge of

voltage-current characteristics of a p-n junction is crucial in order to understand the

behaviour of the p-n junction for the desired application.

Fig 16.2 Qualitative behaviour of the Fermi level and the electron potential
energy at points near the p-n junction when (a) a forward bias of Vext volt is
applied, (b) a reverse bias of Vext volt is applied.
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It may again be reminded that there are numerous devices that make use of

homogeneous semiconductors. Perhaps, the simplest of them is a thermistor which is

used as a standard temperature measuring device.

16.2 Some examples of p-n junction:

The p-n junction based devices have acquired such a tremendous technological potential

that even their listing is quite a formidable task. We now study the salient features of

some important devices..

16.2.1 Junction rectifier

A p-n junction acts as a rectifier. A large current will flow if we apply a voltage across

the junction in one direction, but if the voltage is in the opposite direction only a small

current will flow. If an alternating voltage is applied across the junction, the current will

flow in one direction, i.e the junction has rectified the current. The biasing arrangements

and the variation of depletion region with biasing voltage is shown in fig 16.3. The

current – voltage (I-V) characteristic is shown in fig 16.4. We may see from the curve

that it depicts a nearly saturation current in the reverse bias condition and a current which

rises with the rise of potential in the forward bias condition.

16.3 The p-n junction (a) No external bias (b) Reverse bias (c) Forward bias,
Schematic representation, circuit diagram and potential diagram.
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Let us first consider that no external potential is applied across the junction and it is in

thermal equilibrium. In the thermal equilibrium there will be a small flow of electrons Jnr

from the n region into the p region where they get anhilated by combining with holes.

This recombination current is balanced by a current Jng of electrons generated thermally

in the p region and which diffuse to the n- region

Jnp = -Jng

Otherwise electrons would pile up on one side of the barrier. A similar argument holds

for hole fluxes Jpr and Jpg.

Let us now calculate the current across the p-n junction in the reverse and forward bias

cases. Assuming the Maxwell-Boltzmann statistics are valid, one can easily write the

expression for electrons having sufficient energy to surmount the junction potential

barrier as proportional to











Tk

eV

B

TkVe B 0/)( exp(const)00e

Accordingly, one expects Jnr to be proportional to the Boltzmann factor exp [eV0/kBT].

The recombination current is reduced by the Boltzmann factor, i.e.

Jnr = Jng exp [eV0/kBT]

Similarly, for holes

Jpr = Jpg exp [eV0/kBT]

16.4 Current voltage characteristics of a p-n junction rectifier.
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The Boltzmann factor controls the number of electrons with enough energy to get over

the barrier. We must remember that the holes prefer to be at the top of the potential

barrier whereas the electrons prefer to be at the bottom of the barrier. Now














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 1exp 0
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JJJJ

B

ngnrngn
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
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

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






 1exp 0

Tk

eV
JJJJ

B

pgpgprp

The total current density due to both the electrons and the holes, across the p-n junction is

thus given by
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JJJJeI

BB

ngpgnp --------------- (16.10)

Here I0 = e(Jpg + Jng) is called the maximum or the saturation current. Eqn. (16.10) is

well satisfied for p-n junctions in germanium and is called the rectifier equation. From

(16.10) one can easily write the current relations for forward and reverse bias cases, i.e.















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
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(Forward bias)
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
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eV
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(Reserve bias) --------------- (16.11)

In the reverse bias case, however, exp ,4for1 0
0 TkeV
Tk

eV
B

B









 and clearly I  I0,

the saturation value. It is of interest to note that the saturation current is of the order of a

few milli-amperes per sq. cm of the junction area and remains almost steady at about this

value until the voltage reaches a value sufficient to cause the breakdown of the function

as shown in fig. 16.4. The breakdown may not occur until the reverse bias voltage

reaches some hundreds of volts. In certain functions breakdown may occur even earlier.

The maximum permissible forward current in a p-n junction is many amperes per square

cm and occurs for a voltage of only a few volts.

16.2.2 Junction transistor:

A junction transistor is a three-terminal device, analogous to a vacuum triode. Like a

vacuum triode, the transistor utilizes one of the elements to control or modulate the flow
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of charges through the whole device. The three elements in the transistor are emitter,

base and collector. The names are suggestive of the functions each performs. The

emitter injects charge carriers into the base, which in turn controls the number of these

carriers that are eventually gathered up by the collector.

This action is based on the fact that the transistor is actually a sandwich of two p-n

junctions: the emitter base junction and the collector base junction. The emitter and

collector are always doped by the same impurity. They may both be p-type or both be n-

type, while the base always has opposite doping as shown in fig. 16.5. In npn transistors,

the emitter and collector are n-type and the base is p-type; while in pnp transistors the

emitter and collector are p-type and the base is n-type. This is a direct consequence of

the fact that a semi-conductor material is capable of sustaining a current due to the

motion of both positive as well as negative charge carriers. It should be noted that in

schematic symbols for the npn and pnp transistors the only difference is the direction of

the arrow on the emitter terminal. This arrow identifies the actual direction of the emitter

current, and is always from p-to n-material. Therefore, it is a means by which one may

identify two types of transistors.

Fig 16.5(a) and 16.5(b) shows an n-p-n transistor and its energy band model when

unbiased respectively. Fig 16.6(a) and (b) shows an n-p-n transistor biased as an

amplifier and its energy band model respectively.

Transistor amplification is possible because a small signal applied to the base of the

transistor can control a large current flow between the emitter and the collector. The

n n np pp

Emitter Base Collector CollectorBaseEmitter

Emitter Collector

Base

npn type

Emitter Collector

Base

pnp type

Fig 16.5 An npn and pnp transistor with their circuit symbols.
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simple common base configuration as shown in fig 16.6 is the best for analyzing

transistor amplification effect. A positive voltage called forward bias is applied to the

left hand n-p junction by a small battery of about 1.5V through a resistor Ri of perhaps

50 across which a signal can be developed. A negative voltage called reverse bias is

applied to the right hand junction by a battery, perhaps 9V, through a large resistor Rc of

some 10,000 , across which amplified signals can be developed. From our knowledge

of the junction, it follows that electrons will flow from the emitter into the base material;

but electrons cannot flow from the base terminal to the collector. Now, if the base is

thick, 0.25 cm or more, these electrons would flow about the emitter circuit and will not

be sensed by the collector circuit. But if the base is thin enough, then what follows is the

principle of transistor amplification.

Electrons emitted into the base find themselves in a region with small electric field;

they diffuse rather randomly and may ultimately find themselves in the strong field of the

reverse-biased junction. At this point they are swept through a collector junction and

drawn through the collector circuit, producing a voltage across the output resistor Rc,
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Fig 16.5(a) An n-p-n transistor, (b) Energy band model of an n-p-n
transistor when unbiased .
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Fig 16.6 (a) An n-p-n transistor biased as an amplifier,
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which is an amplified replica of the signal applied to the base. For a sufficiently thin

base, a large fraction of the electrons (~99% or more) emitted by the forward-bias

junction pass through the collector, and the efficiency of the device is high.

The gain of the transistor can be obtained as follows. Since the forward resistance of

the emitter is low compared with Ri, any input signal Vi developed across Ri produces a

forward current ii = Vi/Ri. The collector current ic, passing through the resistor Rc,

produces an output voltage Vc = ic Rc. If ic = ii i.e., if the current efficiency is 100%, then

the voltage gain Vc/Vi is given by Rc/Ri. We must note that the high resistance of the

reverse biased collector does not enter into the calculation; and the power generated in

the output resistor is derived from the collector-biasing battery.

A p-n-p transistor operates in the same way as the n-p-n transistor we have just

described, but the bias voltage is reversed. Since the transistor requires biasing, it does

consume some power, but the consumption is much less than that of a vacuum tube.

Heavily doped p-n junctions:

16.2.3 The Tunnel Diode:

Tunneling is a well-founded concept in quantum mechanics. The electron tunneling at

a p-n junction implies that electrons reach the other side of the junction by penetrating

through the potential wall at the junction. It should not be confused with the act of

crossing or jumping over the potential hill. It is purely a quantum statistical phenomenon

based on the concept that the electron has a finite probability of being found on either

side of the junction.

For tunneling to occur, the width of the space charge layer (or the depletion layer)

should be of the order of, or less than, the electron mean free path. The width of the

space charge can be reduced to this value by doping both regions of the p-n junction

heavily. A p-n junction that is doped heavily enough to make the tunnel current greater

than the usual diffusion current under certain conditions is called a tunnel diode. The

width of the space charge layer in these diodes is usually less than 100 Å. The impurity

concentrations are in the range 1019–1020cm–3, whereas in ordinary p-n junctions they

vary between 1014 and 1018cm–3.

The material of a tunnel diode behaves as a degenerate semiconductor. The Fermi

level F no more lies in the gap. Instead, it lies within the valence band of the p-region
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and the conduction band of the n-region. We say that the Fermi level lies in a hybrid

impurity-intrinsic band. Though a small width for the space charge layer is essential, it is

not a sufficient condition for tunneling. There must be an unoccupied state on the other

side of the junction into which an electron could tunnel at constant energy.

Figure 16.7(a) shows the state of an unbiased junction where the Fermi level has the

same energy in both the regions of the junction. Let us first examine tunneling in a

reverse-biased junction as shown in fig 16.7(b). When a small reverse bias voltage Vext is

applied, the height of the barrier step becomes much more than VB. On account of this,

the Fermi level has different values in the regions and at large values of Vext a large

number of occupied states of the valence band on the p-side of the depletion region lie

opposite even to a larger number of empty states of the conduction band on n-side. The

band picture is similar to that in a metal. When lT is of the order of the electron

wavelength or less, the junction has ideal conditions for electron tunneling. At higher

values of Vext the tunnel current can be quite large because of the enhanced level of

overlap between the occupied and empty states as referred above. The probability of

tunneling is given as

Pt ~ exp (– klT) -------------- (16.12)

where k is the electron wavevector.

For a simple band structure of geometry as shown in fig (16.7(b)),

eE

E
l

g

T  ------------------ (16.13)

Substituting this value of lT in (16.12), we get
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Here E is an average value of the electric field at the junction which generally does not

deviate much from Emax. Owing to the tunnel current, there is a quick onset of a critical

reverse voltage. This property enables a reverse-biased tunnel diode to be used as a

voltage regulator. These tunnel diodes are known as Zener diodes. The relation (16.14)

provides a good description of tunneling in a Zener diode.

Now, we proceed to describe the other important tunnel diode that is used in the

forward-biased configuration [Fig 16.7(c)]. This is again a heavily doped p-n junction,
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known as the Esaki diode. If one approaches the forward-biased state from the reverse-

biased condition, by decreasing Vext, the tunnel current is on decrease and becomes zero

at Vext = 0.
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Fig 16. 7 (a) An unbiased tunnel diode in the state of thermal equilibrium. (b) A reverse-
biased tunnel diode with different values of Fermi energy on the two sides of the
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The decrease in current occurs because of the reducing level of overlap at lower values of

Vext between the regions of occupied states in the valence band of the p-side and the

unoccupied states in the conduction band of the n-side [Fig 16.7(b)]. When unbiased

(Vext = 0) there is no current at T = 0. At non-zero temperatures in this condition almost

an equal small number of electrons tunnel from both sides of the junction keeping the

current at zero value. The V-I characteristics of a tunnel diode are drawn in Fig 16.7(e).

The portion AO refers to a reverse biased junction.

The characteristic curve beyond the point O describes the V-I relationship in an Esaki

diode. As the forward voltage grows from zero to a certain value, the current keeps on

increasing and approaches a maximum value. During this rise in the applied voltage, the

Fermi level P
F dips towards the conduction band edge of the n-side ( nEc ) and n

F rises

towards the valence band edge on p-side ( pEv ) as shown in fig 16.7(c). In the state of the

maximum overlap of interest, the maximum tunnel current results. With a further

increase in the applied voltage, the Fermi levels maintain the trend of dipping and rising

in p- and n-regions, respectively. For the present band structure, the above change in

Fermi levels is accompanied by reduction in the degree of overlap under question [fig

16.7 (d)] and therefore the reduction in tunnel current.

The main features of the forward-biased tunnel diode (the Esaki diode) are that the

tunnel current passed through a sharp maximum and then drops to zero [see fig 16.7(e)].

The current is maximum when the forward voltage is about ( P
F + n

F )/2e and vanishes at

about twice this value. In the V-I characteristic curve [Fig 16.7(e)], the portion OB

represents the region of increasing current and the portion BC shows that the current

decreases even when the voltage is being further increased. This is an indication of the

negative resistance. We say that the tunnel diode has a negative resistance in this region.

Beyond the point C there is no tunnel current. The observed rising current is totally

contributed by the normal diffusion current. The current in practice does not drop to zero

but a valley is observed. The most likely source of this excess current lies in the losses

incurred during collisions of electrons with the lattice.

The negative resistance part of the V-I characteristics has been exploited to use an

Esaki diode as a power amplifier or source. In conjunction with a capacitor and an
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inductance it can be made to work as an oscillator and a switch. Switching times are

limited by high capacitance Cj of the thin junction. The times are usually of the order of

nanosecond (10–9 s). The switching time RCj can be brought down to the picosecond

range (10–12 s) by heavy doping that lowers the resistance R considerably.

16.2.4 Photodiodes:

Photodiodes convert light energy incident on them to electrical energy and the effect is

termed as Photovoltaic effect. Photodiodes are used as sources of power (solar cell) and

also as photo detectors.

The principle underlying the photovoltaic effect is straight-forward. Absorption of a

photon in the region of the p-n junction leads to creation of an electron and a hole. Since

the field within the junction is from n-side to p-side, the excess minority carries thus

generated diffuse to the junction where they are carried across and become majority

carriers – the electrons generated on p-side move towards n-side and holes generated on

the n-side move towards p-side. Consequently, for the electrons and holes to recombine

the electrons must go through the external circuit. If there is one external current path,

majority carrier excess charge will be built up on both sides of the junction, with the

result that the step in the built up potential will be reduced as shown in fig 16.8. The

open circuit voltage can never be greater than the energy gap.

If the external circuit is closed, the current will therefore flow in the circuit. The

current in the circuit will flow so long as the semiconductor regions are illuminated i.e.

due to absorption of photons diffusion of excess electrons from n-side and excess holes

+ + + + + + + + +
+ +

+ + + + + + + + +
+ +

+ + + + + + +
+ + + + + + +

EF Excess Holes

e(0 – V0) e 0

Excess electrons

Fig 16.8 Band model picture of a photodiode (……) lines shows
the band edge when it is illuminated and () show the band
edges when it is in darkness.
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from p-side will continue. This explains clearly how the incident light sets up the current

flow in the external circuit.

The ability of an illuminated junction i.e., photodiodes to deliver power is made use of

in a solar cell, used to convert solar energy into electrical energy. Such a solar cell has

indeed been built and operated. The considerations involved in the operation of the solar

cell are (i) power delivered (ii) efficiency of conversion. Presently large area p-n

junctions of silicon are used to convert solar photons to electrical energy. The efficiency

of these solar cells is not as much as one would wish. The conversion efficiency of solar

cells is about 15%. The main problem is of fabricating high quality junctions of large

areas necessary to intercept the maximum amount of incident light. Extensive research is

being made for the search of proper materials.

Photodiodes are also used as radiation detectors. Diodes operated as Detectors of

radiation are all reverse biased. When radiation is incident on the diode, the photo-

generated carriers in the depletion region and in the bulk semiconductors on the either

side of the depletion region move under the influence of the electric field present in the

depletion layer. The increase in reverse current is proportional to the intensity of the

incident radiation.

16.2.5 The Injection Laser:

The laser in which the lasing action is achieved by passing a current through a

forward-biased p-n junction is called an injection laser. It is also referred to as a laser

diode. The injection lasers have the distinction of meeting the requirements of fibre optic

communication systems in the most convenient and effective manner. This has created

tremendous interest in their study and development.

The principle behind the emission of light from a semiconductor is that of the

recombination of electrons and holes at a p-n junction when a current is injected through

the diode. As the current is passed through a forward-biased junction, the injected

electrons and holes increase the density of electrons in the bottom of the conduction band

and holes at the top of the valence band, simultaneously in the same region of space. A

spontaneously emitted photon resulting from electron-hole recombination is fed back into

the system by cleaving or polishing the ends of the junction diode. Under the state of

population inversion the photon interacts with electrons in the conduction band to
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produce simulated emission. The amplification is accomplished by the multiple

reflections at the diode ends. At a certain value of the current, the electron and hole

densities are so large that the rate of stimulated emission becomes greater than the rate of

absorption and thus the process of amplification starts. When the current is increased

further, at a certain threshold value the amplification exceeds the cavity losses and a

coherent radiation is obtained in the output.

The threshold current density in the p-n junction based lasers is inconveniently high

(~ 50,000 A cm–2). This is drastically reduced in practical lasers that employ a double

heterojunction. A heterojunction has two different semiconductor materials on its two

sides. In a double heterojunction a lasing semiconductor is sandwiched between two

wider-gap semiconductors of opposite doping. In a heterojunction laser developed by

Kresel and Butler, the active layer is an undoped Ga1-x Alx As (x = 0.05 – 0.1) which is

embedded between n- and p-type layers of Ga1-y Aly As (y = 0.3 – 0.4). The n- and p-

type layers have the same band gap and the same refractive index. The band gap of the

active layer is lower and characterized by a higher value of the refractive index. This

ensures that the radiation emitted in the active layer is confined within this layer because

of the total internal reflection occurring at its interfaces with the n- and p-type materials.

Furthermore, the electrons from the n-side and the holes from the p-side that enter the

active layer are not allowed by the potential barriers at the junctions to escape into the p-

and n-sides (regions), respectively. This confinement of the light and the carriers results

in amplification and wave guidance. For the high efficiency, materials only with the

direct band gap are selected for fabrication. One of the biggest advantages with this

heterostructure is that the frequency of the laser output can be finely monitored by

varying the composition of the compound. For the present heterostructure there are

two quasi-Fermi levels c
F and v

F referred to the conduction and valence band edges. The

c
F in the optically active layer is on level with the n

F in the n-region and v
F with P

F in

the p-region. The population inversion is achieved by applying a forward voltage that

exceeds the voltage equivalent of the band gap of the active layer. Once the electrons

and holes enter the active layer from n- and p-type regions respectively, they remain

confined in the active layer as explained in the preceding paragraph. The emission of

radiation occurs in the plane of the active layer when an electron from the conduction
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band combines with a hole in the valence band as shown in fig 16.9. The process of

stimulated emission and amplification proceeds the same way as in a p-n junction based

device. The frequency of the emitted radiation is temperature dependent. A typical

GaAs laser emits in the near infrared around 8380 Å.

In the above device structure the carriers and the light are confined only along one

direction. The confinement can also be provided in the lateral direction by surrounding

the optically active layer with higher band gap materials on all sides, leaving a window

for the output

. Such a heterostructure laser is known as the buried heterostructure laser and shown in

fig 16.10. The required threshold current densities (2000 – 4000 A cm–2) are achieved in

this structure for a significantly reduced value of current (< 50 mA), whereas for a stripe-

eV

Ga1 – y AlyAs
Ga1 – y AlyAs

Ga1 – x A1xAs

n
F

Fig 16.9 Double heterojunction GaAs-Al laser.

n-GaAs

n-GaAlAs

p-GaAlAs
Contact

Contact

Output ~1 m

Oxide

n-GaAlAs

n-GaAs substrate

Fig 16. 10 Design structure of a buried Heterojunction laser.
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geometry laser with a standard size cavity the threshold current shoots a little over one

ampere.

The heterostructures described above are fabricated by the successive deposition of

multiepitaxial layers on an appropriate crystalline base (called the substrate). For GaAs

laser, Kressel and Butler used a Si-doped n-type GaAs crystal as the substrate. The

molecular beam epitaxy (MBE) and the metal organic chemical vapour deposition

(MOCVD) techniques are used for the epitaxial growth because the level of precision

obtained with them is rated as the highest toady. The injection lasers as described in this

section are by no means the examples of most recent and versatile lasers, some of which

have very complicated structures such as multiple quantum well structures. Our object

was limited to show that the semiconductor devices have given birth to an altogether new

field (called Photonics) whose promise to effectively replaced Electronics in near future

to a large extent is exemplified by the great efficiency achieved in the field of fibre optic

communication. Though still in its infancy, the subject has a great deal of potential for

the future.

16.3 Thermoelectric effects:

Semiconductors have thermoelectric response many times stronger than metals. The

three main thermoelectric parameters, namely the thermoelectric power S, the Thomson

coefficient T and the Peltier coefficient  in semiconductors may be positive or

negative, depending on whether the semiconductor is of p-type or n-type. We may recall

that these parameters can have only negative sign in ideal conductors. Consider a

semiconductor rod whose one end is hot and the other cold. As far as the algebraic sign

is concerned, the case of an n-type semiconductor is similar to that of ideal conductors.

But electrons at the hot end in a p-type semiconductor occupy acceptor levels on being

excited from the valence band. This enables electrons at the cold end near the top of the

valence band to lower their energy by moving into holes created in the valence band at

the hot end. Thus the hot end becomes negatively charged and the cold end positively

charged. Hence in a p-type semiconductor the parameters S, T and  are all positive.

These arguments lead to a quick method of determining whether a specimen is of n-type

or p-type. All that is needed is to measure the sign of the voltage across the given

specimen whose one end is hot.
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Now, we first consider the above mentioned semiconductor rod in an open circuit,

ensuring that a constant temperature difference is maintained between its ends. In this

condition a constant difference of potential is observed between its end. This potential

difference can be interpreted to be associated with an electric field,

dx

dT
S

dx

dT

dT

dV

dx

dV
E  -------------- (16.15)

Next, we consider a semiconductor rod kept at a constant temperature in a closed circuit.

If an electric current is forced into it at one end from a certain external source, the current

density in an n-type semiconductor may be written as

EneEenj eee   ))(( -------------- (16.16)

where e is the electron mobility in the direction opposite to that of the electric field E

from the external source.

It is appropriate to measure the electron energies relative to the Fermi energy F

because the two materials in contact have a common Fermi level. Therefore, the average

energy transported by electrons is equal to

(Ec – F) +
2

3
kBT --------------- (16.17)

where Ec denotes the energy at the conduction band edge.

The heat current density jQ associated with the electric current density je is given by

ETkEnj eQ  







 BFc

2

3
--------------- (16.18)

an electric current density jx through a conductor along its length at constant temperature

always has a heat current density jQ associated with it such that

jQ  jx or jQ = jx

where  is called Peltier coefficient. This relation can be adopted to the present case as
jQ = e je

Therefore, the Peltier coefficient of an n-type semiconductor is

e

TkE

e

BFc
2

3





---------------- (16.19)

Similarly, for a p-type semiconductor, we have

jh = pehE --------------- (16.20)

ETkEpj hQ  







 BvF

2

3
--------------- (16.21)
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and

e

TkE

h

BvF
2

3





---------------- (16.22)

The Peltier coefficient can be easily determined by measuring the absolute

thermoelectric power to which it is linked by the Kelvin relation  = ST. The  versus T

plots for n-type and p-type specimens of silicon are displayed in fig 16.11. The

significant observation is that the specimens behave as intrinsic semiconductors above

600 K.

Being many times intense than in metals, the thermoelectric effects in semiconductors

are of added interest. For example, the thermoelectric powers of semiconductors are two

orders of magnitude larger than those for non-ferromagnetic metals. The reasons

ascribed to this huge quantitative difference in response are mainly twofold. Firstly, the

carrier density of semiconductors is sensitive to temperature owing to which the hot end

has more conduction electrons or holes per unit volume, depending on whether the

material is of p-type or n-type. Secondly, and more importantly the presence of a

forbidden energy gap in semiconductors proves to be a major cause of the observed

behaviour.

To elaborate on the second reason we examine the quantity of Peltier heat evolved or

absorbed at a metal semiconductor junction. Let a current be flown from an n-type

semiconductor to a metal in contact forming a junction as shown in fig 16.12(a). In an n-
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Fig 16.11 Variation of the Peltier coefficient ( = ST, with S as the absolute
thermoelectric power) of n-type and p-type specimens of silicon as a function of
temperature.
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type semiconductor the majority carriers (electrons) are in the conduction band placed

well above the Fermi level F. On the other hand, most of the electrons in a metal are

near the Fermi level. Because of being in contact, the Fermi energy would be at the same

level in the metal and the semiconductor. Figure 16.12(a) clearly indicates that the

average energy of conduction electrons in the electric current decreases as the same

electric current enters the metal. The difference of electron energies in the two regions is

lost in the form of heat at the junction. Similarly, when a p-type material is in contact

with a metal, heat would be absorbed for the shown direction of electric current because

the majority carriers (holes) in the semiconductor would occupy energy states in the

valence band that are much below the Fermi level (the approximate level of electric

current in metal).

Application:

It is obvious from the above discussion that a thermocouple junction can function as a

heat pump or a refrigerator when an electric current is forced through the thermocouple.

Under the flow of an electric current the thermocouple pumps heat from one junction to

the other. We show below that a p-n junction can serve as a better heat pump or

refrigerator than any common thermocouple junction consisting of two semimetals or

even a junction such as that shown in Fig 16.12(a).

Consider a p-n junction through which an electric current flows as demonstrated in fig

16.12(b). On the n-side the majority carriers are at much higher energy levels than the

Fermi level whereas on the p-side the majority carriers occupy energy states that are

Junction

(a)

Metal

Conduction band

n-type
semiconductor

Current

Fermi
energy

Valence band

Heat

F

Current

n-type

Conduction band

Fermi
energy

Valence band

Junction

(b)

Valence band

p-type

Conduction band

Heat
F

Fig 16.12 (a) Peltier effect at a metal–semiconductor junction. Heat is evolved at the
junction when an electric current flows from an n-type semiconductor to a metal. (b)
Peltier effect at a p-n junction. Relatively large amount of heat is evolved at the
junction in the case of an electric current flowing from the n-region to the p-region.
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much below the Fermi level. Hence, with the flow of electric current in this condition

from the n-region to the p-region a relatively far more energy would appear in the form of

heat at the junction, as compared to that in a junction shown in fig 16.12(a).

In principle, a Peltier heater can be more efficient than an electrical resistance heater.

For the requirement of each kW of heat, an electrical resistance heater must consume one

kW of electrical power that is dissipated. On the other hand, an ideal Peltier heater needs

electrical power only to pump the heat energy from one junction (cold) to the other (hot)

like a refrigerator or heat engine and thus operates at a relatively much smaller power.

But in practice the Peltier pumps are not as efficient as the conventional mechanical heat

pumps. The inefficiency is attributed partly to the heat loss through the thermocouples

from the hot to the cold side and partly to the Joule heating of the thermocouples.

16.4 Quantum Hall effect:

Although the treatment of Hall effect given in Lesson 15 is based on purely classical

considerations, it gives a good account of the electrical transport in metals and

semiconductors. But the classical magnetoconducting scenario undergoes a spectacular

transformation under quantum conditions of temperature and magnetic field in a two-

dimensional conductivity channel. K. von Klitzing, Dorda and Pepper observed that such

a channel is formed at the oxide interface in a metal-oxide-semiconductor (MOS)

transistor when a gate voltage is applied between the metal and the semiconductor, as

shown in fig 16.13. The fascinating aspect of their observation is that the Hall resistance

H varies with the magnetic field according to the following rule.

2H
ie

h
 ---------------- (16.23)

where i is an integer (= 1, 2, 3, ……).

The phenomenon expressed by this rule, where the Hall conductance is quantized in

units of e2/h, is called the Integral Quantum Hall Effect (IQHE).

Metal
SiO2

Silicon

Vg

z

Fig 16.13 A metal-oxide-semiconductor (MOS) transistor.
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In the original experiment a constant current of 1 A was forced to flow between the

source and the drain in the presence of a magnetic field of 18 tesla at 1.5 K. The results

of this experiment are graphically displayed in fig 16.14 and the experimental geometry

is illustrated in fig 16.15(a).

The Hall field versus magnetic field plot in this case is not a straight line (as in the

classical Hall effect). Instead, it shows plateaus with steps in between at certain values of

the magnetic field [see fig 16.15b].

First we show how the observed minima in the longitudinal voltage Vpp can be

explained and relation (16.23) be derived, using only a crude model. Then, we give a

qualitative analysis of real two-dimensional systems in the framework of a general

theory.

Consider a surface current density Jx in the x-direction defined as the current crossing

a line of unit length in the y-direction on the oxide interface (the xy-plane):

Ix = jxLy ------------------ (16.24)

If n is the total electron density per unit area of the xy-plane.

jx = nevd ---------------- (16.25)

with vd as the drift velocity of electrons in the x-direction.

Fig 16.14 The IQHE voltage Vpp and the Hall voltage VH as functions of the gate voltage
Vg. The MSO transistor set-up for the IQHE measurements is shown above the plots.
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In an alternative description of the Hall effect, the current in a specimen with mobile

charge carriers is produced when the specimen is placed in a region of mutually crossed

(perpendicular) electric and magnetic fields. The flow of current in a direction

orthogonal to both the fields is detected on closing the circuit. If the electric field (Ey)

and the magnetic field B act along y- and z-directions, respectively

jx = xxEx + xyEy = xyEy ----------------- (16.26)

(since Ex = 0)
and

B

E
v

y
d ----------------- (16.27)

Here xy denotes the conductivity tensor in the plane of the two-dimensional channel.

Interpreting the resistivity xy as the Hall resistance H.
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x

 H
H ----------------- (16.28)

As follows from relation (16.24), H represents the resistance of a channel of unit

thickness. In the commonly used geometry for the Hall effect, a current is flown along
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Fig 16.15 (a) The IQHE geometry. (b) The IQHE plateaus in the Hall field
for a fixed system current jx. (c) Density of states in a two-dimensional real
system in a strong magnetic field.
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the x-direction in the presence of a magnetic field along the z-direction and the Hall

voltage VH measured along the y-direction in the specimen. The description contained in

relation (16.28) is consistent with this experimental geometry.

We now know that the areas of the successive electron orbits in the k-space in the

presence of a magnetic field B differ by an amount 2eB/ћ. Considering a square of side

L on the xy-plane, the number of states in this area are estimated as

h

BeLLeB 22

2

2























----------------- (16.29)

It gives the number of electron levels that coalesce into a single magnetic level as soon as

even a small magnetic field is switched on. This magnetic level defines a Landau level

whose energies in the xy-plane are quantized as (i + ½) ћc with c = eB/m* ( the

cyclotron frequency). Relation (16.29) gives essentially the measure of degeneracy of a

Landau level. In the present context we define the degeneracy per unit area of the xy-

plane as

h

eB
BD )( ----------------- (16.30)

Let the applied magnetic field be so strong that ћc >> kBT. It is then reasonable to

talk in terms of completely filled or completely empty Landau levels. Suppose Bi is the

critical field at which no level is partly filled and I is the magnetic quantum number of

the highest occupied level. When the electron density on the oxide interface is adjusted

by varying the gate voltage so that the Fermi level coincides with level i,

)( iBDin  ----------------- (16.31)

Under these conditions electrons can undergo neither elastic nor inelastic collisions.

The elastic collisions would involve scattering of electrons from one state to the other in

the same Landau level. But this is not permitted by the Pauli principle, since all possible

final states of equal energy are occupied. The inelastic collisions can be possible with the

scattering of electrons to a vacant Landau level by absorbing the required energy from

some source, most likely phonons. But in the experimental conditions of law temperature

and ћc >> kBT as established here, there are hardly any phonons whose energy could

compare with the large energy interval ћc. Therefore, the inelastic collisions are too
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ruled out and the electron mean free paths are greatly enhanced. This results in the

occurrence of the voltage minima in Vpp (or the longitudinal resistance minima).

Placing the value of D(B) from (16.30) in (16.31), we obtain (16.9):

2H
ie

h
 (in ohms)

Analysis in real systems

The experimental evidence for the Hall resistance being accurately quantized at h/ie2

ohms might apparently suggest that IQHE is independent of purity and crystallinity,

simply because the theory predicting this quantization does not take these aspects into

consideration. But the presence of impurities or microcrystallinity produces disorder,

rendering the crystal potential irregular as a result of which the sharp levels in ideal

systems are broadened into bands in real systems [fig 16.15(c)]. This affects the Hall

resistance to such an extent that its linear variation changes to develop plateaus. In a

two-dimensional system that concerns the present discussion all the electron states are

predicted as localized at any disorder. To the credit of this prediction the IQHE actually

approaches this limit as the magnetic field goes to zero. Therefore, it is logical to believe

that there can exist both the extended and localized types of carrier states in a band. As

per the latest concept of localization, the extended and localized states cannot coexist at

the same energy. The localized states occupy the region of the lowest density of states

forming the mobility gap and do not contribute to the flow of electronic current. The

extended states, on the other hand, appear around the peaks of the density of states [see

fig 16.15(c)].

In light of his thought experiment on a two-dimensional system, Laughlin has

interpreted the IQHE in real systems as a consequence of the principle of gauge

invariance. By analogy with the flux quantization in a superconductor (where the unit of

charge is 2e), the flux quantization in the IQHE (with e as the unit of charge) is

discussed. For a certain increase B in the magnetic field, there is an addition of one flux

quantum that enhances the degeneracy of each Lamdau level by one. Suppose i denotes

the magnetic quantum number of the highest completely filled Landau level. If all

electrons cannot be accommodated up to this level at absolute zero, the Fermi level F

will coincide with the level (i + 1)which is only partially filled.
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With an increase of one flux quantum, each of the Landau levels will have one

additional level in its subband. Consequently, the level (i + 1) will be vacated, since the

electrons in this level can now be accommodated in the newly created lower energy

levels (i in total). Over a fixed range B (equivalent to one flux quantum), during which

the Fermi level remains in a level, a plateau in the Hall resistance is observed. The

increase B equal a magnitude for which at the stage under consideration all the states in

the level (i + 1) are vacated and the Fermi level drops to coincide with the level i. Thus

for each increase of B, a jump to the next plateau takes place. The next plateau refers to

a level with the next lower magnetic quantum number [see fig 16.15(c)].

It is important to assert the role of disorder and localization in the IQHE for real

systems. Given next is a brief discussion conducted in this approach.

The Hall electric field in an ideal system is

e

hvBD
BvRBjBE d

zdzxy

)(
)( H  ----------------- (16.32)

where RH denotes the Hall coefficient.

In a disordered system the degeneracy of states and the electron densities may be split

as

D(B) = DE(B) + DL(B) ------------------- (16.33)

n = nE(B) + nL(B) --------------- (16.34)

where E and L refer to the extended and localized states, respectively.

Then, the Hall field in a disordered system may be expressed as

e

hBvBD
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Where vd(B) stands for the drift velocity in the disordered system.

As observed in a typical IQHE experiment, the current density jx carried by electrons

in the extended states must remain unchanged at the value nevd. Hence,

dd
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
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It implies that nE electrons per unit area carry the current (of density nevd) with a

higher drift velocity to compensate for the loss of current because of the localization of nL

electrons per unit area.
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The DE(B) in a particular band always increases with B, though non-monotonically. It

increases by one, only when a B–increase of B creates an extended state in this band.

We can check that this occurs with probability 1/(v + 1), where

)(

)(
E

L

BD

BD
v 

From (16.21) we see that y(B) can remain unchanged (forming a plateau) with B

whenever vd(B) decreases, provided

DE(B) vd(B) = a constant

But it should be observed that vd(B) increases as well as decreases with B depending on

where the Fermi level F lies in the mobility gap, we will have either (i) vd(B +B) <

vd(B), when an extended state is produced and DE increases in the subbands below F or

(ii) vd(B +B) = vd(B), in between the above events where the Hall field y(B) remains

unchanged and the plateau occurs.

On the other hand, when F falls in the band of extended state we always have vd(B +B)

< vd(B) because DE decreases on account of the downward movement of F. For a

complete treatment, the reader is referred to calculations made elsewhere. The

calculations show that a plateau in the Hall field y(B) is formed within an accuracy of a

few parts in 106D(B)/(v + 1).

In the extreme quantum conditions, i.e. at extremely low temperatures and extremely

high magnetic fields a QHE has been observed for fractional values of i in relation

(16.23). In this limit the lowest Landau level is only partially occupied and the IQHE is

not expected. Some of the fractional values of i for which the Hall resistance has been

observed to be quantized are .
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At these occupancies the longitudinal

Hall resistance xx is found to vanish. This phenomenon is called the Fractional

Quantum Hall Effect (FQHE).

16.5 Summary

Semiconductors have emerged as the indispensable material base for the development of

Solid State Electronics.

Semiconductor devices generally exploit the characteristics of inhomogeneous

semiconductors in which the donor and acceptor concentrations are not uniform. A
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common form in which they are used contains two separate n and p type regions with an

abrupt partition boundary (a junction) within a single crystalline sample. This junction is

known as the p-n junction

Characteristics of the p-n junction are crucial to the fabrication and working of most of

the semiconductor devices. It is an essential component of the present electronics

circuitry ranging from a simple rectifier circuit to transistor circuits and integrated circuit

used in sophisticated appliances like modern computer.

Unbiased p-n junction Barrier step height 











2

B
B ln

i

np

n

np

e

Tk
V

When an external steady voltage is applied across a p-n junction, the barrier step height

changes. In a forward-biased configuration it decreases to value,

VBF = VB – Vext

Where Vext denotes the applied voltage.

For a reverse-biased connection in contrast to the forward-biased case, the direction of

the applied field does not favour the flow of majority carriers across the junction, thus

increasing the barrier height to

VBR = VB + Vext

The property that a p-n junction favours the flow of current in one direction across the

junction forms the basis for using it as a rectifier.

In a junction rectifier the current voltage relationship has the form

 1/
0

0  TkeV BeII

when V0 – is the bias voltage. When this voltage is large in forward direction V0 > 0 the

current is large and increases rapidly with the voltage. But for reverse bias V0 < 0 and

1/0 TkeV Be and I = –I0. The current is now small, and indent of voltage.

A junction transistor comprises of two junctions connected back-to-back. One, called the

emitter, is forward biased and the other, called the collector, is reverse biased.

When an electric signal is applied at the emitter, a corresponding carrier pulse passes

through the base and the collector, and the amplified signal is picked up at a load resistor

inserted into collector circuit.

Photo diodes convert light energy into electrical energy and are used as sources of power

(solar cell) and also as photo detectors.
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A p-n junction that is doped heavily enough to make the tunnel current greater than the

usual diffusion current under certain conditions is called a tunnel diode.

The material of a tunnel diode behaves as a degenerate semiconductor. The Fermi level

F no more lies in the gap. Instead, it lies within the valence band of the p-region and the

conduction band of the n-region.

This property enables a reverse-biased tunnel diode to be used as a voltage regulator.

These tunnel diodes are known as Zener diodes.

The main features of the forward-biased tunnel diode (the Esaki diode) are that the tunnel

current passed through a sharp maximum and then drops to zero.

The laser in which the lasing action is achieved by passing a current through a

forward-biased p-n junction is called an injection laser. It is also referred to as a laser

diode. The injection lasers have the distinction of meeting the requirements of fibre optic

communication systems in the most convenient and effective manner. This has created

tremendous interest in their study and development.

Semiconductors have thermoelectric response many times stronger than metals.

In a p-type semiconductor the parameters S, T and  are all positive.

A p-n junction can serve as a better heat pump or refrigerator than any common

thermocouple junction consisting of two semimetals.

Magnetoconducting scenario undergoes a spectacular transformation under quantum

conditions of temperature and magnetic field in a two-dimensional conductivity channel.

Under quntum conditions the Hall resistance H varies with the magnetic field according

to the following rule.

2H
ie

h


where i is an integer (= 1, 2, 3, ……).

The phenomenon expressed by this rule, where the Hall conductance is quantized in

units of e2/h, is called the Integral Quantum Hall Effect (IQHE).

16.6 Key words
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Thermo electric power – Thomson coefficient – Peltier coefficient – Integral Quantum

Hall effect – Flux quantization – Fractional Quantum Hall effect

16.7 Review questions

1. Describe the effect on space charge width at a p-n junction when the junction is a)

forward biased b) when reverse biased.

2. Describe transistor action with the help of band diagram.

3. Describe the volt-ampere characteristic of Tunnel diode.

4. Explain the mechanism whereby a p-n junction when illuminated delivers electrical

energy to a circuit.

5. Explain why Isaki diodes do not show high electrical conductivity in spite of

having very large carrier concentrations.

6. Describe briefly Hall effect, Integral Quantum Hall effect and fractional Hall

effect.
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