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Elements of Crystallography

Aim: Tointroduce elements of crystallography.
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» To learn about the classification of solids based on order in the arrangement of atoms
or molecules.

» Togaininsight on the concept of lattice and periodicity in lattices and the symmetry
considerations.

» To know about different types of unit cells of acrystal.

» To learn about Bravaislattices and classification of these in to crystal classes.
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1.1 Classification of Solid materials:

Matter is usually regarded to exist in the Solid State or in Fluid State. The fluid
state is further divided into liquid and gaseous states. However, on the basis of modern
concept, the matter is more conveniently divided into the condensed state and the gaseous
state. The former state is subdivided into solid and liquid states. The word ”Solid”
means any material whose constituent particles are relatively fixed in position. (Except
for thermal vibration). A solid appears as a continuous rigid body.

Experiments on solids proved they are composed of discrete basic units (atoms).
In some solids the atoms are not distributed randomly, but are arranged in a highly
ordered manner relative to each other.  Such group of ordered atoms is known as
“crystal”. There are several types of crystalline structures, depending on the geometry of
the atomic arrangement. So, solids are classified on the basis of their degree and type of
order. There are 3 classes.

1. Crystaline
2. Semi-crystalline (poly-crystalline)
3. Non-crystaline (Amorphous).

1.2 Single and Poly crystalline materials:; -

In general a solid is said to be crystal if the constituent particles (i.e. atoms, ions
(or) molecules) are arranged in a three dimensional periodic manner. The regularity in
the appearance of the crystal found in nature (or) grown in laboratory has led to believe
that crystals are formed by a regular repetition of identical building blocks in three
dimensional shape. Showninfig (1.1, 1.2).
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Quartz

Fig 1.1 External forms of the
crystal found in nature

Fig 1.2 Formation of crystals by regular
repetition of identical building
blocks
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Observations on crystals showed, that, it is bound by optically plane faces , sharp
straight edges and interfacial angles. In general the relation ship is expressed as,

Where “f” isthe number of faces, “c” isthe number of angles & “€” isthe number of
edges.

Example: Determine the number of edgesin aquartz crystal if there are 18 faces and
fourteen angles.

Solution: Given f = 18, ¢ = 14; using equation 1.1, number of edges e= 18+14-2 =30
SingleCrystal: -

In asingle crystal periodicity extends through out the material. Crystals that occur in
nature or grown from solution show regular faces and sharp edges and corners. Quartz,
diamond ,some gem stones and ice can be cited as natura crystals.In fact the word crystal
has its root from latin which means ‘ice like'. Common salt, aum, sugar and copper
sulphate are some materials which can be grown very easily from solution.

Single crystals of some compounds cannot be grown easily from solution. Some such
materials are grown from melt using methods like Bridgeman method. Other materials
which cannot be grown efficiently by these methods are grown using vapour deposition
techniques. The single crystals grown from melt or from vapour normally do not show
external crystaline features but have internal periodic arrangement. Crystals of

semiconducting matrials are grown using these methods.

o
90°, 9q°

)

Fig. 1.3 Examples of monocrystals (single crystals).
(a) Common salt (b) Quartz crystal

101°52"

101°52'

78°08'

A single crystal has a typical feature i.e. its anisotropy. It means the difference in its
physical propertiesin different directions. It has a sharp melting point.
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Poly crystalline (or) Semi crystalline solids: -

A solid consisting of  many

crystallites grown together in the form of

an interlocking mass, oriented randomly, o
and separated by wel defined i

boundaries is said to be a poly _ _
Fig 1.4 Polycrystalline aggr egates

crystalline solid. (Fig—1.4) separated by well defined boundaries.
Ex: rock, sand, metals, salts etc.

Due to random distribution of crystalites, a poly crystalline solid is isotropic, i.e. its
properties are samein al directions.

In case of amorphous solids the order is limited to afew molecular distances. Glassis
a good example for amorphous materials. It may be noted that glass has some other
featuresand all amorphous materials are not glasses.

Now we discuss the some important definitions regarding crystal physics.

We know that crystal consist of a microscopic particles arranged in a three
dimensional periodic manner. In order to describe the periodicity in crystals, in 1848
Bravais introduced the concept of space lattice.

In a perfect crystal, there is a regular arrangement of atoms. This periodicity in the
arrangement generally varies in different directions. It is very convenient to imagine
points in space about which these atoms are located. These imagined points in space are
called “lattice points’. The totality of such points forms a “crystal lattice” (or) “space
lattice”. The two dimensional (2d) lattice points are shown in fig 1.5.

SR

Fig 1.5 Two-Dimensional array of lattice points.

1.3 Symmetry consider ation:

The definite ordered arrangement of the faces and edges of a crystal is known as “crystal

symmetry”. It isapowerful tool for the study of the internal structure of crystal.
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A crysta possesses different symmetries (or) symmetry elements. They are
described by certain operations. A symmetry operation is one that |eaves the crystal and
its environment invariant, i.e. the body becomes indistinguishable from its initial
configuration after symmetry operation. The geometrical locus about which a group of
finite operations act is known as “symmetry element”. A crystalline solid can have the
following symmetry elements.

0] Pure transation
(i) Proper rotation
(iii)  Reflection
(iv)  Inversion

(v) Improper rotation

(i) Puretrangdation: -

A two dimensional space lattice is shown in figl.6(a) The distance between any two
nearest neighbours along the x directionis“a’ and along the y directionis“b”. A perfect
crystal maintains this periodicity in both x and y directions from — o« to « i.e. the
periodicity of atoms A, B and C are equivalent. In other words, to an observer |located at
any of the atomic sites, the crystal appears exactly the same. From the above point we
can say that a crystal possesses atranslation symmetry. |f the crystal is translated by any
vector joining two atoms say R in fig.1.6 (), the crystal appears exactly the same as
before the trandlation. Therefore crystal remains invariant under any translation. A
tranglation operation is a displacement vector represented in terms of the basis vectors a,
bandcas

T =ma+nb+nsc  wheren;, np and n3 are integers.

(ii) Proper rotation (through an angle ¢): -

The proper rotation is shown in figl.6(b). Let usimagine aline (or) axis passing through the
center & normal to the fig.1.6(b), so that the J' s are represented by a rotation through any angle

¢ = 27 In about the axis of rotation, the axisis said to have n-fold symmetry.
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Fig 1.6(a) Trandlation in two dimensional Fig 1.6(b) Rotation
lattice

Because of reticular structure of crystals, only 1-,2-,3-,4- & 6- fold rotational symmetries are
possible. Crystalline solid cannot possess either 5-fold (or) any other rotational symmetry higher
than 6-fold.

Fig 1.6(c) Some Possible and Non-existent Symmetry axes

(iii) Reflection: -

The proper reflection is shown in fig 1.6(d). In the fig, we find that a plane transforms
left-handed object into a right-handed one and vice-versa. The element of symmetry in
this case is known as a symmetry plane (or) a mirror plane and symbolically represented
by the letter “m”. i.e. A planein acell such that, when amirror reflection in this planeis
performed, the cell remains invariant.

Iv) Inversion center (center of symmetry):

The proper inversion is shown in fig 1.6(e). A cell has an inversion center if thereis a
point at which the cell remains invariant when the mathematical transformation y — -
yis performed on it. This is similar to reflection, with the difference that reflection
occurs in a plane of mirror, while inversion is equivalent to reflection through point
called inversion center (or) center of symmetry. The inversion center has the property of

inverting all space through points.
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Ex: All bravaislattices have inversion symmetry. A Non-bravais lattice may or may

not have an inversion center, depending on the symmetry of the basis.

=L

Fia 1.6(d) reflection Fig 1.6(e) Inversion

1.4 Two dimensional crystalline lattices:

I ntroduction to Space lattice
In genera infinite number of lattices are possible because there is no restriction

on the length &, b of the lattice translations and on angle ¢ between them. Such a lattice

is known as oblique lattice and is shown in fig 1.7(a).

Fig 1.7 (a) Oblige Fig 1.7 (b) square Figl.7(c) Hexagonal lattice

....bs.. b4I'_:°:°

e e o e e a4. ° °
e e o a3. ......

Figl.7(d) Rectangular lattice Fig 1.7(e) centered rectangle

Oblique lattice is invariant under the rotation 27 /n (n= 1 & 2) about any lattice point.
However, this can also be invariant under the rotation 2z /n with n=3,4,6 (or) mirror
reflection if some suitable restrictions are imposed on a, b & ¢. These symmetry
elements in turn put restrictions on the shape of the lattice. The resulting lattices are

known as specia lattices. They are
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1.Squarelattice [d = |bf, ¢ (or) y =90° 2. Hexagonal lattice [d= |b], y = 120°

3. Rectangular lattice |[d # [b, y =90° 4. Centered rectangular

Lattice axes are shown for both the primitive cell and the rectangular unit cell for which
8 #[bl,y = 90°

Table 1.1 Bravais lattice in two dimensions

i [ Point group
S.No. | Latticetype| Conventional Axes & angles
P unit cell symmetry about
lattice point
1. |Oblique Parallelogram |a= b; ¢ (or) y = 90°
2mm
uare —h 2 =00°
2. |Square S a=h; y =90 —
H a | Rhombus —h o = 1900
3. exagon a=h; y =120 6mm
4. |Primitive Rectangle . — o
rectangular a#b;y =90 2mm
Centered Rectangle
> rectangular ’ az= by =90° 2mm

There are in dl five Bravais lattices, ten point groups and seventeen space groups in
two-dimensions. Out of the five Bravais lattices, one is general and other four are
obtained by exhausting the feasible axia relationships between a and b and the relative

orientations of the two. The general lattice istermed as oblique lattice.

1.5 Threedimensional crystalline lattices:

In previous section, we observe that in two dimensions suitable restrictions on
lattice trandlations & angles allow only five types of lattices. By extending the same idea
to a 3-dimensional case and applying the similar restrictions on the lattice trandations a,
b&candangles a, g and y we obtain aBravaislattice.

A three-dimensiona unit cell is defined by vectors a, b &c representing its edges
(or) crystal axesand theangles ¢, B & y . The numbers of Bravais latticesis 14 with 32
points groups and 230 space groups. Based on relationships between a, b & c in terms of
magnitude and relative orientations «, f & y , the 14 types of unit cells are grouped into

seven different classes of crystal lattices. They are Triclinic, monoclinic, orthorhombic,
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tetragonal, cubic, trigona & hexagonal. The table 1.2 gives the 7 classes of crystal

| attices.

Table 1.2 Crystal classes

Crystal system Restriction on Associate lattice Characteristic
conventional cell, Number | Symbol | symmetry
axes & angles element

Triclinic azb#c 1 P None
a* Ly # a0°

Monoclinic azb=#c 2 P,C One 2-fold-
y=a=90" = 8 rotation axis.

Orthorhombic azb=c 4 P,C,F, | Three2-fold
o =pB=y=90% I rotation axis

Tetragonal ab=c; 2 P 1 One 4-fold
a=pB=y=90"% rotation axis

Cubic a=b=c; 3 PI1,F Four 3-fold
a=pB=y=90" rotation axis

Trigonal a=b=c; 1 P One 3-fold
a ==y <120°= 90" rotation axis

Hexagonal a=b=c a=p=90% | 1 P One 6-fold-
y =120% rotation axis.

P stands for Primitive, C for Side centered (or) base centered, | for Body centered and

F for Face centered

1.6 Periodicity in crystals— Basic definitions:

The study of crystal physics aims to interpret the macroscopic properties in terms
of properties of the microscopic particles of which the solid is composed. The geometric
form & physical properties of crystaline solids can be determined by using X-rays,

electron beams & neutron beams.
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The main difference between the crystals & other solids is that there is a
arrangement of atoms, ions (or) molecule in three dimensional periodic manner in
crystals and this is absent in other solids. In order to explain this periodicity Bravais
introduced the concept of space lattice in 1848. Space lattice is obtained by simply
considering the trandation of an object (J) to a finite distance (a) & when repeated
systematically along the three crystallographic directions i.e. X, y & z. The one-
dimensional periodic array of object is shown in below fig. 1.8a

It is easy to represent this periodicity by replacing each object in the array with a
point. It should be remembered that a point is an imaginary infinitessmal spot in space
i.e. lattice points are imaginary i.eFig 1.8a represents real objects whereas Fig 1.8b

shows the same array interms of imaginary lattice points.

J J J 3 . - e e 4
Fig 1.8(a) Fig 1.8(b)

If trandation “a&’ is combined with another non collinear translation “b” then a

two dimensional array is obtained asshownin 1.8 c and 1.8d

J J J ° ° °
J J J ° ° °
J J J ° ° o
b /
J J J
~ ° ° °
(d)
(c)

Fig 1.8 Two dimensional array of: (c) Objects, (d) Points; a planelattice

Similarly if “a” & “b” is combined with a third non-coplanar translation c, then a
three dimensional array is obtained, which is shown in figl.9.

The characteristic feature of the space lattice is that the environment around any
one point is identical. The location of any lattice point can be defined as,
T=matnb+nsc. Where ny, ny, nz are arbitrary integers.
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J/L a—1J J/
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Fig 1.9Three dimensional array of: (a) Objects, (b) Points; a space lattice

Basis:

In preceding section we studied the periodicity & lattice points. Now it is
essential to distinguish a lattice from acrystal. A crystal structure is formed only when a
group of atoms (or) molecules are attached identically to each lattice points. This group
of atoms (or) molecules is called basis. Basis is identical in composition, arrangement
and orientation, which is repeated periodically in space to form the crystal structure.

Lattice + Basis = crystal structure

° o ° [ ] o O O O O
° ° ° ° ° Oo Oo Oo Oo
° ° ° ° ° O° O° O° O°
Fig 1.10(a) space lattice Fig 1.10 (b) Basis containing

two different atoms

0 0 O

3 lattice points
O O O O O O O— Basis containing two

,° ,° o L° .0 LO .0 different atoms
o o O o O O O
O. O. O. O. O. O. O.

Fig 1.10 (c) Crystal structure (lattice + Basis)

1.7 Unit cell: -
The atomic order in crystalline solids indicates that the small groups of atoms form a

repetitive pattern. Thus, in describing crystal structure, it is often convenient to subdivide the
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structure into small repeat entities called unit cells. l.e. in every crystal some fundamental
grouping of particlesisrepeated. Such collection of particlesis called a “Unit Cel”. Unit cells
for most crystals are parallel opiped (or) cubes having 3 set of parallel faces.

It can be used to represent the crystal symmetry. It is a “building block” of the crystal
structure. The fig 1.11(a) shows a unit cell of a3 dimensional crystal lattice. The lattice

is made-up of arepetition of unit cells, and a unit cell can be completely described by the

three vectors a, b, ¢ & the angles between them (a,8,y). If the values of these

intercepts & interfacial angles are known, we can easily determine the form & actual size
of the unit cell.

YO

Cc

B >

vy b b

a
e
a
Fig 1.11(a) L attice parameter of

aunit cell

Tablel.3 unit call volume of different lattice types

Latticetype Volume
. 3
Cubic a
Orthorhombic a?c
Tetragonal ac
Hexagonal J3a%c/2
Rhombohedral 2 V1-3cos?a + 2cos’ a
Monoclinic abc sinp
Triclinic abc \/1— COSa — COS 3 — COSy + 2C0Sa CoS 3 COSy

1.8 Seven Crystal Systems.

In 3 dimensiona case by applying the restrictions on the lattice trandations a, b, ¢ and
angles «, 3,y , one can verify that only 7 crystal groups (or) basic systems are possible.

They are collectively known as Bravais lattices. In order to specify the given
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arrangement of pointsin a space lattice (or) of atomsin acrysta, it is customary to define
its co-ordinates with reference to a set of axes chosen with its origin at a lattice point.
The three axes & angles are defined as shown in fig 1.11(b). Each space lattice has a
convenient set of axes, however only seven different systems of axes have been found to

be sufficient for representing al Bravais lattices.

b

a
c

Fig 1.11(b) Thecrystallographic axes and the corresponding angles

They are 1.Triclinic ~ 2.Monoclinic  3.0rthorhombic  4.Tetragonal
5.Trigonal 6.Hexagona  7.Cubic
Explanation of each crystal system is given below.

(1) Cubic crystal system: -

The crystal axes are perpendicular to Z;
one another & the repetitive interval is
the same along al the 3 axes. Cubic c
crystallites may be simple (or) body > b >y

centered (or) face centered.
a=b=c, a=p=y=90"

(2) Tetragonal crystal system:-

The crystal axes are perpendicular to

one another. The repetitive intervals

along two axes are the same, but the

interval aong the third axis is different.
Tetragonal lattices may be simple (or)
body centered.

a=b=c, a=p=y=90"%
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(3) Orthorhombic crystal system:-

The crystal axes are

perpendicular to one another, but the
repetitive intervals are different along all
the three axes. Orthorhombic lattices
may be simple, base centered, body
centered (or) face centered.

azb=c a=p=y=90"%

(4) Monodlinic Crystal system:-

Two of the crystal axes are
perpendicular to each other, but the third
is obliquely inclined. The repetitive
intervals are different along all the three
axes. Monoclinic lattices may be smple
(or) base centered.

azb=c a=f=90%y

(5) Triclinic crystal system:-

None of the crysta axes is
perpendicular to any of the others, and
the repetitive intervals are different
along al the three axes.

azb=zc a=xpf=y=90°

(6) Trigonal (or) rhombohedral crystal system:-

The three axes are equal in length and
are equally inclined to each other at an

angle other than 90°.
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(7) Hexagonal crystal system:-

Two of the crystal axes are 60° apart P 1: P a
while the third is perpendicular to both N !
of them. The repetitive intervals are the
same aong the axes that are 60° apart, J‘,
but the interval along the third axis is T 1
different. The properties of seven are ‘ \
shown in table 1.4.
Table1.4
S. Crystal Axiad length of | Inter axial angles Example
No. | system unit cell (ab&c) | (a,B&y)
1 | Cubic a=b=c a=p=y=90° Au, Cu, NaCl
2 | Tetragonal a=b=c a=p=y=90" TiOy, SN0,
3 | Orthorhombic |a=b =c a=p=y=90" KNOs, BaSO,
4 | Monoclinic [a=b=c o= =900y CaSO,,
2H,0,FeS0O,
5 | Triclinic azb=c a= =y =900 K,Cr,0;
6 | Trigona a=b=c a=p=y =90° As, Sb, Bi,
Calcite
7 | Hexagonal a=b=c a=£=90% y =120° | SiO,, Zn, Mg, Cd

1.9 The Fourteen Bravais L attices:-
A three-dimensional unit cell is defined by vectors a, b, &c representing its edges (or) crystal

axesand theangles «, f & y defined as showninfig 1.12

The number of bravais lattices is 14 with 32-point groups & 230 space groups. Based on the
relationship between a, b &c in terms of magnitude and relative orientation «, & y. The 14
types are grouped into seven different classes of crystal lattices. A description of the 14 bravais
lattices of 3 dimensions along with the axial relationship for the class of crystal lattices to which

each belongsisentered in table 1.5.
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The smple cube (SC):-
The unit cell is cube having one atom (or) molecule at each corner. So there are eight atoms
(or) molecules at eight corners of the cube. Since each corner atom is shared by eight

surrounding cubes, share of each cube comes to one eighth of an atom, shownin fig 1.13a.

.. Total No. of atoms = éx 8 =1 atom.

1/8" of an Atom
: (corner atoms)

Fig 1.12 Notation for angles between Fig 1.13(a) The simple cube
thecrystal axis

The Body Centered cube (BCC):-

The unit cell of body centered cube structure is shown in fig 1.13(b). It has eight corner atoms &
one center atom. The number of atoms belonging to this cube are (@) One center atom &

(b) %x 8 =1 corner atom

. Total No. of atoms per cube =1+1=2

The Face centered cube (FCC): -

The unit cell of face centered cube structure is shown in fig 1.13c. It has 6 face
centered and eight corner atoms. The six face centered atoms at six faces of the cube are
shared by their adjacent cubes. Hence, a total of 6/2=3 such atoms belong to the cube.
As each corner atom is shared by eight surrounding cubes, the share of each cube comes

to one eighth of an atom.

.. Total no. of atoms per cube =3 + % x8=3+1=4.
Similarly monoclinic lattice has two types ssmple and base centered. Orthorhombic
has four types three as mentioned above for cubic and base centered, Tetragona has two

types of lattices. These are showninfig1.14.
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Corner Atoms

1/8 th of the Atoms
A

&

orner Atoms
1/8 th of the Atoms

Fig 1.13(b) Body centered cube

Face centered
Atoms (1/2
Atom)

Fig 1.13(c) Face centered cube

Tablel15
Class Bravais lattice No. of lattices Unit cell
Characteristics
Triclinic Simple 1 azb#cé&
a+ Py # ao®
Monoclinic Simple Base centered | 2 azb#cé&
a=p=90°y
Orthorhombic | Simple base-centered | 4 azb=#c&
body-centered a=p=y=90°
Tetragonal Simple Body 2 a=bzcé&
centered a=p=y=90°
Cubic Simple body- 3 a=b=c&
centered face- a=pf=y=90°
centered
Trigonal Simple 1 a=b=c&
a=p=y#90°
Hexagonal Simple 1 a=b=cé&
a=p=90°y =120°
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Triclinic Simple monoclinic Base-center ed
monoclinic
Simpleorthorhombic ~ Base-centered Body-centered
orthorhombic orthorhombic
Face-centered Simple tetragonal Body-centered
: tetragonal
orthorhombic
Simple cubic Body-centered cubic  Face-centered cubic

Trigonal Hexagonal

Fig 1.10 The 14 Bravais lattices grouped into the 7 crystal systems
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1.10 Summary:

1. Crystal = Space lattice + Basis

Space lattice: An infinite periodic array of pointsin space

Basis: An atom or an identical group of atoms attached to every lattice point. It is
identical for every lattice point in terms of composition, relative orientation and
separation.

2. Lattice points are connected to each other by the trandation vector t = n;a+ nya + nsc,
where n3, Ny, Nz are integers and a, b, ¢ are primitive translation vectors (the axes of a
primitive cell).

3. Primitive cell: A minimum volume unit cell having only one | attice point.

4. Crystal types Bravaislattices Point groups Space groups
Two-dimensiona crystals 5 10 17
Three-dimensional crystals 14 32 230

5. Identical atoms may crystallize into the closest-packed structure either with HCP
or with FCC symmetry, having the pattern of layers as.

HCP. ABABABAB .....
FCC: ABCABCABC.....

For both the structures: (i) The number of nearest neighbors (coordination number) = 12.
(i) The packing fraction = 0.743

1.11 Key words:
Crystal — Amorphous — polycrystalline — basis — lattice — Bravais | attice — space lattice —
lattice point — unit cell primitive unit cell — non primitive unit cell — crystal systems —
point group — space group — symmetry operations — translation — rotation — reflection —
inversion — center of symmetry — proper — rotation — improper rotation — Triclinic —
monoclinic — orthorhombic — tetragonal — rhombohedral —trigonal — hexagonal close
packed — cubic — simple — face centered — body centered — coordination number.
1.12 Review questions:
1.What are the essentia differences between crystaline and non-crystalline materias'.
Explain the concepts of lattice, basis and crystal structure. How are they related?
2. Mention and explain with examples the types of lattices in cubic system. How many

lattice points are there in each of these lattices?
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3. Explain the following terms used in crystallography

a Primitive cell

b. Unit cell

c. Packing factor

d. Coordination number.
4. Define space lattice. Name the seven types of crystal systems and give the relation of
length of axes and relation of angles between the axes of aunit cell in each type.
5. Explain the physical basis of classifying crystals into: (a) 14 Bravais lattice (b) 7
systems and (c¢) 32 point groups.
6. What is meant by ‘Symmetry elements in crystals? Discuss the various types of
symmetry elements present in a cube.
7. What are symmetry operations? Explain the meaning of a ‘n-fold rotation axis and a
‘n-fold screw axis . Provethat five fold axis of rotation is not compatible with alattice.
8. What is Bravais lattice? What is the maximum number of Bravais lattices possible?
How will you account for the existence of thousands of structures from these | attices?
9. The end-centered orthorhombic is one of the Bravais lattice but the end-centered
tetragonal isnot. Give reasons.
10. The primitive cell of fcc lattice is rhombohedral. Why then is the rhombohedral
lattice included separately in the Bravais list?
11. What are point group and space group? Give their number for two and three
dimensional lattices. List al the point groups of atwo-dimensional lattice.
12. Show that the base centered and face centered tetragonal does not give any new

Bravais lattice.

1.13 Text and Reference Books:

Elements of Solid state Physics by J.P.Srivatsava (PHI)

Elements of Solid state Physics by Ali Omar (Pearson Education)
Solid state Physics by S.L. Kakani and C. Hemrgjani (S Chand)
Solid state Physics by M.A.Wahab (Narosa)

Solid state Physics by C.Kittel

Solid State Physics by C.J.Dekker

Sk wNE
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UNIT -1
LESSON -2

Elements of crystallography-I|

Aim: To introduce the concept of point groups and space groups and space groups and

discuss about some common crystal structures.

Objectives:
» To acquaint with the nomenclature of crystal directions and planes.
» To acquaint with the concept of point groups and their nomenclature.

» To learn about the common crystal forms under cubic class.

Structure:

2.1 Nomenclature of crystal directions and planes
2.2 Miller indices

2.3 Spacing between planes of same Miller indices
2.4 Point groups

2.5 Space groups

2.6 Common crystal structures

2.7 Summary

2.8 Key words

2.9 Review questions

2.10 Text and reference books

2.1 Nomenclature of crystal directionsand planes.-
In a crystal there exists directions and planes, which contain a large concentration of

atoms. For the crystal analysis, it is necessary locate these directions and planes.
Crystal directions:-
Consider the straight line passing through the lattice points A, B in fig.2.1(a).
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A
a

b
Fig 2.1(a) The[111] direction isa cubic lattice.

To specify the direction of straight line we proceed as follows. We choose one lattice
point on the line as an origin, the point A. Then we choose the lattice vector joining A to
any point on theline, say point B. This vector can be written as

R =ma+ nb + nsc

Generally square brackets are used to indicate a direction. The direction is now
specified by the integral triplet [n; np ng]. If the numbers ny, n, & n3 have a common
factor, this factor is removed, i.e the triplet [n; n, ng] is the smallest integer of the same
relativeratios. In the above fig the direction shown isthe [111] direction

When we speak of adirection, we do not mean one particular straight line, but awhole

set of parallel straight lines, which are completely equivalent by virtue of the translational

symmetry.

Crystal planes:- o o
The crystal plane may be regarded as [ 1 l . \\
made-up of an aggregate of a set of ° o

paralel equidistant planes, passing ° o o o
through the lattice points. For example

for a given lattice, the lattice planes can

be chosen in different ways as shown in d

fig 2.1(b). Fig 2.1(b) Different crystal planes

2.2 Miller indices: -

It is difficult to designate the different planes in a crystal. To avoid this difficulty Miller

evolved a method to designate a set of paralel planesin acrystal by three numbers (h, k, 1) know
as Miller indices.
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The steps for the determination of Miller indices of a set of parallel planes are illustrated as
follows

(1) Determine the intercepts made by the plane along the three

crystallographic axes (X, y, z) Z
i.e X y z 3
2 3b 2
a c c
pa gb rc y
— 9 A=A — 1. b3b4b
wherep=2;, q=3;, r=1, e
3a
X
(2) Express the intercepts as Fig 2.2(a)
multiples of the unit cell dimensions, (or) lattice parameters dong the axesi.e.
A D r31
a b c
. . . 1 11
(3) Determine the reciprocals of these numbersi.e. > = 3 1
(4) Reduce the reciprocals to the smallest set of integral number and enclose themin
brackets = 2 & 8 3 2 ¢
2 31

Thus Miller indices may be defined as the reciproca of the intercepts made by the plane on the
crystallographic axes when reduced to smallest number.
Important features of Miller indices of crystal planes are,
a) All the parald equidistant planes have the same Miller indices.
b) A plane parald to one of the Co-ordinate axes has an intercept of infinity.
c) If the Miller indices of two planes have the same ratio i.e.(844) and (422) or (211) then
the planes are parallel to each other.
d) If (h, k, 1) arethe Miller indices of a plane, then the plane cuts the axesinto h, k & | equal
segments respectively.
The Miller indices define a set of parallel planes or a set of parallel planes. If (h, k, |) are the
Miller indices of aplane, then, the plane cuts the axesinto h, k and | equal segments respectively.

If aplane cuts an axis on the negative side of the origin, the corresponding index is negative and

isindicated by placing a bar above theindex; (hkl). The cube faces of a cubic crystal are (100);
(010); (001); (100);(010)and(001). Planes equivalent by symmetry are denoted by curly
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brackets around miller indices; the cube faces are {100}. Regarding direction the x axis is the
[100] direction; the —y axisisthe [010] direction. A full set of equivalent directions is denoted

this way: <uvw>. In cubic crystals a direction [uvw] is perpendicular to a plane (uvw) having
the same indices, but thisis not generally truein other crystal systems.

The positions of points in a unit cell are specified in terms of lattice coordinates, in which
each coordinate is afraction of the axia length, a, b or c, in the direction of the coordinate, with
the origin taken at the corner of unit cell. Thus the coordinates of the central point of a cell are

111 , and the face center positions are %%O; Oll' ll0.

22 22
2.3 Spacing between planes of same Miller indices: -

It is necessary to know the inter planar distance between planes labeled by the same Miller
indices for the x-ray diffraction from the crystal. Let uscall this distance dyy.
Now, we shall derive a formula for the spacing between two parallel planes in a given cell

with the help of figure shownin fig 2.3.

»
»

For convenience, we shall take a simple Er%ﬂ %gl in which co-ordinate axes are orthogonal,
therefore they are mutually perpendicular (cubic, tetragonal and orthorhombic cells), for the
calculation of inter-planer spacing using cartesian co-ordinates.

In the fig ox, oy & oz are orthogonal axes the origin O is taken at any lattice point. Now we
consider any set of crystal planes defined by the Miller indices, (h, k, 1). Suppose the reference
plane passes through the origin and the next plane makes intercepts a/h, b/k & ¢/l on x, y & z-
axes respectively.
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A normal is drawn on to the plane ABC from the origin. The length “d” of this normal plane
will be the distance between the adjacent planes.
Now we haveto find an expression for dintermsof a, b, c & h, k, I.

Sinced is normal to the plane ABC, we write

Cosa = O_N ; COSB: O_N ; COSY: O_N ;
OA OB oC

Where Za = ZNOA, /B =4NOB, & Zy=/ZNOC
According to law of direction co-sines,

cos?a+ cos?P+cos?y=1

(o) * (%)~ (Ge) -
= | = + | = +|==] =

OA OB oC

GOk m o) -

= | 4| —

a/h b/k c/l

h 2
:d[ ?} 1

The above relation is applicable to the primitive lattice in cubic, orthorhombic & tetragona

systems. For tetragonal crystal a=b

h2k2 |2 -1/2
:d:{ 72 +?}

For cubic systema=b=c

1

vh? +k?+12

Note:- In non-orthogonal lattice, calculation of inter planer spacing is more complex.

=d=

2.4 Point groups: -

In previous lesson we discussed the symmetry operations. We know that the symmetry

operation is one that takes the crystal into it self. There is a possibility that the symmetry
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elements may be combined with one another in different ways; but the symmetry elements in
each such combination are required to satisfy certain conditions.
For example, when one symmetry operation A is followed by another operation B, the
resultant effect is capable of being produced by athird symmetry operation C.
AxB=C.
where A, B & C are members of combination of certain symmetry elements permitted by the
symmetry of the concerned crystal lattice.
The symmetry elements in a combination should also satisfy the following mathematical
conditions.
(AxB)xC=Ax(BxC) (The associative law)
AxI=A | isthe Identity operator
Al x A =1 Where A is an operation which is the inverse of operation A.

Since A isalso theinverse of A we havetherelation (A?)™ = A.

A set of symmetry elements that give the above condition is said to form a group commonly
known as the “Point group”. It can aso be shown that if A and B are elements of agroup (AB)™
=BA™ If A isasymmetry operation that brings a framework into coincidence with itself and
B is some other such operation. The effect of applying first A followed by B may result in a
symmetry operation C that makes the framework to coincide with itself. This may be written as
BA = C. The operation AB need not be equal to C but may be equal to some other symmetry
operation D which is also a member of the same group in which A and B are members. If AB =
BA we say that the operations A and B commute. Thus for example, two successive rotations
about the same axis will commute since they result in a rotation about the same axis through an
angle, which is the sum of two separate angles of rotation. The result of two successive rotations
about different axes however does depend on the order in which they are performed.

In the case of acube it can be shown that C4(z) C4(2) = Cx(2)

C4(2) C4(y) = Cs(about body diagonal).

All the operations contained in the group are performed at a point , which leave the body
invariant. The body may be for example, a molecule, a group of atoms, a lattice, or a crystal
structure. The word “point’ group can be more appreciated if we consider molecular symmetry.
A symmetry operation which rotates or reflects a molecule into itself must leave the center of

mass of the molecule unmoved. |If the molecule has a plane or axis of a symmetry, the center of
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the mass must lie on this playing or axis. It follows that all the axes and planes of the symmetry
of amolecule must intersect in at least one common point, and that point remains fixed under all
the symmetry operations of the molecule. For this reason the symmetry group of a molecule is
generally referred to as its point group. These conclusions are valid for lattice points and there
are in total 32 distinct combinations of symmetry operations performed on a point in various
crystals. This number exhausts all the possible ways of combining the symmetry elements such
that the symmetry elements in each combination meet the requirements imposed by the
mathematical conditions (A x | = A). This gives 32 point groups in 3 dimensional lattices, in
which 27 are non-cubic and five (5) are cubic point groups. There exist two standard
nomenclature systems for point group. They are

1. The Schonflies 2. International.

Table 2.4a shows the 27 Non-cubic crystal point groups.

Table 2.4b shows the compositions of the 5 cubic point groups

2.5 Space gr oups:-

In a crystal, point group symmetry operations are combined with trandational elements,
provided they are compatible. Such combinations are called space groups. The description of
the real crystal structures requires precise knowledge about the composition and symmetry of the
basis of the atoms attached to each lattice point. A crystal is regarded to have been constructed
by tranglating its basis through vectors of respective Bravais lattice. The trandational symmetry
element exhibited by crystalsis

a) Glide plane b) Screw axis
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Table 2.4(a) Twenty-seven (27) non-cubic crystal point groups
Schonflies  International Meaning in terms of symmetry elements Number

Cn n These groups have only an n-fold axis of rotation 5
(n=1,23,4,6)

Cnv nmm The groups have an n-fold rotation axis, amirror

(neven)  plane containing the rotation axis, and as many
nm additional mirror planes as may be required by the
(n odd) presence of the n-fold axis(n =2, 3, 4, 6). 4
Cm In addition to the n-fold rotation axis, thereis a
single mirror plane perpendicular to the rotation axis.
(ﬂj n=2,4,6 (even)
m
n n=1, 3 (odd) 5

S n These groups have only an n-fold roto- reflection
axis(n=2, 4, 6). 3

Dy n22 These groups contain an n-fold axis of rotation,

(neven)  aZ2-fold rotation axis perpendicular to the n-fold
n2 axis, and as many additional 2-fold axes asthe
(nodd)  presence of the n-fold axisdemands(n=2,3,4,6). 4
Dmh %%% In addition to dl the elements of D,, thereisamirror
plane perpendicular to the n-fold rotation axis. 4
( n j n=2 4,6 (even)
mmm
n2m n=3(odd)

Dnd In addition to al the elements of D, there are mirror
planes containing the n-fold rotation axis such that the
planes bisect the angles between the 2-fold axes of
rotation. 2

n2m n=2 (even)
n 2 n = 3 (odd)
m
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Table 2.4(b) Thefive (5) cubic crystal point groups

Schonflies  International Meaning in terms of symmetry el ements

T 23 The tetrahedral point group (in a crysta the aternate)
corners of the cube are vacant). It contains three
mutually perpendicular 2-fold axes, plus four 3-fold axes,
angles between which are bisected by the 2-fold axes.

Ty 4 3m Inaddition to all the elements of T, there is a mirror plane
through each pair of 3-fold axes (i.e. two mutualy
perpendicular mirror planes through each 2-fold axis.
In all, there are thus six mirror planes.

T, 2 3 The groups has all symmetry elements of T, plus a centre of
m inversioni.
(m 3
@] 432 The octahedral point group. It contains three mutualy
perpendicular 4-fold axes and four 3-fold axes which have
the same orientation with respect to one another as the
2-fold and 3-fold axes of the tetrahedral point group.
On 4 3 2 The group has al symmetry elements of O, plus a centre
m m  of inversion .
(m3m)
a) Glide plane:

When a mirror plane is combined with simultaneous trandlation operation in a crystal, one
obtains glide plane. The glide plane is always parallel to the mirror plane.

b) Screw axis:

In acrystal the rotation axis coupled with the trandlation parallel to the rotation axis will giverise

to a new symmetry element called screw axis. The symbol, which is generally used for screw

axisin ny. This is performed by rotation of Eand atrangation of " times the translation
n n

vector parallel to the rotation axisin a crystal.
The complete pattern of symmetry element is known as a space group, which in addition to
having the trandational symmetry elements contains all the elements of the respective point
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group. There are in all 230 space groups in three dimensional crystals. It is surprising that this
number would be reduced to 14 in the case of acompletely symmetric basis.

All possible crystal structures are characterized by different space groups. These space groups
are obtained by introducing a basis with symmetries of each of the point groups of the system
into each of the Bravais | attices.

For example there are 5 point groups & 3 Bravais lattices (P, P, C) for a cubic system. So,
with these possibilities 15 different crystal structures can be produced, represented by 15
different space groups. The space group of a crystal is usually represented on a plane by a
repetitive pattern of the allowed point symmetry elements, using different standard symbols for
different symmetry elements. For the representation of space group both the Schonflies &

international systems are used.

A B
<l . - € |3
I 3
o
R £
o 3
.>—. — |~ - 8 3 8
3 3

(@) (b) (©) (d)

Fig2.13(a) & (b) Illustration of Screw operation
(c) Mirror reflection; (d) gridereflection.

2.6 Common Crystal Structures: -

A large percentage of metalic structures crystallize in hep, fcc, bce. Simple cubicis very rare
in metals.
Simple Cubic:-
The simplest crystal structure that we can think of is that of simple cubic symmetry with a basis

of one atom. In this structure the atoms are situated at the corners of the cube touching each
other along the edges, which can be shown in fig 2.6(a).

Each atom surrounded by 6 nearest neighbors. So, that the Co-ordination number is 6.

The atomic radiusis &2 (r = a2). Where aiis the cube edge.
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The number of atoms per unit cell is 1. Polonium is the lone known example of this
classin nature.

o
P

e

Fig 2.6 (a)

The CsCl Structure:-

The structure of Cesium Chloride is shown in fig 2.6(b). The space lattice is simple
cube.

O cl

Fig 2.6(b) Theunit cdl structure of CsClI crystal

The basis has one Cs" ion of 000 and one Cl™ ion at % % %. The central atom is
surrounded by eight atoms of the other type at the corners, the co-ordination number is
thus eight. It may be noticed that this structure cannot be interpreted as body centred
cubic (BCC). Thelattice points of CsCl are two interpenetrating simple cubic lattices,

Crysta L attice parameter A°
(A°=10""m)
CsCl 411
CsBr 4.29
Csl 4.56
TICI 3.84
TIBr 3.97
TII 4.18

the corner of one sub-lattice is the body centre of the other. One sub-lattice is occupied

by Cs" ions and the other by Cl™ ions. The lattice parameter of someionic crystal having
this structure is given below.
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Crystal of Alkali Metals:-
Crystals of alkali metals (Li, Na, K, Rb, Cs) are typical representatives of the body

centered cubic (bcc) structure. The unit cell is non-primitive with 2 lattice points and the

basis of one atom. The cell consist of one atom of each corner & one atom in the centre
of the cube which isshownin fig 2.6(c). Each atom has only 8 nearest neighbors.
Therefore e Co-ordination number is 8.

(1) Total No. of atoms=1+1=2

J3a

(2) Atomic radiusr = 4

3
(3) Volume of atomsin unit cell u= 2x§mr3 _Z 83a

(4) Volume of aunit cell V = &.

ey
Q

3
(5) Packing factor 25 = 7;—36; =0.68.
xa

Fig 2.6(c)
Crystals of Noble M etals: -

The Noble metals Cu, As, Au, crystallize in another structure, the face centred cubic

(fcc). The unit cell has four lattice points with the basis of one atom. The positions of
the atoms in the unit cell are 000, ¥2%20, 0 ¥2%, %2 0 %. The Co-ordination number is

0
12. The structureis also close packed. The lattice parameters are given below (in A).

Cu 3.61
Ag 4.08
Au 4.07

The NaCl Structure:-

Bravais lattice is fcc. An atom on the edge contributes 1/4™ of the atom. Thus, the

unit cell gets three sodium atom from those on the edges (% = j & one from that at the

centre. The total cell consists of 4 Na atoms. Similarly the contribution of chlorine
atoms to the unit cell comesto 4 [ 8/8 + 6/2=41]. A single unit cell accommodates four

formulaunit cells of NaCl. The positions of atoms in the unit cell are,
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® C|
° Na

(a) (b)

Fig 2.6(d): (a) The arrangement of Na and CI (shown bigger) atoms on the unit cell
of NaCl crystal. (b) Locations of Na and Cl (shown bigger) atoms in the cube
representing the unit cell. The separation between the basis partners is half the

length of the body diagonal @ .

Since each ion has six nearest neighbors of opposite kind, the co-ordination number is 6.
Some of the crystals representative of NaCl arrangement, along with their lattice
parameter are shown in table.

Crystal Lattice parameter A°
NaCl 5.63
LiH 4.08
KBr 6.50
Rbl 7.33
NH.l 4.37
NiO 4.17
uo 4,92
PbS 592

Hexagonal close-packed structure(hcp): -

Fig (a), in fig (2.6€) represent the hexagonal close-packed structure and fig(b) represent
the primitive axes of the hcp crystal. The unit cell contains one atom at each corner, one
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atom each at the centre of the Hexagona faces and 3 more atoms within the body of the
cell. Each atom touches 3 atoms in the layer below its plane, six atoms in its own plane,
and 3 atoms in the layer above. Hence the Co-ordination number of this structure is 12.
The top layer contains seven atoms. Each atom is shared by 6 surrounding hexagon cells
and the centre atom is shared by 2 surrounding cells. The three atoms within the body of

the cell are carefully contributing to the cell.

Thus the total number of atomsin aunit cellis= —+—+3=6.

N

(@) ()

Fig 2.6(e): (@) The hexagonal close-packed structure. (b) The primitive axes
of the hcp crystal. The cisnormal to the plane of aand b. The two atoms of

one basis are shown as solid circles.

Diamond Structure: -

The diamond lattice can be considered to be formed by inter penetrating two fcc
|attice along the body diagonal by (1/4)™ cube edge. One sub-lattice has its origin at the
point O, 0, O and the other a a point quarter of the way aong the body diagonal

(%,%,%) The basic diamond lattice and the atomic positions in the cubic cell of

diamond projected on a cube face are shown in fig 2.6(f).
The fractions denote height about the base in units of cube edge. The print at 0 and %2
are on the fcc lattice, those a % and % are on a similar lattice displace among the body

diagonals by ¥ of the cube edge.

The packing factor is (XZ)? = (XY)? + (YZ)* = a + a’_sa
8 16 16
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But, XZ =2r
2
so(2r)?= E N
16 J3
. 8x 4
Packing factor = u_sx = 73 =0.34(or) 34%
\Y a 16

Thus it is aloosely packed structure. Carbon, Silicon and Germanium crystallize in this
structure.

@ @ @

Fig 2.6(f) Diamond structure.

Zincblende structure:

In diamond structure consists of two fcc

lattice displaced from each other by one-

quarter of a body diagonal. The cubic
zinc sulfide structure results from the
diamond structure when Zn atoms are

placed on one fcc lattice and S atoms on

the other fcc lattice. The coordinates of
Zn atoms are 000; there are four atoms Fig 2.7 Zincolende Structure
of ZnS per unit cell.

Each atom has about it four equally distant atoms of the opposite kind arranged at the
corners of a regular tetrahedron. The diamond structure possesses a center of symmetry
at the mid point of each line connecting neighbor atoms; the ZnS structure does not have
inversion symmetry. Examples of the cubic zinc sulfide structure are CuF, CuCl, ZnS,

ZnSe, CdS, InAs, InSb, SIC, AlP etc.
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2.7 Summary:

When we speak of a direction, we do not mean one particular straight line, but a whole
set of paralld straight lines, which are completely equivaent by virtue of the symmetry.
Square brackets are used to indicate a direction (line joining two lattice points). Each
direction is specified by the triplet [n; n, ng], where n;, n, and ng are three integers having
no common factor. It is difficult to designate the different planesin a crystal. To avoid
this difficulty Miller evolved a method to designate a set of parallel planesin acrysta by
three numbers (h, k, ) know as Miller indices.

The Miller indices define a set of paralle planes. Distance between a plane passing

through the origin and having Miller indices (hkl) and another consecutive parallel plane

isgivenby d = 1
h*> k> 1°
a bt

The above relation is applicable to the primitive lattice | cubic, orthorhombic and
tetragonal systems. Itisaso

h2k2 |2 -1/2
For tetragonal crystal a=band d = [? ?}
_r
vh? +k? +1?

In a non-orthogonal lattice, calculation of inter planer spacing is more difficult. A set

For cubic systema=b=cand d =

of symmetry elements that satisfy group properties are said to form a group commonly
known as the “Point group” as al the operations contained in the group are performed at
apoint inthe crystal lattice. There arein total 32 point groupsin crystals.

The crystal structure is complete only when its point group & space group are known.
The description of the real crystal structures requires precise knowledge about the
composition and symmetry of the basis of the atoms attached to each lattice point. A
crystal is regarded to have been constructed by trandating its basis through vectors of
respective Bravais lattice. A space group, which in addition to having the trandlational
symmetry elements contains all the elements of the respective point group, symbolizes
the complete array thus obtained. There are in all 230 space groups in crystals. These
space groups are obtained by introducing a basis with symmetries of each of the point

groups of the system into each of the Bravais lattices.




ACHARYA NAGARJUNA UNIVERSITY 17 CENTER FOR DISTANCE EDUCATION

For example there are 5 point groups and 3 Bravais lattices (P, P, C) for a cubic
system. So, with these possibilities 15 different crystal structures can be produced,
represented by 15 different space groups. The space group of a crystal is usually
represented on a plane by a repetitive pattern of the allowed point symmetry elements,
using different standard symbols for different symmetry elements. For the representation

of space group both the Schonflies& in international systems are used.

Severa diatomic crystals and metals form cubic crystals with non-primitive unit cells.
Some follow Sodium chloride structure, some follow Cesium chloride structure some
follow Zinc blend and some other follow diamond structure.

In CsCl structure the basis has one Cs’ ion at 000 and one CI™ ion at % Y% %. The
lattice points of CsCl are two interpenetrating simple cubic lattices the corner of one sub-
lattice is the body centre of the other. One sub-lattice is occupied by Cs' ions and the
other by Cl™ ions.

Crystals of alkali metals (Li, Na, K, Rb, Cs) are typical representatives of the body
centered cubic (bcc) structure. The unit cell is non-primitive with 2 lattice points and the
basis of one atom. The cdll consist of one atom of each corner & one atom in the centre
of the cube.

The Noble metas Cu, As, Au, crystallize in another structure, the face centered cubic
(fact). The unit cell has four lattice points with the basis of one atom. The positions of
the atoms in the unit cell are 000, £10,0411,204. The Co-ordination number is 12. For

rock salt structure Brava's lattice is fact. An atom on the edge contributes 1/4™ of the

atom. Thus, the unit cell gets three sodium atom from those on the edges [1742 = 3) &

one from that at the centre. The total cell consist of 4 Na atoms. Similarly the
contribution of chlorine atoms to the unit cell comesto 4[8/8 + 6/2=4]. A single unit cell
accommodates four formula unit cells of NaCl. The positions of atoms in the unit cell
are,
Na: 003 030 300
Cl: 000 330 101 033
Since each ion has six nearest neighbors of opposite kind, the co-ordination number is

N[
N~
N1

6. in hcp crystal the unit cell contains one atom a each corner, one atom each at the
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centre of the Hexagonal faces and 3 more atoms within the body of the cell. Each atom
touches 3 atoms in the layer below its plane, six atoms in its own plane, and 3 atoms in
the layer above. Hence the Co-ordination number of this structure is 12. The top layer
contains seven atoms. Each atom is shared by 6 surrounding hexagon cells and the center
atom is shared by 2 surrounding cells. The three atoms within the body of the cell are
contributing to the cell. Thus the total number of atomsin aunit cell is6.

The diamond lattice can be considered to be formed by inter penetrating two fcc
|attice along the body diagonal by (1/4™ )cube edge. One sub-lattice has its origin at the
point O, O, O and the other of a point quarter of the way along the body diagonal

(% ,% %j The fraction denote height about the base in units of cube edge. The point at

0 and ¥z are on the fcc lattice, those ¥ and % are on a similar lattice displaced among the
body diagonals by ¥ of the cube edge.

The cubic zinc sulfide structure results from the diamond structure when Zn atoms are
placed on one fcc lattice and S atoms on the other fcc lattice. The coordinates of Zn
atoms are 000; there are four atoms of ZnS per unit cell. Each atom has about it four
equally distant atoms of the opposite kind arranged at the corners of a regular
tetrahedron. The diamond structure possesses a center of symmetry at the mid point of
each line connecting neighbor atoms; the ZnS structure does not have inversion
symmetry. Examples of the cubic zinc sulfide structure are CuF, CuCl, ZnSl, ZnSe, CdS,
INAs, InSb, SIC, AIP etc.

2.8 Keywords:

Miller indices — crystal planes — inter-planar distance — symmetry elements — center of
symmetry — point groups — Translational symmetry — glide plane — Screw axis — Bravais
| attices — space groups — common crystal structures.

2.9 Review questions:

1. What do you understand by Miller indices of a lattice plane. Find the Miller
indices of a plane that makes an intercept of 3a 3b and c along the three
crystallographic axes, where a, b, ¢ being the primitive vectors of the lattice.

2. Determine the Miller indices of a plane that makes intercept of 3A, 4A and 5A on

the coordinate axes of an orthorhombic crystal with a: b: ¢ = 1:2:5.
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Draw a (110) planein the unit cell of acubic crystal.

4. Show that the (hkl) planeis perpendicular to the [hkl] direction in acubic lattice.

5. Calculate the number of atoms per unit cell for a rock-salt crystal. Given a =

10.

11.

12.
13.

14.

15.

5.63A; Mol.wt. of NaCl = 58.5 and the density is 2180kg/m°.
The density of bec iron is 7.9 x 10°%kg/m® and the atomic wt. is 56. Calculate the
size of the unit cell.

RE
6

Show that maximum packing ratio in the diamond structure is

The diamond lattice may be considered to be a combination of two
interpenetrating fcc sub-lattices. One sub-lattices has its origin at the point 0, 0, O
and the other at a point one-quarter of the way along the body diagonal. a) Write
the position of all the atomsin the unit cell. b) How many atoms are contained in
the unit cell.

How many planes of type {hkl} are found in the cubic system. How many of the
type { hkO} .

Explain zinc blend structure and give two examples of compounds, which
crystallize in this structure.

Describe the diamond, sodium chloride and cesium chloride structures.

Show that for asimple cubic lattice digo: thio: thir = V6 :4/3:4/2

Derive the relationship between atomic radius and | attice parameter for fcc crystal
and calcul ate molecular packing.

What point groups does each of the following structures belong @) fc cubic b)
diamond ¢) bc cubic.

Explain clearly the three space group, point group and Bravais lattice. Show that
base centered and face centered tetragona does not give any new Bravais lattice.

2.10 Text and Reference Books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)

2. Elements of solid State Physics by Omar (Person education)

3. Solid State Physics by S.L.Kakani and C.Hemragjani (S.Chand)
4. Solid State Physics by M.A. Wahab (Narosa)

5. Solid State Physics by C.Kittel (Asia Publishing house)

6. Solid State Physics by C.J. Dekker.



ACHARYA NAGARJUNA UNIVERSITY 1 CENTER FOR DISTANCE EDUCATION

UNIT -1
LESSON -3

RECIPROCAL LATTICE

Aim: To learn about reciprocal lattices and Brillouin zones

Objectives:

» To introduce the concept of reciprocal lattice
» To show the relationship between real and reciprocal |attices

» Towrite Braggslaw in terms of reciproca lattice vectors

» To apply the reciprocal |attice concept to some important crystal lattices.

Structure:

3.1 Reciprocal Lattice

3.2 Bragg'sLaw

3.3 Construction of Reciprocal Lattice

3.4 Relationship betweena, b,canda,b’, ¢
3.5 Application to some crysta lattices

3.5.1 Reciprocal lattice to (sc) smple cubic lattice

3.5.2 Reciprocal lattice to bee lattice

3.5.3 Hexagonal space lattice

3.6 Summary

3.7 Key words

3.8 Review questions

3.9 Text and Reference books
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I ntroduction:

In the earlier lessons we learnt about the crystal structures in terms of the lattice
symmetry, basic composition, and various intersecting families of planes as visualized in
the space defined by the three crystal edges. The common experimental technique
employed to investigate crystal structures is the x-ray diffraction method. The crystal
photograph recorded on the X- ray film represents the diffraction pattern of the crystal in
which each of the spots corresponds to the diffraction maximum of a different family of
paralel planes, with a certain orientation and common spacing. It is worthwhile to find
some correlation between structure of a crystal and its planar X-ray photograph. This can

be done conveniently by introducing the concept of reciprocal lattice.

3.1 Reciprocal L attice:-

It is necessary to consider sets of planes in a crystal. This can be done in terms of
their normal. Geometrically we have an advantage, that is, the planes are of 2-
dimensions while normal lines are of one-dimensional nature. But it is not enough if we
consider the orientation of planes aone to study the diffraction of x-rays by crystals but it
is aso necessary to know the inter-planar spacing d since they only determine the
reflection angles 6. These inter-planar spacing may also be represented in the normal to
the planes by appropriately limiting their lengths.

From the above discussion it is clear that one can indicate the orientation of a set of
paralel planes by their common norma and the inter planar spacing by restricting the
lengths of the normal proportionately.

Consider any given space lattice and apply the following.

1. From acommon origin draw a normal to each crystal plane.

2. Set the length of each normal equal to (or) 2r times the reciprocal of the inter

planar spacing dn;.

3. Mark apoint at the end of each normal, which represents the crystal plane.

A collection of points obtained in this way corresponding to various crystal planes
form a lattice array and is known as “reciprocal lattice”. The points in the reciprocal

lattice are called reciprocal lattice points. These points in 3 dimensional space form the
reciprocal lattice space. This is aso caled k-space. From the concept of reciprocal
lattice it may be understood that the “Co-ordinates of Points’ in the reciprocd lattice




ACHARYA NAGARJUNA UNIVERSITY 3 CENTER FOR DISTANCE EDUCATION

space are defined by (h k 1), the Miller indices. The concept of reciproca lattice plays a
very important rolein the field of x-ray crystallography.

Real space

Fig 3.1 Direct and reciprocal latticefor a rectangular system

3.2 Construction of Reciprocal L attice: -
For the construction of reciprocal lattice first fix the origin at any arbitrary lattice

point O in the direct lattice and then identify three crystal axes (a, b, ¢) and shown in fig
3.2a c

A <“—dygp—>

Fig 3.2a Construction of the reciprocal lattice, a, b, ¢ represent the primitive
axes of thedirect lattice. A;isthereciprocal lattice point referred to dig planes
and lies on the normal to dig planes. The normal OP passing through the
origin O givesthedirection of thea axis of the reciprocal lattice (|OA1| = [a*]).
Let us now draw afamily of d;oo planes where d-stands for the inter planar separation and
(100) are the Miller indices. Drop anormal on OP to these set of planes from the origin
O. The vector OP in this case represents the direction of a. The complete set of

reciprocal |attice vectors along this direction are given by
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100
The tip of these vectors will be located at the respective reciprocal lattice points Ag,

Ao, As,.... The smallest of these OA,, isdenoted by a and expressed as

oa=a = F _ZC . (32)

leO leO
where é stands for the unit vector along OP or a .

Thus A; represents the reciprocal lattice point corresponding to digo planes and A, will
correspond to dxq planes which are parallel to dygo planes with half common spacing.
Therefore, it isreasonable to write

OA, = 2 2mé

d200 d200
It is also very clear that a reciprocal lattice point truly symbolizes a family of parallel

planes because its position is defined implicitly by the orientation and explicitly by the
common spacing of planes. And the general expression for reciprocal lattice vectors

donga’, identified as one of the three primitive translation vectors, is

goo=ha, (h=1,273,...) --omeeeemeee- (3.43)

We can similarly write vectors along the other two primitive vectorsb and ¢ as
Jao=kb, (k=1,23,...) -eeemoeeee- (3.4b)

and .
Joo=lc, (1=1,23,...) --=mmmmmmm- (3.4c)

Following this procedure for all the planes of acrystal lattice, its reciprocal lattice may
be mapped. The general reciprocal lattice vector should read as

g=ha +kb +IC -------mm- (3.5
As also inferred towards the end of the preceding section, the reciprocal vector g given

by (3.5) is normal to the family of planes (hkl). Suppose one such plane passes through
the origin O in a crystal system. Another member of the family and closest to this plane
isdrawn in Fig 3.2b. Vectorsp, g and r liein this plane. Now, it isasimple exercise to
show that g is normal to planes (hkl). All we need isto show that
g-t=0 with t=p,q,r.

From the definition of the Miller indices, it follows that the intercepts of the plane,
shown in Fig.3.2b, with a, b and ¢ axis vectors of the direct crystal are vectorialy written
asa/h, b/k and c/l, respectively. This enables usto write
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Fig 3.2b The figure shows inter sections of a plane (hkl) with crystal axes a, b,
c at general orientations. The three intercepts measure a/h, b/k and cll,
respectively. Vectorsp, g andr liein the plane (hkl).

It can be checked that the scalar product of any of these vectors with g vanishes, proving
thereby that every reciprocal vector is normal to afamily of parallel planes with common
inter plane spacing.

One point of caution: h, k and | in (3.5) need not always represent the Miller indices
and in principle they can have a common factor. In view of thisfact it is safer to use the
form

g=ma +mpb’ + Mgl -mmmemmmemmeemee (36)

where my, m, and mg are any integers.

3.3 Relationship between a,b,canda’,b’, ¢ :

Consider adirect crysta lattice as shown in Fig. 3.3. Draw a norma OA from O on the

face opposite to be face.

Draw anormal OA from O on the face opposite to bc face volume of the unit cell,

V =a-(bxc)=0Ax (Areaof thefacebc) = OAx | S| ------------ (3.7)

E = i (or) i = E (- OA=d,y)
V OA dge V
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e} a
Fig 3.3 A general direct crystal lattice

Where éisthe unit vector in the direction of the normal OA.

L2 _ 228 _, bxc (3.8)
Tdy, V a-(bxc) '
—a'= bxc (3.9)
a-(bxc)
smilaly =b’= 2n~% ---------------- (3.10)
. X
—c'= axb (3.11)
a-(bxc)

From the above equations we observe that a*, b* and ¢ is orthogonal to two crystal

axis vectors.

This can be compactly stated as, i -] = 2nd;; ------------------ (3.12)
Wherei, j can be a, b and c and §;; is the usua delta function.
3.4 Bragg'sLaw in termsof reciprocal lattice vectors:-

We learn more about x ray diffraction in the forth coming lesson and for the present the
Bragg's law derived for the X ray diffraction condition can be expressed suitably in the

reciprocal lattice, We now see how to do this.
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Fig 3.4a Bragg reflection from a family of planeswith inter planar spacing
d. Notethat theincident beam is deflected by twice the Bragg angle 6.

In the X ray diffraction phenomenon, the crystal planes are believed to act like plane
mirrors. Radiations reflected from two successive paralel planes under certain
conditions may interfere constructively to produce a diffraction maximum. The Bragg
diffraction shown in fig3.4a. Occurs for specular reflections (angle of incidence = angle
of reflection). The constructive interference occurs when the path difference (2d sin 6)
between the interfering rays equals an integral multiple of the X-ray wavelength A.. That
is,

2dsin® =nA ---------mo-m-eo- (3.13)
where d isthe inter planar spacing 6 is the angle of the incident radiation with the plane
n=123...... (order of diffraction)
The relation (3.13), which is a mathematical statement of the Bragg law, shows that
the diffraction effects cannot be observed from a family of planes for any arbitrary angle

of incidence.

Bragg s diffraction condition in terms of reciprocal lattice:

The Bragg condition can be expressed as a relation between vectors in the reciprocal

lattice. The Bragg condition can be expressed as
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Sing,, = % ---------------- (3.14)
hkl

in which the order of reflection is aready included. The equation (3.14) can aso be
written as

1/d,,
1/ 2

A geometrical interpretation of egn.(3.15) is givenin fig (3.4b). SO is avector whose

SiNBy, = =M e (3.15)

length is 1/A. Thisvector is drawn in the direction of incident X-ray beam and ending at
the origin of reciprocal lattice. Now a sphere of radius 1/A is constructed about a point S

ascentre. Let this sphere intersect some point (h’, k”, ") of the reciprocal lattice at P.

7
N/
/I /k \\‘\~

> /A

Fig 3.4b Vector geometry of Bragg reflection in the reciprocal lattice.
The vector OP then represents a vector counting the origin of the reciproca lattice and a
point (h’, k’, I’) of that lattice. The vector is normal to hkl plane of direct lattice and its
length is 1/dn. From the figure the length of the vector OP can be calculated from fig.
whichis2sin 8/
Hence 2sin@/A= B (3.16)

hki

i.e A=2dsiné

and the Bragg condition is satisfied. Thus the vector OP represents a normal to the
reflecting planes (hkl) and the vector SP is in the direction of diffracted beam. The
direction of the diffracted beam is shown in figure (3.4c). For any experimental set up,

the direction of X-ray beam is defined as AO.
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Diffraction occurs only when the orientation of the crystal is such that a reciprocal lattice
point P comesto lie on the circumference of acircle S of radius /4. When this occurs, a
diffracted beam is developed in the direction SP.

It is customary to imagine al the vectors of fig (3.4c) to be multiplied by a constant
factor of 2w as represented in figure (3.4d). Here the vector K is 2z times the vector SO
and the vector G is 2r times the vector OP. Again the disposition of vector is such that

vector SP must be vector sum of K and G.

Reflected beam

O!
Fig 3.4c Showing the direction of Fig 3.4d Vector diagram of thefigure
diffracted beam. expanded by a scale factor 2x

Now the magnitude of the vector SP’ i.e.,, K+G and the magnitude of the incident beam
vector SO’ i.e,, K must be equal. Applying this condition the Bragg condition is satisfied ; the
Bragg condition must imply that

(K+G)? = (K+G).(K+G) = K?
ie, 2K.G+G?=0  —ommeeeeeee (3.17)
Equation (3.17) represents the vector form of Bragg equation.
HereG=h'a+k'b+ I c(h, k, | =integers)
Brillouin Zones.

If we consider a parallelepiped formed by reciproca lattices a', b” and ¢, then this
may be taken as the primitive cell of the reciprocal lattice. It can be observed that the
eight corner points are shared among eight parallelepiped or we can say that one
paralelepiped contains one-eight of each of eight corner points. In this way the
parallelepiped contains one reciprocal lattice point. But in solid state physics, a primitive
cell of areciproca lattice is taken as the smallest volume bounded by planes normal to

each of (shorter) G’sat its midpoint.
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Each of the new cell contains on lattice point and the point is at the centre of the cell as shown
in fig 3.4e. The primitive cell formed in this way in the reciprocd lattice is called the first
Brillouin zone. The same procedure adopted for real crystal lattice resultsin areal primitive cell
called Wigner-Seitz cell.

od
o

Fig 3.4e Construction of first Brillouin zone.

3.5Application to some crystal lattices:-

Reciprocal lattice to (sc) ssimple cubic lattice:-

The primitive trans ation vectors of a sc lattice may be written as,

a=ai;b=bj;c=ck; wherethevolumeof theunitcell isa.b x c=a®. The Primitive

tranglation vectors of the reciprocal lattice of the sclattice will be,

bxc 27 A 2r .

a=2r————— ="j(or)—xX
a-(bxc) a a
* cxa 27 » 271',\
=2r.— =~ =" jon) =y
a-(bxc) a a
and ¢ = 2. 2XP :ﬁli(or)—z

‘a- (bxc) a
From these equations, it is evident that the reciprocal lattice to sc lattice is itself a sc

lattice with a lattice const 27%. The boundaries of the resulting primitive unit cell are

the planes normal to the six reciprocal lattice vectors + a*, + b*, + ¢* at their mid points,
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ky

Fig 3.5a Thefirst Brillouin zone of a simple cubic lattice

The space bounded by these Six planes is a cube of side 27% and volume (27%)3. This
cube isknown asthe first Brillouin Zone of the sc lattice is shown in fig 3.5a.

3.5.2 Reciprocal lattice to bcc lattice: -

The primitive tranglation vectors or the bce lattice shown in fig 3.11 are given by,

== (i-j+k)

N o

3

Volume of the unit cell is% . Fig 3.5b Primitive translation vectors

of the bcc lattice

The primitive translation vectors a*, b* and ¢” of the reciprocal lattice are defined by

a=2 (i+]))
a
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¢ = 2% (k +i)
a

We observe that, these reciprocal lattice vectors are just the primitive vectors of the fcc
lattice, showing that an fcc lattice is the reciproca lattice of the bcc lattice. The
rhombohedron formed by a“, b" and c¢" represents the primitive cell of volume V
expressed as

1672

a3

V=a“(b"xc) =

Similarly, it can be shown that the reciproca lattice of the fcc lattice is a bec lattice.
There arein all 12 shortest vectors for the lattice described by (3.18):

o axry); Eyrz), Z(rzx)
a a a

with the choices of signs being independent.

Planes perpendicular to these vectors at their mid-points enclose the volume of the first
Brillouin zone which turns out to be a rhombododecahedron (Fig. 3.5¢).

Fig 3.5c Thefirst Brillouin zone of abcc crystal. Itis
rhombododecahedral in shape.

Face-Centered Cubic L attice:

The primitive trandlation vectors of the fcc lattice as shown in fig.3.5d may be taken
as
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Fig 3.5d Primitive trandation vectors of Fig 3.5e Thefirst Brillouin zone
the fcc lattice. in thefcc lattice.
a, .
a=— (i+j);
o (%)
a
b=—=(+Kk); -----mmmmm-- (3.19)
2
a,
c= —( +k).
,0+Kk)

3

The volume of the primitive cell isa . b x ¢ = 1a®. Using the primitive translations of the

reciprocal lattice are found to be

a =2 (i1j-k)
a

These are the primitive tranglations of abcc lattice. We have now
G=02r/a)[(h—k+)i+(h+k-Dj+(=h+k+1)Kk] ------mmmmmmmm-- (3.22)
The shortest non-zero G’ s are the eight vectors

e NI I T — (3.22)
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The zone boundaries are determined for the most part by the eight planes normal to these
vectors at their midpoints, but it may be seen that the corners of the octahedron thus formed are

truncated by the planes which are the perpendicular bisectors of the six vectors.
(2n/a) (£2i); (2n/a) (£2)); (2n/a) (x2k). --------------- (3.23)

Thefirst zone is then the truncated octahedron shown in fig 3.5e.

3.5.3 Hexagonal space L attice:-

The primitive trandation vectors b;, b, and bs are drawn in Fig 3.5f. In relation to the
directions of X, y, z axes as shown in the figure, the primitive vectors of the direct lattice
are given by

bs

b2 ] Ibs]= bz ] =2
by |ba|=c

¥

Fig 3.5f Hexagonal space lattice—b,, b, and b3 arethe primitive vectors and the
angle between b; and b, (on the hexagonal face) is 60°.

Then the primitive vectors of the corresponding reciprocal lattice are
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b, =2~ i>‘<+§/
173 NE

2r 1
b = ——— X+ V| - 3.25
? a( V3 yj ( )
. 2m
b= 2
bs

Fig 3.5g Thereciprocal lattice of the hexagonal space lattice shown in Fig 3.5f

The unit cell formed by these vectors is again a hexagona prism as shown by Fig.3.5g.
The significant point about this prismisthat

by | < by |or<|b;|

3.6 Summary:

One can indicate the orientation of a set of parallel planesin a crystal by their common
norma and the inter planer spacing by restricting the lengths of the normals
proportionately by applying the following rules

1. From acommon origin draw anormal to each crystal plane.

2. Set the length of each normal equal to (or) 2r times the reciprocal of the inter

planer spacing dny.

3. Mark apoint at the end of each normal which represents the crystal plane.

A collection of points obtained corresponding to various crystal planes form a lattice

array and thisis known as “reciproca lattice”. The points in the reciprocd lattice are

called reciprocal lattice points. These points in 3 dimensional space form the reciprocal
lattice space. Thisis also caled k-space. It may be noted that the reciprocal lattice to sc

latticeisitself asc lattice with alattice const 2 . Anfcc lattice is the reciprocal |attice of
a

the bcc lattice and vice versa
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A reciprocal lattice vector isexpressed asG = ha + kb + Ic’ where h,k,| areintegers.
The fundamental translation vectors a, b, and ¢ of direct lattice and @, b™ and ¢ of
reciprocal lattice are mutually related as

. bxc . cxa . axb

“a-bxc’  a-bxc’  a-bxc
(ona’ =2r bxc , b =2r cxa ,C'=2n axb
a-bxc a-bxc a-bxc

The Bragg'slaw isalso expressed as 2k. G + G*=0; Dk =G

A Brillouin zone is the locus of al those k-vaues in the reciprocal lattice which are

Bragg reflected.

Properties of the reciprocal lattice

(a) Each vector of the reciprocal lattice is normal to a set of lattice planes of the direct
lattice.

(b) If the components of G have no common factor, then |G| is inversely proportional to

the spacing of the |attice planesnormal to G, i.e. |G| = 1 .
hkl

(2r) _(2x)
a-bxc v,
(d) Thedirect lattice isthe reciprocal of its own reciprocal |attice.

(©) (@ -b"xc")=

() Theunit cell of the reciprocal lattice need not to be a parallel epiped.

Reciprocal lattice concept and Brillouin zone concept are useful not only in X-ray
diffraction, but also in the band theory particularly in explaining the properties of
materials.

3.7 Key wor ds: Reciprocal |attice — k-space — Brillouin zone

3.8 Review questions:

1. Explain the concept of reciprocal lattice. Obtain reciprocal lattice vectorsin terms
of direct lattice vectors.
2. Show that the reciprocal lattice must belong to the same system as the original
lattice.

3 .Derivereciproca lattice vectorsto fcc lattice.
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4. Explain about reciprocal lattice and Brillouin zones in crystalline solids.

5. Derive Bragg'slaw in terms of reciprocal lattice.

6. Explain the properties and usefulness of reciprocal lattice.

7. Show that the reciprocal lattice of a hexagonal latticeis a hexagona lattice with a
rotation of axes.

8. Sketch the first three Brillouin zones of of a 2-dimensional square lattice.

9. A particular two dimensional lattice has the basic vectors a=2x,b=x+2y . Find
the basis vectors of the reciprocal lattice.

10. The primitive trandlation vectors of the horizontal space lattice are

g a
2

——E +——¥y andc=cz
2 2

SD
I\)lQJ

V3

(a) Show that the volume of primitive cdll is 7a c

(b) Show that the primitive translations of the reciprocal lattice are

a’ = 27“ 2n y,b" = 2ﬂ>‘<+2—ﬂ§/, c*:z—ﬂz So that the lattice isitsown

J_ 3a a +/3a c
reciprocal but with arotation of axes.
11. What are Brillouin zones? Determine he reciprocal lattice vectors, which define
the Brillouin zones of bce and fcc lattices.
12. Show that the volume of the unit cell of the reciprocal lattice isinversely
proportional to the volume of unit cell in direct lattice.

13. Deduce Bragg's law in terms of reciprocal lattice.
3.9 Text and reference books:

1. Elements of Solid State Physics by J.P. Srivastava (PHI)

2. Elements of solid State Physics by A. Omar (Pearson education)

3. Solid State Physics by C. Kittel (Asia Publishing house)

4. A Text Book of Solid State Physics by S.L. Kakani and C.Hemrgjani (S.Chand)
5. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT =1
LESSON: 4
Diffraction Methods

Aim: To learn about the principles of various diffraction methods

Objectives:
» To understand the phenomenon of diffraction of X rays by crystals
» To study the various experimental methods of X ray diffraction

» To understand the principles and uses of Electron and Neutron diffraction methods

Structure of the Lesson:-

4.1 The Diffraction of X-rays by Simple Lattice Arrays of Atoms:
4.2 Bragg'slaw

4.2.1 Bragg'slaw in Three Dimensions:

4.2.2 TheVon Laue Treatment

4.3 Experimental methodsin X-ray Diffraction:
4.3.1 The Laue Method:

4.3.2 Rotating Crystal Method:

4.3.3 The Powder-Photograph Method:

4.4 Electron Diffraction:

4.5 Neutron Diffraction:

4.6 Laue Derivation of Amplitude of Scattered Wave:
4.7 Summary

4.8 Key words

4.9 Review questions

4.10 Text and reference books
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I ntroduction:
Strong x-ray diffraction produced by crystalline solids is based on Bragg's Law. Crystals are

composed of various intersecting planes each of which itself contains a number of atoms. Since
the inter atomic separations in crystals are of the same order of magnitude as the wavelength of
X-ray (~A), crystals act as diffraction gratings and produce diffraction on being irradiated by X-
rays. W.H. Bragg and his son W.L. Bragg observed in 1913 such characteristic effects in the X-
ray radiation reflected from crystals. In this phenomenon, the crystal planes are believed to act
like plane mirrors. Radiations reflected from two successive parallel planes under certain
conditions may interfere constructively to produce a diffraction maximum. The Bragg
diffraction, shown in fig.4.1a, occurs for specular reflections (angle of incidence = angle of
reflection). The constructive interference occurs when the path difference (2d sin 6) between the
interfering rays equals an integral multiple of the X-ray wavelength A.. That is,

2dsin®=niA -------- (4.19

where d isthe inter planar spacing

6 isthe angle of the incident radiation with the plane

n=1223...... (order of diffraction)

Fig 4.1a Bragg reflection from a family of planeswith inter planar spacing
d. Notethat theincident beam is deflected by twice the Bragg angle 6.

The relation (4.1a), which is a mathematical statement of the Bragg law, shows that the
diffraction effects cannot be observed from a family of planes for any arbitrary angle of
incidence. Even if monochromatic X-rays are used, the match among d, 6 and A has to be sought
to satisfy (4.1a) and get the Bragg diffraction. So, it is clear that Bragg diffraction is very much
different from ordinary diffraction which generaly puts no restriction on the incident angle.

Further, sincesin9 < 1,
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r<2d - (4.1b)
The condition expressed by (4.1b) clearly explains why Bragg diffraction cannot occur for the
visible radiation. The Bragg law as expressed by (4.19) is essentialy the consequence of the
periodicity with only the elastic scattering of radiation taken into consideration .

4.1 The Diffraction of X-raysby Simple Lattice Arraysof Atoms:

When an electron comes in the path of X-ray wave, it is set into forced vibrations by the
periodically changing electric field of the X-ray waves passing by it. Due to such oscillations,
the electron is accelerated and decelerated. We also know that an accelerated electrically
charged particle behaves as a source of eectromagnetic disturbance and hence the eectron acts
as asource of electromagnetic wave of the same frequency and wave-length as the origina X-ray
wave. By thisinteraction the electron is said to scatter the original X-ray wave .

Let us consider one dimensional regular array of points, spaced ay apart as shown in fig 4.1.
The atoms scatter X-radiations and produce about itself a new set of spherical wave envelopes.
Any line up of envelopes constitute a combined wave moving in the direction of common
tangent. The cooperative combination of scattered wavelets is
known as diffraction. When the tangent
is parallel to the origina wavefront, the
diffraction is known as zero order
diffraction. ~When the tangent starts
from the inner most spherical envelope

of one atom, continuing through the

second nearest envelope of next atom,

through the third nearest envelope of  Fjg 4.1 Diffraction of plane waves by
next atom and so on, the wave built up one-dimensional point grating.

along this front is known as first order diffraction. In this case the envelope difference is

one. Similarly, when the envelope difference is two, we have second order diffraction

i.e., the tangent connects envel ope differences of two between neighboring atoms.
Now let us consider the condition of diffraction. Let the rays SO and SO represent

distances in the incoming beam, and OS and RT distances in the scattered radiation.
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There will be a maximum of intensity in the direction of OS and RT when the following

condition is satisfied.

SOS—-SRT=mA  --------- (4.28)

Where my is an integer and A is the wavelength of the radiation. The path difference

(S0S— SRT) can be calculated with the help of fig 4.1.
SI0S-SRT=0Q—-PR=4aycos §—apcos Gy ----------- 4.2

From equations (4.2a) and (4.2), we get

ap COS O —ag €S Gy = g (Cos O — cos Gp) = MA  ----------- (4.3)

The equation (4.3) shows that except zero order, no diffraction maxima can occur for

wavel engths longer than 2a, because the maximum value of (cos 8 — cos p)can be equal

to 2. The atoms aong one dimensional array scatter secondary radiationsin al directions

and hence the three dimensional representation of diffraction pattern may be obtained by

the rotation about the line of grating. The diffraction maxima lie along cones whose

mutual axis is the line of grating. The appearance of spectra of different orders on a

plane paralldl to line of atom array is shown in figure 4.2(a). When the incident radiation

comes directly below grating i.e., 6, = ©/2 and cos6, = 0, the spectrum of zero order

appears as straight line upon this plane and other orders as hyperbol ae.
A m=0 m=+1 m2:+2

Fig 4.2(a)Diffraction pattern formed on the plane AB
by one dimensional pointsarray at O.

Now we consider the three dimensiona case consisting of one-dimensiona grating of
equal interval ap along the X, Y, and Z directions. Corresponding to these axes, let ao, So,
and y be the direction cosines of the incident radiation and «,  and y the corresponding
guantities for aline in direction maxima in scattered radiation. In this case, we have the
following equation (known as Laue’ s equations):

o (o —oa o) = MA

A (B-Bo) =Mk --------m- 4.9
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a0 (y—70) = M3k
where my, my and mz are integers.

The figure 4.2(b) illustrates the condition of diffraction in three dimensional gratings.
Let the wave-fronts on the incoming monochromatic radiation be perpendicular to Z-axis.
The axes of the diffraction cones from the component gratings parale to Z-axis are
vertical and their sections by the plane AB are circles. These circles are shown in figure
4.2(b). The maxima in the diffraction pattern will be a common intersection of two

hyperbolae and circle. As no such
my =1y = g™ = +1

intersection can take plane there is no m, =2 = +2
monochromatic diffraction pattern at all rnzr:z—ZZ_l
produced for a given value of o, o, and =0
7. Since, the angle 6, between the beam "E

and lattice rows is variable, it is possible

to arrange this variable such that the mg =+2

three cos 6y's define an identical Fig 4.2(b) I1lustrating the condition of
direction. In this case diffraction occurs. diffraction in three dimensions.

4.2 Bragg'sLaw:

Schuster pointed out that X-rays are electromagnetic waves with wavelengths thousand
times smaller than the visible light. In order to measure the wavelengths, a grating of
corresponding dimensions is required and hence simple grating can not be used.
Moreover, it is rather impossible to prepare artificially a grating of such fine dimensions.
Laue and his collaborators showed that atoms in crystals are arranged in a regular manner
and the spacing between them is comparable to the wavelength of X-rays and hence the
crystal could act as suitable natural grating for diffracting the X-rays.

W.L.Bragg presented a simple explanation of the observed angles of the diffracted
beams from a crystal. Consider a series of paralel rows in which the atoms are arranged
in a given plane of the crystal. Suppose a parallel beam of X-rays is incident in a
direction making a glancing angle 0 with the surfaces of the planes. Each atom acts as a
centre of disturbance and sends spherical wave-fronts by Huygens construction. As X-

rays are much more penetrating than ordinary light, it is necessary to consider the rays
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reflected not from a single layer but from several layers together. There will, however,
be no diffracted beam unless the waves reflected from different planes are exactly in
phase. Now they will reinforce themselves and an intense reflected beam will result.
The condition that the reflected wavefronts be in same phase, is that path difference
between the reflected wave from one layer and that from the next must be an exact wave
length or an integral multiple of it. If there is a smallest disagreement in phase between
the beams reflected from successive planes, it causes destructive interference.

Let us consider two parald rays LMN and PQR, which are reflected by two atoms M

and Q in adjacent layers as shown in figure 4.3(a). The atom Q is verticaly below M.

The length of the path PQR is greater than the length of the path LMN. The path

differenceis (AQ + QB) and according to the condition of reflection, we have
(AQ+QB)=nL ---------m-- (4.5)

Fig 4.3(a) Illustrating the derivation of the
Bragg'sLaw.

Thisis known as Bragg's law and gives the condition for the reflection of X-rays from
series of atomic layers in a given plane. For a given set up with monochromatic
radiation, the wavelength A is fixed and hence equation (4.6) has only a particular set of

solutions namely.
0, =sin'1 (ij
2d
=sin™2 (Zij ------------- 4.7)

d
=sn'3 (;—dj ... etc.
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These are known as the first, second, third, etc. reflection accordingto nis 1, 2, 3 etc.,
this shows that the crystal cannot given rise to reflections at any angle but only at those
discrete angles indicated by equation (4.7). Bragg reflection can occur only for
wavelength L < 2d. Due to this fact, the visible light wavelength cannot be used in
diffraction.

The Bragg' s law is a consequence of the periodicity of the space lattice. The law does
not refer to arrangement or basis of atoms associated with each lattice point. The
composition of the basis determines the relative intensity of the various order n of
diffraction from a given set of paralel planes. As stated earlier, Bragg reflection can
only occur for wavelength A < 2d and due to this fact the visible wavelength cannot be
used in diffraction.

4.2.1 Bragg'slaw in Three Dimensions:

The three dimensiona diffraction grating of a crystal may be regarded as composed of
three sets of uni-dimensional gratings, each one of which consists of a row of atoms
paralel to one of the three axes of crystal. Let X3, yi, z1 represent the inter atomic
distances along the three axes. Let, oo, Bo and yo be the direction cosines of the incident
radiation and o, § and y the corresponding quantities for the scattered radiation. Then the
conditions for diffraction along these three sets of linear grating are
X1 (o—0p) = MA
y1 (B—Bo) = mz2h
Z1 (y=y0) = Mgk =---==------=- (4.8)
where m;, m, and mg are integers representing the order of the diffracted beam from each
of the gratings. Considering the case of a cube crystal x; = y1 = z; = &, the edge of the
unit cube. Squaring and adding equations (4.8), we get

(0% + B +7%) + (a0’ + o™ +70°) — 2(ctoto + BPo + ¥Y0)

But we know that
o2+ B2+ = o+ B +1o2=1 and

oo + BPo+ yyo = CoS ¢
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according to well know theorem in trigonometry. Here ¢ is the angle between incident
and diffracted beams.
Applying these results to equation (4.9), we have

2
2-2cos¢ = (%J {mf+m22+m§}
2
4sin’p/2= (%} M2 +mZ + m2

2sin ¢/2:(%J V[imZ +m2 +m2 ], e (4.10)

The angle of deviation ¢ can be calculated with the help of equation (4.10). The
equation (4.10) may be regarded as typica in the viewpoint of Laue and in Bragg's
viewpoint, it can be expressed in the following manner : We know that a plane of atoms
in acrystal is most commonly defined by its*Miller indices', which are the reciprocals of
the intercepts of the plane upon the X, Y and Z axes, respectively. It is customary to
express these reciprocal intercepts in terms of their lowest prime numbers so that if the
reciprocal intercepts are given as h, k, I, the actua reciprocal intercepts will be nh, nk and
nl wher nisany integer. If, therefore, we choose such a plane of atoms that
my=nh; my=nk: mg=nl,
we may regard the diffracted beam of equation (4.10) to be a diffracted beam of the nth

order from the plane (h, k, I). Hence

2sing /2= % N(h? +K2 +12)n.

a, .
Or ni=2 sSng/2 -------m-m- 411
V(h? +k*+1?) ¢ *.1)
B % is equal to the distance between successive hkl planes, and it is

. V(h? +k* +1?)
denoted by d. The grazing angle of incidence (or the angle of diffractionis ¢/ 2 anditis
equal to 6. Hence
nk=2dsin 6

If instead of considering the case of cubic crystal, we consider the case of any other

crystal, we arrive at a new expression in the denominator of equation (4.11) which would
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represent the distance d between successive planes for that crystal system. Equation

(4.11) is, therefore, perfectly genera and appliesto all types of crystals.

4.2.2 TheVon Laue Treatment:
Consider the radiation scattered by

two identical scattering centers A and B

Separated at a distance p as shown in

fig 4.3 (b) Heretheincident radiation is
assumed to be a paralel beam and the
scattered beam is assumed to be detected Fig 4.3 (b)

at along distance away.

Let §() and S be the unit vectors along the direction of incident beam and scattered beam

respectively. The path difference between the radiation scattered from radiating center B and
that scattered from A is given by

BP-AQ=S5 p-S:p =(5-S)p
Where BP and AQ are the projections

of p on incident and scattered beams

, Relecting
respectively. The vector S,-S plane
represents the direction normal to the
plane that reflects the incident direction Fig 4.3(c)

to the scattered direction as shown in fig
4.3 (c).
The plane may be regarded as the reflecting plane in the sense of Bragg treatment.

If 26 bethe angle which S makes with S, , then the magnitude of (S, - S) i.e. |S, — S| = 2

sin 6 because SZ and S are unit vectors. The phase difference between the radiation scattered

from the points A and B is given by

b, = ZT”X Peth diifference = %(sﬁ0 e — (4.12)
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The condition that there be a diffraction maxima in the direction § is that the phase
difference between the scattering contributions from A and B must be an integer multiple of 2x.
This condition can be satisfied in nearest—neighbor atoms if the radiation scattered by them add
in phase. We know that nearest neighbor atoms are separated by primitive tranglation distances

a, b and ¢ hence replacing ; by E,Bor Zin equation (4.12) and applying the condition of

maximum diffraction we have

—

%(sfo—é) .a = 2zh' = 27nh

%(s}%) R (4.13)

-

%(sfo—é) ¢ =27 = 27l

Here h', k', and I’ may be any three integers. These integers may form a smallest set of integers
in such a way that they may be identical with Miller indices of a crystal plane or they may
contain a common integer factor greater than unity. Considering the common factor as n, we can
writethemash’=nh, kK =nkand I’ = nl. Now h, kand | are now three smallest integers identical

with Miller indices. In aparticular case n may be unity and in this case either set of integers may

have the same meaning. Let o, f and y be the angles between the scattering normal (§O - §) and
the aT—, t; and c? - axes of the crystal respectively.
Now (§0—§)-5:29n0-a-003a=2asin0-a-003a

(v |S,~S|=2sn6)

Similarly
(S,~S)-b=2bSnOCOSP e (4.14)

and(gc)—g) -E:2csin 0 cosy

Applying egs. (4.14) to egs. (4.13), we have
2asin 6 cos o = nhi
2bsinfcosP=nkh  ---m-mmm-meoe- (4.15)
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2csinfcosy =nlx
These conditions are known as Laue equations. The equations (4.15) serve to determine a
unique value of 6, thus defining a scattering direction. From these equations we note that the

k

direction cosines of the scattering normal (§O _§) are proportional to E b and —. Weadso
a

!

C

know that direction cosines of the normal to hkl family of planes are proportional to D % and
a

I—. Therefore, we conclude that the scattering normal (§O - §) isidentical to the normal to (hkl)

o
planes. Hence the (hkl) planes may be regarded as the reflecting planes in the sense of Bragg
treatment. In this way the Laue equations provide the vaidity of Bragg treatment.

If d be the spacing between two adjacent planes of afamily (hkl) we have
= Ecosw = Ecosﬁ = Ecos
h k el

Then from either of equations (4.15), we have
2dsin @ = Nk -----m-memee- (4.16)
which is the Bragg eguation.
Here n is the order of the diffraction and it is the greatest common factor among the integers
h', k', and I enclosed in paranthesis i.e., (W'k'l"). Thus the first order diffraction maxima for the
(111) planes is referred as (111) reflection. Similarly the second order diffraction maxima for

the family of planes as (222) reflection and so on.

4.3 Experimental method in X-ray Diffraction:

4.3.1 The Laue Method:

The experimenta equipment here is relatively simple and is shown in figure 4.4. The crystal
is held stationary in the beam of X— rays. The rays after passing through the crystal are
diffracted and are recorded on the photographic plate place at a certain distance from the crystal.
Before passing through the crystal, the X— rays are limited to a fine pencil by a dlit system. The
diameter of the pinhole is importance from the stand point of detail in diffraction pattern. The

smaller is the diameter the sharper is the interference. The crystal is set on a holder to adjust its
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orientation. The Laue method employs white radiation (X— rays beam of continuous range of

wavelength) which is usually obtained from a tungsten target at about 60,000 volts.

LEAD DIAPHRAGMS

X-RAYS ‘
PINHOLE/" ‘

Crystal

PHOTOGRAPHI
PLATE

Fig 4.4 Diffraction of white X-rays by a single
stationary crystal

We have seen that if a beam of X— rays of a given wavelength A is passed in a given
direction through a crystal, the diffraction is not in genera to be expected. This is
because very few sets of planes would be in a favourable position to meet the
reguirements of the Bragg equation and reflections would of course be rare. But since
there is a whole range of wavelengths in the continuous spectrum, there will be discrete
values of A which satisfy the Bragg condition-no matter what may be the orientation of
the lattice planes. In another words, for any values of d and 6y, there will be found in the
beam some value of A such that diffraction can occur. We know that atoms of crysta
have an orderly arrangement in all the these dimensions in space, hence the diffraction of
X-ray will occur from many families of atomic planes at once, each family picking out
the wavelength which it can diffract a the angle at which it finds itself. The sort of
diffraction pattern obtained isillustrated in figure 4.5.

Examination of the Laue photograph shows that the spots do actually occur at the
positions to be expected from the reflection law. When the primary beam passes along
the axis symmetry of the crystal, the Laue pattern consists of a series of spots whose loci
are ellipses which pass through the central image made by primary beam. The spots on
any one €ellipse are produced by planes belonging to the same zone i.e. planes which are
paralel to one common direction.

The Laue pattern can be used to orient crystal for solid state experiments. Let us
consider the case of a crystal with four fold axia symmetry which is oriented with the

axis pardlel to the beam. Each reflecting plane then selects a wavelength satisfying the
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Bragg equation from the incident beam. The Laue pattern obtained in this case shows the
four fold symmetry.

Practically this method is never used for crysta structure determination. In this case
several wavelengths may be reflected in different orders from a single plane, so that
different orders of reflection may superpose on a single spot. Due to this fact the

determination of areflected intensity is difficult and thus the determination of the basis.

4.3.2 Rotating Crystal M ethod:

The rotating crystal method is shown in fig 4.6. The X rays are generated in the X-ray
tube and then the beam is made nearly monochromatic by a filter. The beam is now
passed through collimating system, which permits a fine pencil of parallel X-rays.
Now a crystal is mounted on a shaft which is arranged perpendicular to the incident
beam. This shaft is rotated at a uniform angular rate by a small motor. Here one thing
should be remembered that the crystal dimensions should not be greater than one mm, so
that the crystal may completely be bathed by the incident radiation.

When the crystal is set into slow rotation about a fix axis, the sets of plane come
successively into their reflecting position, i.e., the value of 0 satisfies the Bragg equation.

Beams from al planes paralel to the PhOtogr/aphiCp'ate

vertical rotation axis will lie in the Diffracted beam

horizontal plane. The diffraction pattern oojimating system Crysta

—

may be registered either upon a -

photographic plate perpendicular to X-

rays beam pr upon a film a cylindrical Rotating shift
camera, the axis of which coincides with @%mmm
the axis of rotation of the crystal. Fig 4.6. Rotating crystal method.

The two types of photographs may be obtained. The first is complete rotation
photograph in which the turning of the crystal through a series of complete revolutions
takes place. It isobserved that each set of planesin the crystal diffracts four times during
the rotation. The four diffracted beams are distributed in a rectangular pattern about the
center point of the photograph. The second is oscillation photograph. In this case,

instead of being given a continuous rotation, the crystal is made to oscillate back and



M. Sc., PHYSICS 14 DIFFRACTION METHODS

forth with a constant angular speed through a chosen angular range. It is observed that
the oscillation photograph lacks the symmetry, which is shown by the complete rotation
photograph. The limited range in oscillation photograph reduces the possibility of
overlapping reflections.

Now we shal discuss the theory of
the rotation photograph. Suppose the
crystal to be rotated in the X-ray beam is
mounted, in such a way that one of the
crystallographic axes coincides with the
axis be the Z-axis. Now consider the two
neighbouring atoms A and B at lattice
poiot aong the Z-axis. The distance
between A and B will be primitive translation c as shown in fig 4.7(a). In this case the
condition of diffraction is given by
c(coss +cos¢g) =NA - --------m-mmm- (4.17)

Where n is an integer representing the order of diffraction by the line grating. When
the rotation axis is perpendicular to the beam ¢ = 90° and the condition (4.17) now
becomes
CCOSOd=CSINU=NA --------mmmmmm- (4.18)

For various order of diffraction n assumes values such as 0, 1, 2, 3, ....etc giving rise
to the series of equations

CoSdp=SiNpup=0
cosd1 =sinu; = Alc
C0S &, =Sin up = 24/c

COSd3 =SiNug =3A/C -----------m--- (4.19

COS d0p = SiN w, = NA/C
When A is constant, such equations give the loci of all possible diffracted rays as the

crystal turns. These loci are elements of a series of cones, shown in figure 4.7(b) of
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which the half apex angles are given by 6, , 8, ,03 etc. Any element of each of the cones
makes angles u, 12 , 13 etc. respectively with the horizonta plane.

The central horizontal plane contains
al diffracted beams of order of zero.

The Miller indices of all planes giving

diffracted beams in horizontal plane

7/

must be presented by (h, k, ). similarly
X-rays diffracted by planes of indices (h, ]
k, ) lie on the first order cone defined by I=-1
THEE-1) Rl ) [ —— (4.20) I=-2

Hence in genera, al the beams

1% layer line

«2"ayer line

diffracted from planes of indices (hkl) lie _ ' .
Fig 4.7(b) Formation of layer lineson

on the n th order cone defined by acylindrical film
un=sint Mo (4.21)
C

Figure (4.7(b)) shows that the cones intersect the cylindrical film in a series of circles
lying in planes perpendicular to the axis of rotation, which becomes a series of parallel
straight lines, known as layer lines when the film isunrolled. The conefor n=0is plane
perpendicular to the axis and containing the direction of incidence and the intersection of
this with the film is called the equatorial or zero layer line. The succeeding lines are
termed the first, second, third, etc. layer lines.

The dimensions of the unit cell of the structure are determined in the following way.
The spacings of layer lines give lattice trandations. If the distance of the film from the
crystal is known, the distances of the layer lines from the equatorial line give the values
of angle 8 and A is known, the value of C can be caculated. Now the rotation
photographs are taken separately about all three axes. in this way trandations a, b, c are
calculated which give the dimensions of unit cell of structure. The rotating crystal
method is this very powerful of giving the size of unit cell.

A powerful method which is much used now a days is due to Weissenberg. In the
Weissenberg method, the crystal is continuously rotated through 180° and back and at the

same time the cylindrical camera containing the film moves at a constant speed backward
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and forward parallel to the axis of rotation. The movements of film and camera are so
synchronized that a given position of camera corresponds accurately to a definite angular
position of the crystal in its rotation. With the help of co-ordinates of the spot on the
film, the angle of reflection as well as the position of the reflecting plane can be known.
To allow only the spots due to one layer line, a metallic cylinder having an equatorial dlit
of a few millimeters is introduced between the crystal and the film. The photograph
records all the spots belonging to that layer line spread pit into a characteristic pattern on
the single film and can readily be indexed.

4.3.3 The Powder -Photograph Method:

The powder method is the only method which can be used with that large class of
substances which can not be obtained easily in the form of perfect crystals of appreciable
size. Thisclassincludes not only the most metals and their alloys but also alarge number
of compounds. The method was devised independently by Debye and Scherer in
Germany and by Hill in America. In this method a monochromatic X-rays beam is used
and instead of using a single crystal, fine powders of crystalline aggregates of al kinds,
having random of chaotic orientations are used. Such a powder requires no rotation
because every atomic plane is present in every possible orientation and hence the
diffraction depends upon the fact that in a fine powder the grains are arrange in an
entirely chaotic manner. The entirely random orientations of the grains with respect to
the beam means that some of them will be in a position to reflect the radiation from an
important set of planes. Now diffracted rays go out from individua crystallites, which
happen to be oriented with planes making an angle 0 with the beam satisfying the Bragg
equation. Any fragment in which the normal to the plane in questions makes an angle
(90 - 6°) with the incident beam will be in a position to reflect and since all orientations
of the fragment are equally likely, the reflected rays will form a cone, concentric with the
origina beam and whose semi vertical angle is 20. There is such a cone of diffracted
rays for each set of planes. The conesintercept the film in a series of concentric circular
halves, from the radii of which the angle 6 and hence the spacing of the planes can be

deduced. The formation of powder photograph is shown in fig (4.8).
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Fig 4.8(b) X-ray powder diffraction camera.

NI ON NI

180L  90L o°R  180°R
Fig 4.8(c) Arrangement of linesin a powder photograph

The radiation is made approximately monochromatic with the help of filter as shown
infig 4.8(a). P isthe powder and O isthe point where the direct beam would have struck
the film. Point A on the film corresponds at which a spectrum with glancing angle 0 is
formed. The diffracted maxima lie on cones coaxia with the direct beam, and if a
photographic plate is mounted normal to the direct beam, and if a photographic plate is
mounted normal to the direct beam, concentric circles are registered upon it as shown in
fig 4.8(b). Usually a plate or film in the form of cylindrica shame is employed whose
axisis perpendicular to the beam. There appear arcs of the circles as shown in fig 4.8(c).

From fig. 4.8(c) it is observed that when rays are different through small angles, they
make arcs around the central spot on the film, when the rays are diffracted through 90°,
the cones become flat and the corresponding trace is a straight line. When the diffracted
angle increases above 90°, the curvature is reversed and when the angle approaches to
180°, the traces are nearly circular. Thus the curvature of lines changes from the centre to

the outside of the film.
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Now considering fig 4.8(a), if | is the distance from O to A, measured on the film and
Ristheradius of camera, then 6 = 1/2R. In thisway by measuring |, the value of 6 can be
calculated.

This method is very useful in investigating the structures of simple crystals
particularly belonging to cubic system of which spacings a, b, ¢ of unit cell are al equal.
In these crystas, there are certain definite relationship between the angles at which
spectra can occur. The spacings of all planes parallel to faces of the same form { hkl} are
equal and therefore produce spectra at the same-angle. In the most general case, in
which al h, k, | are different, there are 48 faces in the form and 24 sets of planes all
having the same spacing. These all co-operate to produce one line on the film. When the
three axes of different length are at right angles to one another, the general form {h, k, 1}

corresponds to six different spacing and hence there are six different lines on the film.

4.4 Electrons Diffraction:

In 1924 de Broglie suggested that a material particle like electron in motion is always

associated with a wave whose wavelength is given by A = h/mv = h/p, where h be the

Plank’s constant and p, the momentum of the particle. The experimental evidence of this

fact was provided by Davisson and Germer and G.P. Thomson. Since the materia

particle (electron) can be described by wave, it can be diffracted by crystals like X-rays.

The amount of matter required to produce electron diffraction is small as compared with
X-rays diffraction and the time of exposure required for a photographic record is
measured in afraction of asecond. Thus we here introduce the diffraction of electronsin
connection with the exploration of the crystal structure. The discussion would be
confined to comparison between the electron diffraction and X-rays diffraction.

First of all we shall calculate the wavelength of an electron beam appropriate to the

crystal diffraction work. According to de Broglie idea, the wavelength A associated with
the particle is given by

If the electrons are accelerated by an applied electric potential V, then the kinetic energy

Y mv?of the electron is given by
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T A — (4.23)
where e isthe éectronic charge.
From equation (4.22) and (4.23) we have

__h 0y
= Jemev) - (v] (424

where A isin A and V involts.

It is evident from equation (4.24) that only 150 volts are required to produce e ectrons

of a wavelength of one A suitable for diffraction work. The X-rays suitable for

diffraction work require approximately 12000 volts for the same wavelength.

The diffraction of electrons takes place in a similar way as in case of X-rays and the

diffraction pattern obtained can be interpreted exactly in the same way as X-rays

diffraction pattern.

Some specia features of electron diffraction are:

1.

In contrast with X-rays, electrons are scattered by the nucleus as well as by the
electronsin atoms.

The scattering factor for electrons decreases with increasing vaue of Bragg's
angle 6 asin X-rays. However, the scattering efficiency of atoms is considerably
greater for electrons than X-rays. Due to this reason the diffraction of eectrons

by gases requires much shorter exposure times than does X-rays diffraction.

3. Electrons are charged and interact strongly with matter as compare with X-rays.

4. Electrons penetrate arelatively short distance into acrystal. At normal incidence,

an electron of about 50keV has a penetration depth of only about 500A, whilest
for small angles of incidence this may be only about 50 A measured perpendicul ar
to the surface. Thus the electron diffraction is particularly useful in investigating
the structure of thin surface layers such as oxide layers on metals. These layers
are not detected by X-rays diffraction because they penetrate deep into the solids
and produce a pattern, which is the characteristic of the interior of the solid.
Electron diffraction can be used for the studies of orientation, lattice parameter
and perfection of evaporated thin films.

By electron diffraction, the dislocation patternsin thin metallic foils can be see.
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4.5 Neutrons Diffraction:

As neutrons are associated with wave and hence they can be diffracted from crystals
like electrons. Here we shall consider the neutron diffraction by crystal in connection
with the exploration the crystal structure, of course, the discussion will be confined to a
comparison between X-ray, electron and neutron diffraction.

First of al we shall calculate the wavelength of suitable neutrons. We know that

the wavelength in case of neutrons can be expressed as

10%® x10%
=——_—Jouls
3x10

=3x10"* jouls

= 200K =0.02 eV
where M, is the mass of the neutrons. The mass of a neutron is 2000 times large in
comparison to an electron i.e., the wavelength associated with a neutron is about 1/2000
times that for an electron of the same velocity. The energy e of the suitable neutrons
may be calculated by the following expression

3 h
A= \/(ZM nV)

S5

By equation (4.26), the energy < of neutrons is approximately 0.1 e.V. for A = 1A
which is required for diffraction work. It is important to note that for X-rays of 1A the
energy required is 10* e.V. while for electron it is about 10° e.V. In case of neutrons, the
diffraction patterns are formed in asimilar manner ain case of X-rays.

Some special features of the neutrons diffraction are :

1. Neutrons are scattered chiefly by the nuclel of the atoms.
2. As the wavelength of the neutrons is much greater than the dimensions of the
scattering nucleus (=10™ cm), the atomic scattering factor is nearly independent

of the scattering angle.




ACHARYA NAGARJUNA UNIVERSITY 21 ENTER FOR DISTANCE EDUCATION

3. The scattering power does not vary in aregular manner with atomic number. Due
to this fact the light elements such as hydrogen and carbon produce relatively
strong scattering than X-rays scattering because the X-rays scattering is done by
electrons. This feature of the neutron diffraction enable us to deduce the positions
of hydrogen and carbon atoms in a number of organic crystals.

4. The scattering from neighboring elements in the periodic system may differ
appreciably. Hence neutron diffraction allows to detect with relative ease,
ordered phases of an alloy, such as FeCo, where as their detection by X-rays is
difficult.

5. The neutrons possess magnetic moments and these moments interact with the
magnetic moments of the scattering atoms of the solid. This gives an additional
scattering mechanism for neutrons, which often out-weights the nuclear
scattering.  Thus neutron diffraction methods are exceedingly vauable in
structural studies of magnetic crystals.

In paramagnetic substances in which the atomic moments are randomly oriented, the
magnetically scattered neutrons are incoherent in phase resulting in a diffuse background.
This diffuse background of magnetic scattering is then superimposed on the lines
produced by the nuclear scattering.

In ferromagnetic substances in which the magnetic moments within a domain are
linked up in paralle, the diffuse background is absent.

In an antiferromagnetic solid the magnetic moments are aligned antiparallel and hence
from the point of view of the neutron such atoms would appear to be different.

Figure (4.9) shows neutron diffraction patterns for Mno (Mn ion has a permanent
moment), which is known to be an anti-ferromagnetic solid below and above its curie
temperature (120°).
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Fig 4.9 The neutron diffraction patterns of MnO at 80°K
and 293°K (below & above the curie temperature).

At room temperature (293°K) the pattern shows coherent diffraction peaks, like those
of X-ray diffraction, and in the positions expected from a lattice of NaCl structure. The
diffuse background of magnetic scattering is also a visible, which is inductive of no
magnetic order a al. At low temperatures, in a addition to these peaks certain other
peaks are located at positions which one can not expect on the basis of chemical structure

of aunit call.

4.6 Laue Derivation of Amplitude of Scattered Wave:

Let us consider the case of a plane wave which is incident on a small crystal. Again
let in the free space at point x the amplitude be F, then

F(X) = Fpe' O aeeee (4.27)

Referred to an origin a x = 0. Equation (4.27) represents a traveling wave having wave
vector K, angular frequency o and the wavelength A = 2n/K, Now we place the crystal in
the beam with origin O chosen anywhere within the crystal. Here it is assumed that the
incident beam is not greatly disturbed by crystal i.e., neither by the refractive index nor

by the loss of energy through scattering. At a point 73 the amplitude of the incident

waveis given by
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F(p) = Fd®:P) [at instant of time t = 0] ~--n--r--- (4.28)

v\ V
pull

/
v

P
Fig 4.10(b) Showing theradiation
Fig 4.10(a) Showing an electromagnetic scattered p

wave incident upon a small crystal.

Fig 4.10(c) Showing the wave scattered at O asreceived at R
The atom at ; will scatter some of the radiation out of the incident beam. Asin fig
4.10 (a) and (b), the amplitude of the scattered radiation as seen at point PisR = 73 +r

i.e, at apoint distant r from p outside the crystal will be proportional to

2 rdK
(F,e' p)(?] -------------- (4.29)

where the first parenthesis contains the amplitude and phase factor of the incident beam
and the second parenthesis describes the spatial variation of the radiation scattered from a

point atom at ; Thetotal phasefactor at Ris

N

g p drr= K. p+ikn (4.30)
From fig 4.10(c), we have

- - 2 -
r’=(R- p)?=R+p°—2pRcos(p,R) = R {1+’0 —%COS(p,R)}

R?

when Ris at alarge distance so that p/R << 1, we have
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~ R [1— %cos(f), R)}

or r=R[1-(20/R) cos(; , R

= R—pCOS(;, R)
now from equation (4.30), the total phase factor of the scattered wave on arriving at R
is
glikp+KR-iKp cos(p,R)]

Now it can be assumed that the amplitude of the wave scattered from an element of

volume of the crystal is proportional to the electron concentration n(;) in the volume
element. Hence the amplitude of the scattered radiation at R will be proportional to the
integral

J' dv . n(;) _@liKp-ikepeos(pRT (4.32)

The factor €*® is omitted, being constant over the volume. Equation (4.32) can be

written in more compact formi.e.

[av.n(p) e AR (4.33)

where

iK. p—iKpcos(p R =ipK-K)=—ip.AK,
K”isthe wave vector in scattering direction R and
AK = K"-K.
Equation (4.33) gives the amplitude of the scattered wave.
Scattering from lattice of point atoms.
Consider afinite crystal and let al points be scattering centers.
The lattice points are defined by

; =ma+ nb+ pc ------------- (4.34)

where m, n, p are integers. The amplitude a of radiation by entire crystal seen a R will

be proportional to
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aEZ e—ip.AK
P

- Z e[—i (ma+nb+ pc).AK]

mnp

= (z e[—im(a-AK)]) (Z e[—in(b-AK)]) (z e[—ip(C-AK)]) _______________ (4.35)
m n p
We know that the intensity is the square of the amplitude, hence

Intensity = |%exp.[-im(a.AK)] |2|%exp.[-in(b.AK)] & |%exp.[-ip(c.AK)] |?

Now we shall consider the value of one sum out of the three from equation (4.36). Let
us consider the crysta of dimension Ma is the direction a where M is integer. We may
let that m, n and p run from 0 to (M — 1), the crystal will have M primitive cells because

the total volume will be M? abc; abc is the volume of one cell. Thus

M-1
> exp.[-im(a.AK)] [
m=0
Thisis ageometric series and the summation therefore will be

l-epl-iM@AK]] 437
1-exp.[-i(a.AK)] '

Now using the series.

M1 z z 1 xM :
2XT=2X"- 2 X"T=—— withx=exp. [-i (a AK)] ----------- (4.38)
m=0 m=0 m=M 1-x 1-xX

Thus sum in equation (4.37) can be written as

exp[- LiM (aAK)] exp[2iM (aAK)]-exp - 1iM (aAK)]]"
exp/-ti(@aaK)] = explii(aAK)] — exp|-Li(aAK)]
Multiplying by its complex conjugate, we get

sin®iM(aAK)
sin®1(aAK)

. ©sn’iM(@@ak)
Zm:exp.[—lm(a.AK)] = St i(@ak) (4.39)

A plot of the function in equation (4.39) is shown in figure (4.11) for M = 20. The

intensity will be maximum when each term in the sum on left hand sideis unity i.e.

sin® 20x / i’ —
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where g is an integer. At these values equation (4.39) has a vaue M2,
Now we shall consider the width of the

maximaasthevaueof a. AK isdightly
changed. Let it be changed by € where
€ isthe smallest non-zero number i.e.
a.AK=2nq+ €.
When € = 21/M, we have
Sin%2M (a.AK)=Sn%¥M (2rq+ 2n/M) =sin$ (Mg+1) =0

In this way if we choose € = 2n/M, the width of maxima is proportional to 27/M or 1/M.
This showsthat larger is the length of the crystal, smaller will be the width of maxima.

The area under the central maxima of equation (4.39) is given by the height (cM?) times the
width (oc, /M), so the areais proportional to M, the number of atomsin theline. If the crystal in

three dimensions has M? atoms, the scattered intensity will be directly proportional to M3,

4.7 Summary.

The Bragg law, shows that the diffraction effects cannot be observed from a family of planes
for any arbitrary angle of incidence. Even if monochromatic X-rays are used, the match among
d, 6 and A has to be sought using the relation 2d sin 6 = ni, to get the Bragg diffraction. Bragg
diffraction is very much different from ordinary diffraction which generally puts no restriction
on the incident angle.

Further, sincesin 6 < 1,
The condition expressed by A <2d explains why Bragg diffraction cannot occur for the visible
radiation.
Laue and his collaborators showed that atoms in crystals are arranged in a regular manner and
the spacing between them is comparable to the wavelength of X-rays and hence the crystal could
act as suitable natural grating for diffracting the X-rays.
The Laue method employs white radiation (X— rays beam of continuous range of wavelength)
which is usually obtained from atungsten target at about 60,000 Volts.
We know that atoms of crystal have an orderly arrangement in al the these dimensionsin

space, hence the diffraction of X-ray will occur from many families of atomic planes at
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once, each family picking out the wavelength which it can diffract at the angle at which it
findsitself. The Laue pattern can be used to orient crystal for solid state experiments.
Practically this method is never used for crystal structure determination.

In the Weissenberg method, the crystal is continuously rotated through 180° and back and
at the same time the cylindrical camera containing the film moves at a constant speed
backward and forward parallel to the axis of rotation. The movements of film and
camera are so synchronized that a given position of camera corresponds accurately to a
definite angular position of the crystal in its rotation. With the help of co-ordinates of the
spot on the film, the angle of reflection as well as the position of the reflecting plane can
be known.

The powder method is the only method which can be used with that large class of
substances which can not be obtained easily in the form of perfect crystals of appreciable
size. Thisclassincludes not only the most metals and their alloys but also alarge number
of compounds. This method was devised independently by Debye and Scherrer in
Germany and by Hill in America. In this method a monochromatic X-rays beam is used
and instead of using a single crystal, fine powders of crystalline aggregates of al kinds,
having random of chaotic orientations are used. Such a powder requires no rotation
because every atomic plane is present in every possible orientation and hence the
diffraction depends upon the fact that in a fine powder the grains are arrange in an
entirely chaotic manner. The entirely random orientation of the grains with respect to the
beam means that some of them will be in a position to reflect the radiation from an
important set of planes. Now diffracted rays go out from individua crystallites, which
happen to be oriented with planes making an angle 0 with the beam satisfying the Bragg
equation.

ELECTRON DIFFRACTION: The wave length associated with an electron is given by
the relation
A= _h (@j where L isin A and V involts.

V(2meV) v

It is evident from the equation that only 150 volts are required to produce el ectrons of a
wavelength of one A suitable for diffraction work. The X-rays suitable for diffraction

work require approximately 12000 volts for the same wavelength.
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The diffraction of electrons takes place in a similar way as in case of X-rays and the
diffraction pattern obtained can be interpreted exactly in the same way as X-rays
diffraction pattern. Electron diffraction is particularly useful in investigating the structure
of thin surface layers such as oxide layers on metals. These layers are not detected by X-
rays diffraction because they penetrate deep into the solids and produce a pattern, which
isthe characteristic of theinterior of the solid.

Neutron diffraction : The mass of a neutron is 2000 times large in comparison to an
electron i.e., the wavelength associated with a neutron is about 1/2000 times that for an
electron of the same velocity. The energy € of the suitable neutrons may be calculated
by the following expression

h

A= W By this equation, the energy e of neutrons is approximately 0.1 e.V.
nV

for A = 1A which is required for diffraction work. It isimportant to note that for X-rays
of 1A the energy required is 10* e.V. while for electron it is about 10° eV. In case of
neutrons, the diffraction patterns are formed in asimilar manner ain case of X-rays.
Some special features of the neutrons diffraction are :

Neutrons are scattered chiefly by the nuclei of the atoms.

As the wavelength of the neutrons is much greater than the dimensions of the scattering
nucleus (2102 cm), the atomic scattering factor is nearly independent of the scattering
angle.

The scattering power does not vary in a regular manner with atomic number. Due to this
fact the light elements such as hydrogen and carbon produce relatively strong scattering
than X-rays scattering because the X-rays scattering is done by eectrons. This feature of
the neutron diffraction enables us to deduce the positions of hydrogen and carbon atoms
in anumber of organic crystals.

The scattering from neighboring elements in the periodic system may differ appreciably.
Hence neutron diffraction allows to detect with relative ease, ordered phases of an alloy,
such as FeCo, where astheir detection by X-raysis difficult.

The neutrons possess magnetic moments and these moments interact with the magnetic

moments of the scattering atoms of the solid. This gives an additional scattering
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mechanism for neutrons, which often out-weights the nuclear scattering. Thus neutron
diffraction methods are exceedingly valuable in structural studies of magnetic crystals.

In paramagnetic substances in which the atomic moments are randomly oriented, the
magnetically scattered neutrons are incoherent in phase resulting in a diffuse background.
This diffuse background of magnetic scattering is then superimposed on the lines
produced by the nuclear scattering.

In ferromagnetic substances in which the magnetic moments within a domain are
linked up in paralle, the diffuse background is absent.

In an antiferromagnetic solid the magnetic moments are aligned antiparallel and hence

from the point of view of the neutron such atoms would appear to be different.

4.8 Key words:
Bragg's law - Bragg's diffraction - Wave front — Grating - Laue’'s method -
Weissenberg's method - Rotating crystal method - Oscillating crystal method - White x-

rays - Electron diffraction - Neutron diffraction - Elastic scattering - Structure factor.

4.9 Review questions:

1. Obtain an expression for the intensity of the diffraction of X rays by a simple three
dimensional lattice of scattering points and hence derive Bragg's law.

An orthorhombic crystal has cell edges a = 4A, b= 2A, c= 6A . X rays of wave length
1.5A suffer a Bragg's reflection in the first order from the plane (2,1,3) . Find the
glancing angle of the incident X ray.

2. Derive the Bragg's law. Use it to explain the principle of X-ray powder diffraction
pattern. How can a simple cubic and fcc cubic crystals be distinguished by X ray
diffraction.

3. What are the various techniques used of x ray diffraction. State in each case

(1) The nature of X-rays used (ii) The nature of sample (iii) The information obtainable
or application.

4. Develop Laue conditions for diffraction of waves by a crystal. Out line the procedure

to determine the | attice parameters by the powder method.
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5. Derive the condition for a systematic absence of reflections in bcc and fce crystals.
What are the absent reflections in CsCl. Why is the x ray diffraction pattern of NaCl
different from that of KCI and in what way.

6. Powder diffraction patterns of three monoatomic cubic crystals with bcc and fcc
structures are recorded using Debye-Scherrer camera. The angles of diffraction in degrees

of thefirst four diffraction lines for the two samples marked as and B are as under

A B
42.9 28.8
49.2 41.0
72.0 50.8
87.3 59.6

Determine the structure type of each sample. What is the size of the cubic cell in
each case?. Take the wavelength of incident X-rays as 1.5A.
7. Describe briefly the methods for crystal structure determination by X-ray diffraction.
Explain the importance of geometrical structure factor taking the example of cubic
crystals.
8. The first reflection using copper K-apha radiation from a sample of copper powder
(fcc) has value of 86.7 mm. Compute the camera radius. (57.3mm)
9. Calculate Bragg angle at which electrons accelerated from rest through a potential
difference of 80V will be diffracted from (111) planes of an fcc crysta of lattice
parameter 3.5A.
10. A beam of thermal neutrons emitted from the opening of a reactor diffracted by the
(111) planes of nickel crystal at an angle of 28° 30 . Calculate the effective temperature of
the neutrons, Nickel has fcc structure and its lattice parameter is 3.52A.
11. (a) Discuss the theory relevant to the crystal structure determination by X-ray
diffraction technique apply the theory for a cubic crystal.

(b) Compare the relative advantages between electron, X-ray and neutron diffraction
techniques.
12. (a) Explain the Bragg's law employed in X-ray diffraction in crystaline materials
(b) Explain how the Bragg' s law or coalition is satisfied for laws diffraction and
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powder deffraction.

(c) Distinguish between electron and neutron diffraction methods.

4.10 Text and Reference books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)

2. Solid State Physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A.Omar (Pearson education)

4. Solid State Physics by S.O. Pillai (New Age)

5. Solid State Physics by C.Kittel (Asia Publishing house)

6. A Text Book of Solid State Physics by S.L.Kakani and C.Hemrgjani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakasan)
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UNIT — I

LESSON: 5

Nature of Binding in crystals

Aim: To know about the various kinds of binding forces that result in different types of
crystals.
Objectives of L esson:
» To know different types of bonds involved between atoms in crystals and aso
knowing the origin of bonds.
» To know about the cohesive energy, the electrostatic and repulsive overlap
energy.
» To know about various types of crystals classified on the basis of nature of
bonding.
» To know the relation between atomic radii and |attice constants.
Structure of the L esson:
5.1 Cohesion of atoms.
5.2 Primary bonds.
5.2.1 Covalent bond.
5.2.2 The metallic bond
5.2.3 Theionic bond.
5.2.4 Mixed bonding.
5.3 Secondary bond
5.3.1The van der Waal’s bond
5.3.2 The hydrogen bond
5.4 Cohesive energy
5.4.1 lonic crystals
5.4.2 Covaent Crystals
5.4.3 Metdlic Crystals
5.4.4 Molecular crystals
5.4.5 Hydrogen bonded Crystals
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55 Summary
5.6 Key words
5.7 Review guestions

5.8 Text and reference books

I ntroduction:

Crystalline materials can be classified in many ways. We have aready seen one type
of classification based on lattice structures. Crystals can also be classified according to
their properties like mechanical, thermal, electrical, magnetic etc,. The most convenient
basis for classification of crystals is the character of the inter-atomic binding forces in
various types of crystalline materials. According to this scheme of classification of
crystals, al solids fal into one of five genera categories; (i) molecular, (ii) ionic, (iii)
covalent, (iv) metalic and (v) hydrogen bonded crystals. The distinction in the said five
categoriesis not a sharp one, because some materials may belong to more than one class.

From the very existence of solids we may draw two general conclusions (i) there must
act attractive forces between the atoms or molecules in a solid which keep them together;
and (ii) there must be repulsive forces acting between the atoms as well, since large
external pressures are required to compress a solid to appreciable extent. In order to
understand the importance of these two types of forces, let us consider the simplest

system e.g., asingle pair of atoms.

5.1 Cohesion of Atoms:-

Consider two atoms kept at a finite separation. The nature of forces between atoms or
the binding energy depends primarily on the distribution of positive charge over the inner
ion core and of negative charge over the outer space within the atoms. Their potential
energy is zero when the atoms are infinite distance apart. When they are brought closure
to a finite separation, there will be a potential energy for the system whose sign depends
on the relative order of magnitude of the repulsive and attractive forces. The attractive
part of the potential energy is conventionaly treated as negative since the atoms
themselves do the work of attraction. The positive sign for the repulsive potential energy

comes from the concept that in binding the atoms closer, the work is done against the
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repulsive force by an external energy. The total potential energy may be represented by a

general potential of the form.

Wherer isinter-atomic distance and A and B are constants. The net force is expressed as

du(r) _ nA mB
dl‘ rn+1 rm+l

The first term represents the attractive force and the second repulsive. The variation of

F(r) = -

potentia energy and force as a function of the inter-atomic separation istraced in fig. 5.1.
The net force at the separation ro, when the atoms are in stable equilibrium forming a
diatomic molecule, is zero [Fig 5.1(b)]. Obviously the potential energy at this position is
minimum with the negative sign [Fig 5.1(a)].

So at the interatomic seperation ro , F(r) in equation 5.2 iszero. From thisit follows that

B (m
O e e 5.3
(o) A (n] (5.3)
Atr=r, U(ro)=—ﬁn+5m=—ﬁn[1—ﬂj -------------- (5.3)
o ry Iy m

The minimum energy conditions require that > 0. This condition leadsto m > n.

2
r
r=ry

It means the repulsive forces be of shorter range than the attractive forces. Here, we must
note that athough the attractive and repulsive forces are equal in equilibrium, the
atractive and repulsive energies are not equal, since n # m. We aso must note that
although the energy cannot, in genera be represented accurately by a relation of the type
shown in equation 5.1 the above treatment provides some useful qualitative conclusions
about the bonding of atomsin the solids.

From the above argument it is evident that the atoms are brought closure the repulsive
force increases faster than the attractive force at short distance. When the two atoms stay
in stable equilibrium at a certain separation they are said to have formed a chemical bond
between them. The atoms spend a part of their energy in bond formation or we can say
that a bond stores a part of the energy of the atoms. Therefore, the electron energy of

atoms decreases when a large number of them collect together to form a solid. This
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suggests that when a solid is heated to break it finaly forms isolated atoms, the energy
stored in bonds must be carried away by the individual isolated atoms. How strongly the
atoms are bound together in a solid is represented by its cohesive energy (or binding
energy). A proper discussion on cohesive energy will be taken up later, after dealing with
the types of bonding in solids. When on solidification a pronounced lowering of electron
energy takes place, the bonds formed are strong and called primary bonds. On the other
hand, if the lowering of electron energiesis small weak bonds are formed and referred to

as secondary bonds.

A A
\
\
\ “
> \ Repulsion Energy \ Repulsive Force
LI_J \-\ » g h > »
% ’
e -~
o ’ I/
o / . .
; Attraction Energy ! Attraction Force
I/
(@) (b)

Fig.5.1 (a): Potential energy of a system of two atoms as a function of their inter atomic
separ ation. (b): Force between two atoms as a function of their inter atomic separ ation.
Thery denotesthe separation at which the bond formation occurs.

The quantum mechanical interpretation of the probability function comes handy in
understanding that some bonds are strong and directional while the others are weak and
non-directional. It can be done qualitatively by acquiring information about the energies
and the location of the bonding electrons with respect to positively charged ion cores.
The probability that an electron confined in the small volume dV, may lie in the orbital y
is given by |yf?dV. For the large value of the probability amplitude |yf*> in a certain
direction the bond formed is strong and concentrated along this direction and it behaves
as directional. The small value of |y{* corresponds to the weaker non-directional bonds.
Further more, if |yf* is spherically symmetric non-directional bonds result. The spherical

symmetry means that the chance of finding a bonding electron in al directions is equal
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and an atom can approach the other atom from any direction over the angle 2r for
making the bond. Such a bonding gives rise to close packing exhibited by metals.

Now, we set out to outline the description of various forms of binding mechanismsin
solids. Based on their comparative strength the bonds formed in various binding

processes, they may be broadly be classified as (a) primary bonds (b)secondary bonds.

5.2 Primary Bonds:
Three limiting cases of primary bonds are identified as (a) covalent bonds (b) metallic
bonds and (c) ionic bonds
5.2.1 The Covalent Bond:
A covaent bond involves the mutual sharing of a pair of electrons between a pair of
atoms. The spins of the two electrons are oriented in opposite directions. In solid state,
the most stable covalent bonds are formed between non-metallic atoms like those of N,
O, C, Fand Cl. Some of the other elements that are well known to form covalent bonded
crystals include Si, Ge, As and Se. But the nature of bonds in these solids is only partly
covalent. Strong covalent bonds are formed when each atom has at |least one half filled
orbital. In such asituation only there will be substantial lowering in the e ectrons energy
when each of the bonding electrons occupies the orbitals the two atoms simultaneously.
The lowering of electronic energy is proportional to the degree of overlap of the bonding
orbitals. The more the overlap, the stronger the bond. Either the e ectrostatic repulsion or
the Pauli exclusion principle controls the overlap. The molecular hydrogen offersitself as
the simplest candidate for the explanation of the covalent bonding. Hydrogen has asingle
electron, which occupies the 1s orbital in the ground state. The orbital is half-filled and
the Pauli principle alows it to accommodate one more e ectron with the opposite sign.
Thus when two hydrogen atoms are brought closer, their electron charge distribution
overlap and the covalent bond is formed by having the two electrons with opposite spins
in the 1s orbital belonging to both the atoms. This configuration being lower in energy
than the one in which the second electron goes into the 2s orbital with the probability of
the same spin orientation belongs to the hydrogen molecule in the ground state.

The effect of repulsive interaction as a compulsion of Pauli principle is best

demonstrated in rare gas solids whose atoms have completely filled orbitals with little
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chance of overlap. Thisresultsin alarge inter atomic distance (3.76 A in A;) compared to

the bond length in a coval ent-bonded molecule such as Cl, (2,& ). There is adeficiency of
one electron in the outermost shell of chlorine (3p°) to saturate it. Because of this the
outermost orbital of a chlorine atom has the tendency to overlap with that of the
neighboring chlorine atom in search of the deficit electron. Since this forms the basis of
covalent bond formation, the covalent bond is also known as saturable bond.

The discussion on the covaent bonding remains in complete without a few remarks on
elementsin group 1V of the periodic table (C, Si, Ge and grey Sn). These are extremely
covaent elements and crystallize in the tetrahedrally coordinated diamond structure.
Each atom participates in four covaent bonds with its four neighbours. These bonds are
extremely directional and difficult to tilt. This provides the material with unusual strength
and hardness. The wide use of diamond for making cutting tools is a well-acknowledged
fact. Also the strong directional nature of the covalent bonds rules out close packing and
increases emptiness in covalent bonded crystals. For example the fraction of volume of a
diamond crystal actually occupied by atoms is a mere 0.34 which is 46 percent of the
value for the close-packed fcc and hep structures. In view of this fact the diamond lattice
is called the empty lattice.

5.2.2 The Metallic Bond:

In the modern theory of metals the valence eectrons being loosely bound to the
respective parent atoms are treated as common to the whole assembly of atoms
comprising the metal. The valence electrons generally one or two per atom, are
considered free and, therefore, allowed to move freely over the whole volume of the
metal. The metal is pictured as an assembly of positive metal ions embeded in a sea of
free electron gas. The attraction between the metal ions and the electron gas gives rise to
a strong cohesive force. The free electron gas serves as the glue. The concept of free
electrons contributes significantly to the success of this model in explaining most of the
properties of metals such as high electrical and therma conductivities, high reflectivity
and opacity. In reality the motion of valence electrons aso caled conduction electrons
with reference to metals are affected, no matter how slightly, because of the presence of

other particles including the fellow electrons. A complete theory does not take care of
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this effect, which is of crucia advantage in explaining some of the dramatic properties
(e.g. superconductivity) of solidsin general.

Since the metallic bonds involve loosely bound electrons there can be a relatively
large number of probable orientations for a metal bond. In other words, the bonds are
weak and non-directional. This characterizes metals as having the tendency to crystallize
in relatively closed packed structures with alarge number of nearest neighbours. This fact
is in agreement with the observed structures of metals-hcp, fcc and bee. In all these
structures the metallic bond is not saturated. For example in the bcc structure of lithium
each bond has only 1/4™ of an electron since the only outermost electron (3s') isinvolved
in eight bonds with atoms at the corners of the cube. Still the modern picture assumes that
the metallic bond is more closely related to the electron—pair or covaent bond then to an
ionic-type bond, which is discussed next.

5.2.3 Thelonic Bond:

The formation of an ionic bond is based on an electrostatic attraction between the
positive and negative ions that are derived from the free atoms by the loss or gain of
electrons. The ionic bond is responsible for the binding of the salts that comprise the
combinations of the elements located on the right— and left—-hand sides of the periodic
table. Alkali halides are the typical representatives of such salts. The eectronic
configuration of the akali and halogen atoms is nearly closed-shell configuration. The
bond formation is facilitated by the ease with which the alkali atom looses one electron
and the halogen atom accepts it to acquire closed-shell configuration. In another way we
say that the origin of binding lies in the low ionization energy of the alkali atom and high
electron affinity of the halogen atom. Take the example of NaCl in which the sodium
atom has one electron more (1% 2%, 2p°, 3s') than the neon (1s* 2? 2p°) and the chlorine
atom is one electron short (1s?, 257, 2p° 3° 3p°) of the argon configuration (1s? 25” 2p°
3s” 3p°). This shows how Na and Cl atoms get bonded when brought close because of
their easy ionization to Na’ and Cl™ ions. Each ion has the tendency of being surrounded
by as many ions of the opposite type as possible. The coordination number and the
nearest neighbour distance are governed jointly by the geometrica factors and the

repulsive interaction between the like ions. But the tendency of one type of ions to



M. Sc., PHYSICS 8 ELASTIC CONSTANTSOF CRYSTALS

surround an ion of the opposite type binds a continuous network of ions to form the
crystal instead of forming small discrete molecules.

lonic bonds are neither saturable nor directional. Even then they are strong enough as
is confirmed by the hardness, high melting point and low coefficient of expansion of
ionic crystals.

5.2.4 Mixed Bonding:

The discussion of primary bonds remains inconclusive without commenting on the
purity of bonds in crystals. The mixture of bonding types has been discussed by Pauling
in great detail. In particular it is a matter of general observation that the bonding in the
most of the covalent crystals has a small component of ionic bonding. Ash croft and
Mermin elucidate it for GaAs by picturizing the electron density of Gaand Asionsin the
crystal. Phillips developed a semi-empirical theory of fractiona covaent or ionic
character bonds in a dielectric crystal. His calculations show that bondsin Ge and S are
purely covalent. But the bonding in most of the binary crystals turns out to be of mixed
nature LiF, NaCl and RbF are formed to be almost purely ionic as the fraction of ionic
character in them turns out to be 9.92, 0.94 and 0.96 respectively.

<
©

Fig:5.2: Electron density distribution in the basal plane of NaCl.
The number of contours expressestherelative electron density.

The ionic character of a solid may be determined by analyzing its X-ray scattering
data. Thisis an effective tool as the scattering power depends on the number of electrons
possessed by the constituent ions. For example in ionic bonded KCl each of the ions



ACHARYA NAGARJUNA UNIVERSITY 9 CENTER FOR DISTANCE EDUCATION

K*and ClI” has 18 electrons. Hence the scattering power for K* and Cl” is found to be
equal. The electron density distribution in the basal plane of NaCl as derived by G.
Schoknecht is shown in fig.5.2.

5.3 Secondary Bonds:

The limiting cases of secondary bonds are not easily separable. Van der Waal and
hydrogen bonds will be discussed in this category. The electric dipole-dipole interaction
forms the basis of these bonds.

5.3.1 Thevan der Waal’sBond:

One may be curious to know why neutral molecule or noble gases should undergo
liquefaction and crystallization. Consider the noble gas atoms, which have closed-shell
structure and are represented as spherical rigid charge distributions. Such electron
distributions are reluctant to overlap when any two atoms are brought close to each other.
But there must be some attractive forces between atoms bringing about the cohesion and
finaly the solidification. Of these forces one is Van der Waal force we are interested in.
These are weak forces arising out of the attractive interactions between fluctuating
electric dipoles. By chance for a fraction of a second there could be more number of
electrons on one side of the nucleus than on the other. This destroys the spherical
symmetry of the electron charge distribution and momentarily displaces the center of the
negative charge (the electrons) from the positive charge (nucleus). Thus an atom becomes
a tiny electric dipole, which is capable of inducing an electric dipole moment in the
neighbouring atoms. The two dipoles attract each other through weakly resulting in Van
der Waal binding. As the electron charge distribution keeps fluctuating the electric
dipoles are caled fluctuating dipoles.

Suppose we have two atoms land 2 of a noble gas separated by a distance r. As
described above when atom 1 acquires an instantaneous electric dipole-moment p;, an
instantaneous electric dipole-moment p, may be induced in atoms 2 because of the
polarization caused by the electric field E of the atomic dipole 1 at atom 2. It is now a
trivial exercise in electrostatics to show that the interaction energy of two dipoles p; and
P2 (= -p..E) varies with separation as 1/r°. These forces have been treated by London and
Margenau on a quantum mechanical basis. An approximate expression for the interaction

energy of two atoms or ions with filled shell electron configuration is
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8(r)=_§a10‘2 1,

> 1 1] where 1, and I, refer to ionization energies of the particles
r 1+ 2

involved and «,,c, refer to polarizabilities. The nature of these forces is essentialy a

guantum effect, although the fact that they vary with the sixth power of the distance may
easily be shown from classical considerations.

The interaction is expressed as A/r® where A is a constant. It must be noticed that the
Van der Waal bonds are neither saturable nor directional. Barring helium all the noble
gases crystallize in the closed packed fcc structure. These weakly bound crystals are
transparent insulators and characterized by low melting points.

5.3.2 The Hydrogen Bond:

A number of covalently bonded molecules behave as permanent electric dipoles. HF
and H,0 are the two most talked about examples. The attraction between the positive end
of one dipole and the negative end of the neighbouring dipole forms clusters or large
aggregates of molecules on cooling when the crystallization may take place. The
mechanism of bond formation involves the attraction of a hydrogen atom to two strongly
electro-negative atoms. These bonds are caled hydrogen bonds. These bonds have the
directiona property and are stronger than Van der Waal bonds. This is endorsed by the
observation that super molecules like HzF,, HsF3 . . . . are formed even in the gaseous
phase.

Fig 5.3: Thetetra hedral covalent bonding in iceinvolving the sp®
hybrid orbitals of H,0.
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In an effort to understand the mechanism of hydrogen bonding clearly we take up ice
crystals, which exhibit some unusual behavior. The outer electron configuration of the
oxygenation in H,O is represented by four sp® hybrid orbitals. Fig 5.3 shows that two of
these are involved in covaent bonds to the hydrogen atoms and the rest two are doubly
occupied by oxygen eectrons. Out of the six outer oxygen e ectrons, two are engaged in
bonding and the other four find a place in space orbital. This bonding pattern gives a
tetrahedral shape to bonded molecules in ice. Two vertices of atetrahedral are occupied
by hydrogen atoms, which are essentially the localized protons. The other two vertices
exhibit relatively diffused negative charges.

The negligible small size of the proton is responsible for peculiar structure of ice
crystals as it practically sits on the oxygen ions something impossible for any other
positive ion to do. One of the many phases of ice crystals as shown in Pauling’s book is
pictured in figs.4

Fig5.4: The hydrogen bonding inice. Thelarge cir cles denote oxygen atoms
and the small circlesare protons.

Two oxygen atoms are bound by protons that is localized close to one oxygen atom
along the line joining it to one of its neighbouring oxygen atoms. There are two protons
close to each oxygen atom, giving a large number of a ways to attach a proton to either
end of the bond. Thisisreflected in the irregular positions of protons which are very well
accounted by the observed large residua entropy of ice crystals at low temperatures.
Lastly, a word about the floating property of ice. The molecular clusters of water are

smaller and less stable in liquid state than they are in ice because of which they are on the
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average more closely packed in this state. This increases the density of water and ice

floats when immersed in it.

5.4 The cohesive energy:
As stated earlier, the cohesive energy of a crystal is the measure of how strongly its
constituent atoms or particles are bound. It may be defined as the energy required to
break the crystal into its isolated neutral constituent parts. By constituent parts we
precisely mean atoms or molecules. For example, it sounds more reasonable to define the
cohesive energy to solid nitrogen as the energy required to disassemble it into isolated
nitrogen molecules instead of atoms. The two definitions are, however, inter convertible.
In the early development of the solids classification, the theory based it self heavily on
the nature of cohesion. The role of spatia electronic arrangement was almost sidelined.
But with the increasing need to study the non—equilibrium properties of the development
of devices, the concern for the cohesive energy has ceased to be of any significant note.
We present a brief sketch of classical theory to discuss the cohesive energy of crystals
at 0 K. Calculations are made in the static lattice approximation which treats the atoms to
be at rest at equilibrium sites. It neglects zero point motion, which relates to one of the
basic tenets of quantum theory. The resulting error for most of the crystals turns out be
one percent less. But there may be a question mark against this approximation while
treating the lighter noble gases as they have the origin of their cohesion in the zero point
motion. Thisis not to suggest the noble gases cannot be handled with a simplified theory
like the one under consideration. Surprisingly, the theory which is reasonably simple in
this case enjoys a high degree of success.

The over smplified theory discussed above is applied to ionic crystals with maximum
ease as the dominating long—range attractive interaction between the oppositely charged
ions renders other interactions of little concern. On the other hand, it is difficult to have a
simple theory for calculating the cohesive energy of covalent and metallic crystals. The
electronic configurations in crystals have far more distorted forms than what they are in
isolated atoms or ions. This makes it imperative to calculate the energy treating the
valence electrons in the field of the periodic crystal potential. It leads to the problem of

band structure calculation complicating the whole procedure. The level of the present
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book cannot accommodate the theory of covaent and metallic crystals. The description
of simple methods of calculating the cohesive energy of ionic and noble gas crystals

would be sufficient.

5.4.1 lonic Crystals:-

The potential energy of anionic crystal is considered to be composed of two components,
one representing the el ectrostatic energy and the other belonging to the repulsive overlap,
which has its origin in the Pauli exclusion principle. These crystals will be studied in
detail in another lesson.

Properties of lonic Crystals:

All ionic or electrovalent compounds arerigid and crystalline in nature. It has seen by X-
ray diffraction that the constituents of the crystals are ions and not atoms. The ionic bond
isfairly strong.

All ionic solids have high melting points and boiling points. Thisis because more
energy is needed to make the ions mobile, there being a necessity to overcome the strong
electrostatic force of attraction created due to the ionic bond in addition to the already
existing interatomic force of gravitationda attraction. This explains why ionic compound
possesses high melting point and boiling point.

Pure and dry ionic compounds are insulators, because of the non availability of free
electrons. However, in solution they conduct electricity because of the movement of the
charged ions instead of free electrons. In a solution the ionic bond is weakened by the
solvent molecules. Thus the ions become free to move about and thereby become
conductors of electricity and the solutions are good electrol ytes.

lonic solids are easily soluble in polar solvent like water. This is because the
molecules of the polar solvent interact strongly with the ions so as to reduce the attraction
between theions. Also, the polar solvents possess high dielectric constants, for example,

water has a high dielectric constant of 81, i.e, it will reduce the electrostatic force of
attraction between the ions to 8ilof the origina value.

lonic compounds are insoluble in non-polar solvents like benzene (CgHg), carbon

tetrachloride (CCl,), because their dielectric constants are very low.
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Reaction between ionic compounds in solution state is aways fast. Thisis becausein
a solution, ionic substances exist as ions and chemical reactions take place between the
ions. The ionic crystals are transparent for al frequencies up to the value called the
fundamental absorption frequency. At frequencies higher than this, they are opague.

High hardness and low conductivity are typical properties of these solids. When
subjected to stresses, ionic crystals tend to cleave (break) along certain planes of atoms
rather than to deform in a ductile fashion as metals do.

5.4.2 Covalent Crystals:

When a covalent bond is formed we imagine that an electron from each atom is
transferred to the region between the two atoms joined by the bond.

In an ionic bond it is a good approximation to think of the valence electrons as
attached to definite atoms. The Pauli principle applied to ions with filled electronic shells
ensures alow electron density in the region between the two ions where the charge shells
make contact. lons with filled shells do not generally form covalent bonds. In a covalent
or homopolar bond the charge density between the two atoms may be rather high, and the
valence electrons are to an appreciable extent shared between two atoms. The covalent
bond is the normal electron-pair bond of chemistry, encountered particularly in organic
chemistry. It is characterized by a high density of electrons between the ions and also by
marked directional properties. The carbon bond is a good example of the directional
properties of the covalent bond: carbon atoms often prefer to join onto each other or to
other atoms by four bonds making tetrahedral angles with each other. That is, each
carbon atom will be at the center of the tetrahedron formed by the nearest neighbor
atoms. Diamond and methane, CH,, are typical examples of the tetrahedral covalent
bond. The diamond structure is loosely packed in a geometrical sense: the tetrahedral
bond allows only four nearest neighbours, while a closest-packed structure would require
twelve nearest neighbour atoms. The covalent bond is usualy formed from two
electrons, one from each atom participating in the bond. The spins of the two electronsin
the bond are antiparallel. The carbon atom (2s° 2p°) tends, in a sense, to fill up the 2p°
electron shell by sharing electrons with four neighbors.
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There is apparently a continuous range of crystals between the ionic and the covalent
limits. It is often of importance to estimate the extent to which a given bond is ionic or
covaent, but this may be difficult to do with any confidence. We think of NaF as an
ionic crystal, and perhaps of InSb as largely covalent, but it is at present difficult to know
what to say about the nature of the bonding of ZnS or PbS, for example. Pauling has
formulated on a semi-empirical basis an electronegativity scale of some of the elements.
Electronegativity is a chemical term meaning the power of an atom in a molecule to
attract eectrons to itself. The electronegativity is approximately proportional to the sum
of the ionization energy and the electron affinity of the atom. A suggested empirical
connection between the ionic character of a bond and the difference in electronegativity
of the atoms being joined is shown in fig 5.5.
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Fig 5.5: Curvereating theionic character of abond A-B to the differencein
electro negativity x, — xg of theatoms.

Atoms with nearly filled shells (Na, Cl) tend to be ionic, whereas atoms not close in the
periodic table to the inert gases tend to be covalent (C, Ge, Si, Te).
5.4.3 Metal Crystals:

Metals are characterized by high electrical conductivity, and so a portion of the
electrons in a metal must be free to move about. The e ectrons available to participate in
the conductivity are called conduction electrons. In some metals such as the alkali metals
the interaction of the ion cores with the conduction electronsislargely responsible for the
binding energy. We may think of an akali metal crystal as an array of positive ions
embeded in a more-or-less uniform sea of negative charge. In some metals such as the
transition metas it has been suggested that there may aso be binding effects from
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covaent-type bonds among the inner electron shells. Transition group e ements have
incomplete d-electron shells and are characterized by high binding energy.

The binding energy of an alkali metal crystal is seen from table 5.1 to be very
considerably less than that of an alkali halide crystal, so the bond formed by a quasi-free
conduction electron is not very strong. Part of the explanation is that the interatomic
distances are relatively large in the akali metals because the kinetic energy of the
conduction electrons favors large interatomic distances, leading thus to weak binding. In
the transition metals such as iron and tungsten the inner electronic shells make a
substantia contribution to the binding. The binding energy of tungsten, for example, is
210 kcal/mole.

5.4.4 Molecular Crystals (or) Noble Gas Crystals:.-

The discussion under Subsection 5.3.1 needs extension for obtaining a complete picture
of interactions in noble gas crystals. The repulsive potential energy is conventionally
expressed in the form of an empirical power law as B/r'2. The total potential energy of a
pair of atoms at the separation r is generally represented by

A B

U(r) = —r—6+r? ““““““ (55)

and this is known as the Lennard-Jones potential. The constants A and B are empirical
parameters.

On the requirement that the repulsive force increases faster than the attractive force at
short distances, the exponent in the repulsive term has to be more than 6. In addition, if
the analytic simplicity is taken into account the choice falls on 12. Further, with this
choice the theoretical estimates of several physical properties of noble gases, exclusive of
He® and He', are found to be in excellent accord with the experiment. A satisfactory
explanation for the disagreement in the case of helium is not possible at this stage to
avoid digression. However, it should suffice to remark that helium is identified as a
unique quantum matter in the solid state theory which has developed provisions for
dedling with it especialy. Finaly, it must be emphasized that the van der Waals
interaction is present in all the three states of every material. Being weak in nature it is
not the main cause of cohesion in many crystals where other strong interactions are
present and the crystal bindings are named after them.
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Equation [5.5] isusually expressed as

o= s (f) (5| = w0

Where
B\ A’
o= (Zj and ¢ = 7B
The Lennard-Jones potentia in the form of relation (5.6) is shown in Fig 5.6. Suitable
values of the parameters and o have been obtained by fitting the theoretically calculated
values of certain physical properties involving these parameters with those
experimentally observed in the gaseous phase. In principle, these values cannot be used
for solids where the interaction is not a sum of pair potentials on account of high
densities. The values of parameters serve as a measure of the strength of attraction and

the radius of the repulsive core.
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Fig 5.6 The L ennar d—Jones potential as given by equation (5.6)

The hydrogen crystal are among the weakest bonded crystals with a cohesive energy
of 0.01 eV per molecule which is one-tenth of that of methane’s (0.1 eV per molecule).
These weakly bound crystals are transparent insulators and characterized by low melting
points. The cohesive energies of a number of crystals of different types are given in Table
5.1 for the purpose of a comparative study. For a thorough study the reader may consult

the book by Ashcroft and Mermin which gives a more comprehensive view of the subject
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and treasures large data on the related physical quantities of molecular and ionic crystals
in particular.

It must now be abundantly clear that the calcul ations we have discussed in this section
are closely linked with lattice constants (or lattice parameters) of crystals. Let us briefly
comment on the involvement of lattice constants in a few other important physical
properties. The pressure required to maintain a certain volume can be determined by
calculating the rate of variation of cohesive energy with lattice constants. In effect, we
succeed in reproducing the experimental value of the equilibrium lattice constant
maintainable at zero pressure. Similarly, it is possible to study the change in volume
caused by a change in pressure and calculate the compressibility. The significance of the
lattice constant and compressibility must be emphasized in view of ther utility in
estimating the empirical parameters A and p. As the lattice constants have a close
relationship with the bond length and the atomic radii, we propose to give a short account

of the samein the following section.

Table5.1 Cohesiveenergy of crystals

Crysta Binding type Cohesive energy Melting point (K)
LiF lonic 10.31 eV/ion 1143

NaCl lonic 7.96 eV/ion pair 1074

3.28 eV/atom

Rbl lonic 6.17 eV/ion pair 915
Diamond Covalent 7.37 eV/atom >3773

S Covalent 4.63 eV/atom 1687

SiC Covalent 12.04 eV/molecule 2873 (subl.)
Na Metallic 1.11 eV/atom 371

Cu Metallic 3.49 eV/atom 1358

Au Metallic 3.81 eV/atom 1338

Ne van der Waals 0.02 eV/atom 24.6

H, van der Waals 0.01 eV/molecule 14

CH,4 van der Waals 0.10 eV/molecule 90

Ice (H20) Hydrogen 0.51 eV/molecule 273

HF Hydrogen 0.30 eV/molecule 180.7

5.4.5 Hydrogen-Bonded Crystals:
As neutral hydrogen has only one electron, it should form a covaent bond with only
one other atom. It is known, however, that under certain conditions an atom of hydrogen

is attracted by rather strong forces to two atoms, thus forming what is called a hydrogen
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bond between them, with a bond energy of about 5 kcal/mole. It is believed that the
hydrogen bond is largely ionic in character, being formed only between the most
electronegative atoms. The hydrogen atom loses its electron to one of the other atomsin
the molecule; the proton forms the hydrogen bond. The small size of the proton permits
only two nearest neighbor atoms because they are so close that more than two of them
would get in each other’ s way; thus the hydrogen bond connects only two atoms.

The hydrogen bond is an important interaction between H,O molecules and is
responsible, together with the electrostatic attraction of the electric dipole moments, for
the striking physical properties of water and ice. The hydrogen bond restrains protein
molecules to their norma geometrical arrangements. It is also responsible for the
polymerization of hydrogen fluoride and formic acid, for example. It is important in
certain ferroelectric crystals, such as potassium dihydrogen phosphate.

5.5 Summary:

1. Bonds are broadly classified on the basis of strength as (i) Primary bonds (ii)
Secondary bonds. These limiting cases of primary bonds are identified as (a)
Covalent (b) Metdlic and (c) ionic. (iii) Some primary bonds are mixed type. (iv)
Van der Waals and hydrogen bonds fall in the category of secondary bonds.

2. Van der Waals interaction (induced dipole — dipole interaction) varies with
interatomic separation as 1/ r°. It is a quantum effect. The interaction potential
vanishes when the Planck constant h = 0. Example, inert gas solids.

3. The cause of repulsive interaction between atoms lies generaly in the electrostatic
repulsions of overlapping charge distributions and the Pauli exclusion principle
that forces overlapping el ectrons of parallel spin occupy higher energy states.

4. The potential energy per ioninanionic crystal is given by

U, = o [, p
4rel, o

where
o isthe Madelung constant
g isthe charge on anion

p isan empirical parameter
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ro isthe separation in a pair of ions of opposite type at equilibrium.
5. The overlap of charge distributions of antiparallel electron spin gives rise to

covalent bonding.

5.6 Key words:

Binding forces — Cohesion of atoms — Primary bonds — Secondary bonds — The Covalent
bond — The metallic bond — The ionic bond — Mixed Bonding — The Van der Walls bond
— The Hydrogen bond — The Cohesive energy — L attice Constant.

5.7 Review questions:

1. Classify the different types of crystal bindings and their origin of bond formation?

2. What do you understand by cohesive energy and the repulsive overlap energy?

3. What isthe inference of Noble gas crystals Explain the relation between atomic radic
and lattice constants?

4. Explain different types of bonding in solids and their characteristics what is the nature
of bond between moleculesinice. Explain the properties of diamond and graphite on

the basis of their structure.
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UNIT —11
LESSON 6

LATTICE ENERGY OF IONIC CRYSTALS

Aim: To study the nature of forces acting in ionic crystals and their stability

Objectives:
» To study the results of Born’s theory and the refinements suggested
» To study the relation between ionic radii of atoms involved and stability of

various crystal structures.

Structure:

6.1 Born’stheory

6.2 Calculation of the repulsive exponent from compressibility data
6.3 The repul sive exponent as a function of e ectron configuration.
6.4 The Calculated and experimental lattice energies

6.5 Born Haber cycle.

6.6 Stability of structures and ionic radii

6.7 Refinements of Born's theory

6.8 Born Mayer revised theory of ionic crystals.

6.9 Summary

6.10 Key words

6.11 Review questions

6.12 Text and reference books
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I ntroduction:

In lesson 5 we have learnt about the nature of forces that exist between atoms in crystals
to some extent. Because of the importance of ionic crystals and in particular of akali
halide crystals we now study them in detail .

The potential energy of anionic crystal is considered to be composed of two components,
one representing the e ectrostatic energy and the other belonging to the repulsive overlap,

which hasits origin in the Pauli exclusion principle.

6.1 Born’stheory:

Borns's theory of the lattice energy is based on the assumption that the crystals under
consideration are built up of positive and negative ions. If we assume that the charge
distribution in these ions is spherically symmetric, the force between two such ions
depends only on their distance apart and is independent of direction. As an example,
consider a lattice of NaCl structure, represented in Fig 6.1. We shall denote the shortest

interionic distance by r and consider this quantity a variable for the moment. A given
sodium ion is surrounded by 6 Cl” ions at a distance r, 12 Na' ions at a distance r+/2, 8
Cl™ ions at a distance r+/3, etc. The Coulomb energy of thision in the field of all other
ionsistherefore.

e(6 12 8 6 24

r (ﬁ_ﬁ+ﬁ_7+ﬁ_”j

where e is the charge per ion. Note that

because Coulomb forces decrease
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number, determined only by the crystal

structure.  Series of this type have been Fig 6.1 The sodium chloride structure
calculated by Madelung, Ewald, and

Evjen. For the NaCl structure the result is




ACHARYA NAGARJUNA UNIVERSITY 3 CENTER FOR DISTANCE EDUCATION

e.=—Ae’/r  with A=1747558..... =--------------- (6.2)

The constant A is called the Madelung constant. For other crystal structures composed of
positive and negative ions of the same valancy, the Madelung constants are
Cesiumchloride  A=1.762670
Zincbelende (ZnS) A =1.6381
Wurtzite (ZnS) A=1641

Note that e in (6.2) represents in general the e ectronic charge times the valence of the
ions under consideration. The minus sign in (6.2) indicates that the average influence of
al other ions on the one under consideration is of an attractive nature. To prevent the
lattice from collapsing, there must also be repulsive forces between the ions. These
repulsive forces become noticeable when the electron shells of neighboring ions begin to
overlap, and they increase strongly in this region with decreasing values of r. These
forces, as other overlap forces, can best be discussed on the basis of wave mechanics,
because they are of a non-classical nature. Born in his early work made the simple
assumption that the repulsive energy between two ions as function of their separation
could be expressed by a power law of the type B'/r", where B' and n are as yet
undetermined constants characteristic of the ions in the solid under consideration.
Focusing our attention again on one particular ion, we may thus write for the repulsive

energy of thision due to the presence of al other ions.

€= B/r"  cmommmeeee- (6.3)

where B isrelated to B' by a numerical factor. In view of the fact, that, repulsive forces
depend so strongly on the distance between the particles, the repulsive energy (6.3) is
mainly determined by the nearest neighbors of the central ion. The total energy of one
ion due to the presence of all othersisthen obtained by adding (6.2) and (6.3).
e=—Ae’ /T +B/r" e (6.4)

Assuming that the two types of forces just discussed are the only ones we have to take
into account and neglecting surface effects, we thus find for the total binding energy of a

crystal containing N positive and N negative ions.

r_n

E(r)= N(— AeT2+ B): Ne(r) - (6.5)
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We multiply by N rather than by 2N

because otherwise the energy between

each pair of ions in the crystal would \

have been counted twice. The two ‘\ Repulsion Energy
contributions to E(r) are represented ? ‘\\

schematicaly in Fig (6.2). If we 15 e R
consider the crystal at absolute zero, the % V
equilibrium conditions require E to be a E ,,' Attraction Energy
minimum, which will be the case for the 1

equilibrium value r = a, where @ frig g2 Schematic representation of the

represents the smallest interionic energy of attraction and repulsion as

: . _ . function of the lattice parameter. The
distance in the crystal & T = 0. For this resultant exhibits a minimum for a lattice

minimum constant ap, cor responding to equilibrium.

dE -n
(ﬂ_% =0 ©9

From the last two expressions one thus obtains the following relation between the two

unknown parameters B and n:

Substitution into (6.5) yields for the lattice energy E,,
E, =E(a,) = —NAe—z(l—lj e T — (6.8)

a, n
where e, = e(apg). The interionic distance can be obtained from X-ray diffraction data;
the charge per ion is aso known, and thus the lattice energy can be caculated if the
repulsive exponent n is known. The information regarding n may be obtained is

discussed in the next two sections.

6.2 Calculation of the repulsive exponent from compressibility data:

Born obtained the unknown repulsive exponent n from measurements of the
compressibility of the crystals as follows. The compressibility Ko at absolute zero is

given by
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2
1 _(d E ............. (6.9)
KOVO dv V=V,

where Vy is the volume of the crystal corresponding to an interionic distance ap;, V
corresponds to the variable r. The relation between volume and interionic distance must
of course be of the form

\VENT N[ S —— (6.10)

Where c is a constant determined only by the type of lattice. For NaCl, for example, ¢ =

2. Hence
2
e L E g e L A1) 611
dv  3cNr® dr dvs 9c“Ner< dr{r® dr
From (6.5) we thus obtain
2 _ 2

L (9B} __1 -4 3B (6.12)
KocNa;  (dv*® )~ 9c"Nag | ay ag
Substituting B from (6.7), we find
n=1+9ca; / K,&A ------m----mm- (6.13)

from which the parameter n can be calculated if Kq is known. Some experimental values
for alkali halides according to Slater, and obtained by extrapolation of compressibility

measurementsto T = 0, are given below

LiF n=>5.9, NaCl n=91
LiCl n=28.0, NaBr n=95
LiBr n=28.7.

We note that there is a marked variation from one crysta to another. However, even an
appreciable error in n leads to a relatively small error in the lattice energy, which is
proportional to (1 — 1/n). If we change n by unity, E; changes by only 1 or 2 per cent.
According to (6.8) and in view of the relatively large values of n, most of the lattice
energy is due to the Coulomb interaction, and the repulsion contributes only a relatively
small fraction. On the other hand, the repulsive and attractive forces acting on any one

ion just balance for r = ap and thus are equal in magnitude.
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6.3 Therepulsive exponent as function of eectron configuration:

It will be obvious that the repulsive forces acting between two ions will depend on the
distribution of the electronic chargesin the ions and especially on the number of electrons
in the outer shells. For example, we would expect n to be larger for NaCl than for LiCl,
because the Na" ion has eight outer electrons and the Li* ion has only two. From an
approximate treatment of the interaction between closed-shell eectronic configurations,
Pauling arrived at the following values of n as a function of the occupation of eectronic

shells.
Table 6.1 Repulsive Exponent as Function of Electron Configuration

Electron configuration

lon type

K L M N @) n
He 2 e e e e 5
Ne 2 8 i 7
Ar (Cr) 2 8 8(18) ... .l 9
Kr (AQ) 2 8 18 8(18) ....... 10
Xe (Au) 2 8 18 18 8(18) 12

This table should be used by taking the average value of n for the two ion types occurring
in the crystal. For NaCl, for example, one takes the average of 7 and 9; for NaF the
average of 7 and 7, etc. Note that this table is in qualitative agreement with the

experimental values of Slater referred to above.

6.4 Calculated and experimental lattice enerqies:

The lattice energy <. may now be caculated from (6.8) by substituting the proper
values for the charge of the ions, the interatomic distance and the Born exponent n.
Valuesfor €. so obtained are given in Table 6.2 for alkali halides and the alkaline earths
oxides. The charge per ion in the latter group is assumed to be 2e; it is not quite certain
that these oxides can be considered ionic compounds. It may be remarked that CsCl,
CsBr and Cdl crystallize in the cesium chloride structure (see fig 6.3), whereas al other
compounds in the table have the NaCl structure. The expansion of the lattice, entering
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through the interionic distance ao, can usually be neglected; the coefficient of expansion
of ionic crystals at room temperature is of the order of 107 per degree.
Table 6.2 Lattice Energiesfor Alkali Halidesand Alkaline Earth Oxides.

dg IN eLinev eLlnev

Compound Angstroms n calc. exp.
LiF 2.07 6.0 105 | ...
NaF 231 7.0 93 |
KF 2.66 8.0 83 | e
RbF 2.82 85 79 |
CsF 3.00 9.5 75 |
LiCl 257 7.0 8.4 8.6
NaCl 2.81 8.0 8.0 7.9
KCl 3.14 9.0 7.1 7.1
RbCl 3.27 9.5 6.9 7.0
CsCl 3.56 10.5 6.5 6.7
LiBr 2.74 75 7.9 8.2
NaBr 2.97 85 75 7.5
KBr 3.29 95 6.8 6.8
RbBr 3.42 10.0 6.6 6.6
CsBr 3.71 11.0 6.2 6.4
Lil 3.03 8.5 7.4 7.8
Nal 3.23 9.5 7.0 7.2
Kl 3.53 10.5 6.5 6.6
Rbl 3.66 11.0 6.2 6.5
Csl 3.95 12.0 5.9 6.3
Mgo 2.10 7.0 410 | e
Ca0 2.40 8.0 365 | e
S0 257 85 M5 | ..
BaO 2.75 95 25 | ..

6.5 Born Haber Cycle:

An experimental check on the calculated values of the lattice energies may be
obtained from what is known as a Born-Haber cycle. Consider, for example, 1 gram

atom of solid sodium reacting with; gram molecule of Cl, gas. As a result of the

reaction, solid NaCl isformed and a certain amount of heat Q (the “heat of formation”) is



M. Sc., PHYSICS 8 LATTICE ENERGY

given off. The change in energy due to such areaction may be calculated by considering
the following steps

Nasolid + SNa - Navapor

Na, o + 1ya = Na" +electron

3Cl, +3Dg, > Cl
Cl +electron — Cl + E

(Na"Cl") . = NaCl,+ €,

Nag,iq +5Cl, + Sy + 1 ya +%Du2 — NaCl 4 + Eg+ €,
The quantitiesintroduced all refer to the formation of one ion pair of solid NaCl. Here
Sua represents the sublimation energy of sodium per atom. Sublimation energies in

general can be determined experimentally by direct caloric measurements or from
measurements of the vapor pressure as function of temperature.

Fig 6.3 The CsCl and the ZnS structures. The open circles in the ZnS
structure are located at points obtained by displacements of ¥4 along three
cube edges of the corresponding corner point. For one of the open circles we
have indicated how it is surrounded by four black dots occupying the corner
points of aregular tetrahedron, with the open circle at the center.

The ionization energy Ina represents the energy required to take away the outer electron
of the sodium atom, and can be obtained experimentally either from optical
measurements or by bombardment of atoms with electrons and measuring the minimum

energy of the latter required to produce ions. The dissociation energy D, required to

separate the two Cl atoms in a Cl, molecule can be obtained by determining the
dissociation constant as function of temperature. The electron affinity Eq is the energy
gained by combining an electron and a Cl-atom. Electron affinities can be determined by
measuring the ionization energy of the negative ions, or by measuring the density of
halideionsin akali halide vapor. Now, we also know that
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Nasoli
where q refers again to the heat of formation per “molecule’” NaCl formed. Subtracting

¢ +3Cl, > NaCl_,, +q

this equation from the one obtained above, we find for the | attice energy per ion pair,
€lep.= Sna t+ INa+%DCI2 -Eq+q - (6.14)

For NaCl, al quantities on the right-hand side are known from experiments and thus we
are able to give an experimenta value for €., which may be compared with the one
calculated with the Born theory. For NaCl we find, for example, from (6.14)

€l op=11+51+12-38+43=79eV

whereas Born's theory yields 8.0 eV. The experimental vaues obtained in this way are
listed in Table 6.2, and we see that theory and experiment agree within a few per cent,
indicating that the relatively simple approach is essentially correct.

For the fluorides and oxides, the electron affinities are not known from experiment,
and they are usually calculated by replacing €iexp. Dy €Lep. in (6.14). We note that for
oxygen the electron affinity is negative, i.e., it requires energy to add 2 electrons to the
atom. Thisis not surprising, because after the first electron has been added, we have a
negative O™ ion and we would expect addition of a second electron to require appreciable
energy. An experimental determination of the affinity of a neutral oxygen atom for the
first electron added gives 2.2eV according to Lozier. Now the total electron affinity for
the addition of 2 electronsis—7.3 €V when calculated from the lattice energy of oxidesin

the manner indicated above.

Table 6.3 Electron Affinities and Dissociation Energies

Atom Electron Dissociation
affinity energy
F 425¢eV 2.75¢eV
cl 2.50 2.50
Br 3.8 2.01
[ 3.45 1.58
(@) -7.3 152
S -35 2.75
Se -4.2 2.50
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Thus addition of the second electron requires about 9.5 eV. The usually accepted
values of the electron affinities are given in Table 6.3 together with the dissociation

energies of the diatomic molecules (in electron volts).

6.6 Stability of structure and ionic radii:

lonic compounds of the composition A*B™ occur in the sodium chloride structure, the

cesium chloride structure, and the Zincblende structure (ZnS). The latter two are
represented in Fig. 6.3. In the CsCl structure each ion is surrounded by 8 nearest
neighbors of opposite sign; in NaCl by 6, and in Zincblende by 4. one may thus ask why
acertain compound crystallizes in a particular structure.

The answer must obviously be sought in the fact that the energy should be a
minimum, and the problem is thus reduced to explaining why for a given compound its
natural structure has a lower energy than any other structure. We shall see that some
insight into this problem may be obtained from considerations of the size of theions.

For metals one defines the atomic radius as half the distance between nearest
neighbors, although it is recognized that the meaning of the size of an atom is necessarily
vague. For ionic crystals one could try a similar approach, but one is immediately faced
with the difficulty that these compounds consist of at least 2 types of ions, so that the
lattice constant provides information only about the sum of two radii. A little
consideration of the interionic distances as given in the preceding section shows that to a
fair approximation ionic radii are additive quantities. For example, if one calculates the

difference (r,. —r_.) from Table 6.2 for the halides of these metals, one finds from the

fluorides,

Moo =T

= a —ay, = 0.35 Angstrom

and from the chlorides, bromides, and iodides in the same manner 0.33A, 0.32A, and
0.30A, respectively. We see that the difference is roughly constant and that it has
meaning to associate a rather definite radius with each ion. It is also obvious that atable
of ionic radii can be obtained only if the radius of oneion is known.

Atomic and ionic radii were compiled by Pearson. An examination of this data shows
that on ion formation the size of a positive ion is smaller and that of a negative ion larger

than the size of the neutral atom. The best example illustrating this fact are the radii of
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C(0.72A), C*(0.15A) and C*(2.60A). This can be understood by taking simple
examples of Na and Cl. The Na atom, whose radius is 1.86 f& loses one electron in

becoming the Na' ion of radius of 0.90 ,c& . On losing this outermost electron (3s') which
is loosely bound, the atom assumes a more tightly bound configuration of Na" ion with
the reduced size. Thisisone of the best examples to state, as the Na” ion turns out to be
smaller than even the iso-electronic Ne atom of the preceding period. Similarly, the
bigger size of the CI™ ion makes sense on the ground that the Cl atom is readily willing to
turn into a CI™ ion whose electronic configuration is identical with the rigid spherical
charge distribution of the nearest (the next in the same period) noble gas atom (Ar).

The extent of charge clouds of a constituent ion in any crystal is generally referred to
as the crystal ionic radius. It needs to be distinguished from the free ion radius.
According to the quantum mechanical interpretation, the free ion radius may be defined
as the radius at which the probability amplitude |yf® for the outermost electrons to be in
the orbital represented by the wave function v is maximum. The wavefunction v is then
a solution of the Schrodinger wave equation whose Hamiltonian includes the ordinary
Coulomb potential. The boundary condition requires that the magnitude and the
derivative of the wavefunction y vanish at infinitely large distances. In contrast, for an
ion in the crystal the magnitude and derivative of the wavefunction must be zero at the
boundary of the ion on the demand of the boundary condition. The potential in this case
is not Coulomb but of the type shownin fig 6.2.

The above discussion indicates that the ionic radii may be calculated by solving one-

electron Schrodinger wave equation. This is usually done by the Hartree-Fock self-
consistent field method, treated in great detail by Slater. Some semi-empirica methods

of calculating the ionic radii in crystals are also in practice. For example, the distance
between two atoms shown as ro (the nearest neighbour distance in a crystal) is
approximately equal to the sum of the radii of the two neighbouring atoms. This property
is known as the additive rule. The diffraction method is the standard way at present to
measure lattice constants. From the diffraction pattern it is possible to determine the
radius ratio of any two type of atoms from which the radii of other atoms comprising the
crystal can be determined. Goldschmidt in 1927 has tabulated ionic radii based on a
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radius of the F~ ion of 1.33A, a value which he decided upon on the basis of work by
Wasastjerna on the relation between polarizability and ion size. Pauling, in the same
year, independently published ionic radii based on theoretical calculations of the radii of
some ions. The two sets are not equal, which is not surprising because of the
inaccuracies involved. One commonly refers to the Goldschmidt and the Pauling radius
of agivenion. In Table 6.4 the Goldschmidt radii (G) do not refer to the original set but
include many recent X-ray diffraction data, especially those of Zachariasen. Contrary to
the tables by Goldschmidt, the radius for O% is 1.45A rather than 1.35A. The radii
according to Pauling are also given in Table 6.4.

Table 6.4 Goldschmidt (G) and Pauling (P) lonic Radii in A

lon G P lon G P lon G P

H- 154 208|| B 030 031 B* 02 0.20
F 133 136 Mg 065 065 A* 045 050
cl 181 181||ca& 094 099 || sc** 068 181
Brr 196 195 $** 110 113 | Y* 090 0093
I~ 219 216 || Ba&* 129 135| La® 104 115
Zzn** 069 074| Ga& 060 062
O 145 140 || cd® 092 097 In* 18 181
S~ 190 184 ||Hg® 093 110 TI® 191 095
S 202 198 || Po* 117 121
Tes 222 221 Fe** 053 ...
Mn®* 080 080| cr** 055 ...
Li" 068 060 || F& 076 0.75
Na" 098 095 Co®* 070 072| C* 015 0.15
K" 133 133 || Ni* 068 069 S* 038 041
Rb* 148 148 || cu® 092 ... Ti* 060 0.68

Cs" 167 169 zr** 077 0.80
Cu" 095 096 ce® 087 101
Ag" 113 126 Ge* 054 053
Aut .. 1.37 st 071 o7l
T 151 144 Pb™ 081 0.84

Using the additive rule of atomic radii it is possible to predict the bond lengths or the
inter atomic separations in a crystal. Thisis successfully done for crystalline phases even
before they are crystallized. But we must be aware that the charge distribution is not

rigid and spherically symmetric in every atom. This may introduce an appreciable error in
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the estimate. Therefore, it is a must to know accurately the average of charge clouds of
the constituent atomsin a crystal for making any estimates.

At first instance the knowledge of atomic radii can be used to determine the
coordinates of an atom and suggest the probable arrangement of atoms in the crystal.
Though this point has more relevance, it is worth digressing to emphasize the role of
atomic radii being discussed here. Beiser has excellently explained the threefold
coordinates for a binary ionic crysta. It is shown that the coordination is stable only
when the positive ion A™ touches all the surrounding negative ions B.. The mutual
contact among the three B™ ions is not the necessary requirement for the coordination to
crystallize. A simple geometrical calculation shows that the minimum ionic radius ratio
ra/rg for this coordination to materialize is 0.155. We calculate below this ratio for the
fourfold coordination in asimilar ionic crystal.

In the fourfold coordination, the A™ ion positioned at the center of a cube is
surrounded by four B” ions located at the aternate corners of the cube (Fig 6.4) whose
edgeis‘a. For stable coordination, all the four B™ ions should touch the A* ion. Two B’

ions on every face are also in contact with each other, the distance between their centers
being equal to the length of the face diagonal (\/ia). Let 6 be the angle between the line

joining aB’ionto an A” ion and the line joining the two B'ions. From fig 6.4, we have,

(length of the body diagona = +/3a)

I

/\
Fig 6.4: Thefourfold coordination. The smaller ion A at the center of the cube

issurrounding by four B'ionslocated at the alternate cor ners of the cube. The
minimize value of r o/rg for the coordination is 0.225.
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Table 6.6 Data on the nearest neighbour separation and lattice constant, predicted from

theradii of the constituent ionsg/atoms, for some crystals

Crystd Radius of the Predicted nearest Relation between — Lattice constant a A
Constituent neighbour danda =~  ----mememememmmeememees
iong/atoms  separation, d (lattice constant)  Predicted Observed
(A) (A)
NaF Na’ (0.97) 2.33 a=2d 4.66 4.62
F (1.63)
NaCl Na' (0.97) 2.78 a=2d 5.56 5.63
ClI" (1.81)
. 4d
Diamond C (072 154 = — 3.56 3.56
V3
Ne Ne (1.58) 3.16 a=+/2d 4.47 4.46
Also cosf =B = \E ~0.816
Fy+rg 3

This gives T = 0.225 which is the minimum value for the fourfold coordination to be
r.B

stable. These calculations show that for the formation of a stable threefold coordination,
theion radius ratio must lie between 0.155 and 0.225.

Finally we demonstrate how successfully the bond Iength and the lattice constants are
reproduced with the knowledge of the self-consistent atomic/ionic sizes. The degree of
success achieved can be perceived by the datain table 6.6.

Returning now to the question of stability, we would expect at first sight that the CsCl
structure should always be more stable than the other structures, because it has the
highest coordination number. Now, athough it is true that a high coordination number
will lead to strong binding and thus high stability, there is another requirement to be
fulfilled, viz., that ions of opposite sign should be separated by as small a distance as
possible. In other words, positive and negative ions should “touch,” because any increase
in their separation would give as higher energy (less binding) according to equation (6.8).
It is at this point that a consideration of the relative radii of theions can provide at least a
guiding principle. To illustrate this, let us consider an ionic crystal of the type A'B* with

ionic radii r; and r,, where we assume ri1< r,. Suppose we build a CsCl structure with
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these ions, assuming that positive and negative ions touch each other. The cube edge,
corresponding to the separation of ions of equal sign, isthen a=(2/ \/§)(r1 +1,)
Suppose the ion of radiusr;istheion in the center of the cube. If we now increase the
radius r, gradually, leaving riconstant, we reach a value of r, such that further increase
makes it impossible for the central ion to touch the ones at the corners. Thiscritical value
is clearly reached when
a=2r, =(2//3)(r,+r1,) or r,=1.37r,
Thusr, >1.37 r; would lead to an increase in the distance between positive and negative
ions and consequently to an increase in energy. The competition between coordination
number on the one hand and separation between positive and negative ions on the other
will thus set in as soon as the ratio of the radii becomes larger than 1.37 and a more
favorable structure may result, viz., the NaCl structure. The stability limits of the latter
may be investigated in the same way. In this case the critical ratio of the radii is
determined by 2r, = (r, + r,)\/2 or r, = 2.44r,
Again, if the ratio becomes larger than 2.44, positive and negative ions cannot touch each
other, leading to an increase of the energy and consequently to the formation of the more
stable Zincblende structure (fig 6.3). For this structure, positive and negative ions cannot
touch each other if r, > 4.55r;. The stability limits as derived from the above simplified

billiard ball model for the ions are therefore

Cesiumchloride ............. 1<rylry <137
Sodium chloride.............. 1.37<ry/r <244
Zincblende .................... 244 <rylry <455

It must be emphasized that these result can be looked upon only as a rough rule. In
general, however, one may say that the CsCl structure is found in those compounds for
which theionic radii are nearly equal, whereas the zincblende structure occurs only when
the ratio of the radii is about two or more. This may be illustrated by a few examplesin
Table 6.5.

It isfinally of interest to note that structure transformations have been observed under

high pressures. A review of this subject may be found in a book by Bridgman.
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Table 6.5 Ratio of Negative and Positive |on Radii for Salts
with the Cesium Chloride and Zincblende Structure

Cesiumchloride| r/r, Zincblende e,
structure structure

ZnS 21

CsCl 11
CsBr 19 ZnSe 23
Csl 13 BeS 5.1
TICl 12 Bese >.6
TIBr 13 Cucl 19
T 15 CuBr 2.0
' Cul 2.3

6.7 Refinements of the Born theory:

The development of wave mechanics provided a better understanding of the chemical
bond and interatomic forces in general. As a result, several refinements of the Born
theory have been made, in particular by Born and Mayer and their collaborators. The
essential refinements were the following:

1. Quantum mechanical calculations of the forces between ions indicate that a ssmple
power law for the repulsive forces (6.3) cannot be rigorous. One therefore replaced this

law by an exponential one of the form

€ (1) = o (6.15)

where ¢ and p are constants.

2. One added an attractive term to the lattice energy corresponding to the van der Waals
forces which act between ions or atoms with arare gas electron configuration.

3. One takes into account the “zero-point energy” of the crystal.

We shall not go through the calculation of the lattice energy which includes the
modifications just mentioned, because the method is in principle the same as the one
followed above. Also, the differences in the results obtained are slight. However, a few
remarks about the modifications themselves, in particular about those mentioned under
(2) and (3) may bein order.

The van der Waals forces are responsible for the cohesion in the liquid and solid states
of rare gases as well as for most organic crystals. These forces have been treated by
London and Margenau on a quantum mechanical basis. An approximate expression for

the interaction energy of two atoms or ions with filled shell electron configuration is
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3 o, 1yl,
6
2 [ +1,

e(r)=- - (6.16)

where |, and I, refer to the ionization energies of the particles involved and o, o, refer to
the polarizabilities. The nature of these forces is essentially a quantum effect, although
the fact that they vary with the sixth power of the distance may easily be shown from
classical considerations.

A homogeneous dectric field E inducesin an atom a dipole:
u=gx=oE ------mmmmee- (6.17)
where g and x are, respectively, the effective charge and displacement; a is the

polarizability of the atom. The energy of the atom in the field is then

For afield strength varying with time, one would have for the average energy,

SR 773 | (=o R — (6.19)

Now, suppose the atom is under influence of another atom at adistancer. The latter may
be considered a system of oscillating dipoles formed by the nucleus and the electrons.
The electric field strength of a dipole varies as r° and hence, according to (6.18), the
energy of one atom in the field of another may be written

e=—constant / r®  —-emmmeeeeeeeee- (6.20)

The mutual energy of two atoms would then be given by the sum of two terms of the type
(6.20). From the classical point of view, therefore, these forces are a consequence of the
dipole-dipole interaction between the atoms.

Actually, the energy corresponding to (6.16) is only part of the van der Waals energy
and there is an infinite series of rapidly converging terms. The next one corresponds to
dipole-quadrupole interaction and varies as r™>.

For the dkali halides, the attractive energy corresponding to (6.16) is of the order of a
few per cent of the total lattice energy. For the silver halides it is appreciably more; e.g.,
for AgBr it is about 14 per cent. This is a consequence of the relatively high
polarizability of the silver ion. We should note that the van der waals energy sometimes

plays an important role in the discussion of the stability of different lattice structures.
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The zero-point energy of the crystal is aso a consegquence of quantum mechanics.
The possible energy levels of aharmonic oscillator are given by
e=(n+Hhv - (6.21)

where nisan integer and v is the frequency. Thus, even at absolute zero an oscillator has
a zero point energy of hv/2. Now, in the Debye theory of the specific heat of solids, a
crystal is represented formally by a system of harmonic oscillators with a frequency

spectrum given by

F(v)dv = 47 V(% + %]vzdv ------------------ (6.22)
C

1
where V is the volume of the crystal and ¢; and ¢ are, respectively, the velocities of
propagation of transverse and of longitudina elastic waves. Making use of the definition
of the Debye frequency vp, one may write

F(v)dv = (%jvzdv ------------------ (6.23)
VD
where N stands for the total number of atoms or ions in the crystal. Hence, at absolute

zero, the contribution of the zero-point energy is
1 jo F(Whvav=2Nhv,  ---eeemeemeenen- (6.24)

Per ion pair this corresponds to Shvp/4. with a Debye frequency of the order of 10'2-10"
sec this gives about 0.1 eV. As a correction to the lattice energy the zero point energy
thus contributes about 1 per cent. Note that this correction reduces the values given in
Table 6.2,

LiF Csl
Coulomb............... -124 | -64
Repulsive............... +19 | +0.63
Dipole-dipole......... -0.17| -0.48
Dipole-quadrupole ... | —0.03 | —0.04
Zero-point ............. +0.17| +0.3

whereas the van der Waals correction raises them. In genera, the van der Waals
correction is more important for heavy elements (large polarizabilities), and the zero-

point energy for light elements (high Debye frequency). As an example, we give here the
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various contributions to the lattice energy for the two extreme cases LiF and Csl (all
energiesineV).

6.8 Born-Mayer revised theory of ionic crystals

This theory closdly follows the earlier theory given by Born but for the form of
repulsive energy term. The details of the theory are given below.
6.8.1 The electrostatic energy:

Consider an ionic crystal having N molecule, given atotal of 2N ions. The electrostatic
energy of the crystal can be written as
Ue=NU; ------------ (6.25)

Where U; is the average potential energy of asingleion in the field of the other remaining

ions. Also,
2N-1
U, = ZU” ---------- (6.26)
i=1
2
with Uij: * ; Fij3=1i—Tr;j

4re, |r_,]|
Here Uj; represents the electrostatic interaction energy in Sl units between two ions
bearing an equal charge q and their positions being given by the vectorsri and r;. Taking
the origin of the coordinate system at the position of one of the positive ions, we have

rj = (fn1 +in, + I2n3)r

NG (nf +n2 + nf)%r ---------- (6.27)
where nj, ny, Nz represent the number of units of the nearest neighbour distance r aong
the X, y, z axes of the crystal. Having a positive ion at the origin, we observe that (n1, n,
nz) r represents the location of

anegativeion, if (ny, Ny, N3) isan odd integer

apositiveion, if (ny, N2, N3) isan even integer.
The Coulomb energy between the ion at the origin and any other ion located at r; will be

T\t 2
TR e A (6.28)

1
4re, (N2 +nJ +n2)2r

or
2

u=-9_ (6.29)
Arg v
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Where o is a constant known as the Madelung constant, expressed by the following
relation:
2N-1 2N-1 2N-1 _1
a= Y X X (D™ (Z+ni+nd) 2 ceeeeeeee- (6.30)

M=0 =0 N0
(ng, N2, n3) #(0, O, 0)
For NaCl crystal, the first term is —6/+/1 that is contributed by the six nearest
neighbours of the opposite type located at (+1, O, 0), (0, +1, 0) and (O, 0, £1) in units of
the nearest neighbour distance. The second term 12/+/2 comes from the 12 nearest
neighbours of the same type, located at (+1, £1, 0), (O, £1, +1) and (£1, O, 1) and at a
distance of +/2r from the origin. The sum in (6.30) can be made to converge rapidly
using some tricky mathematical method. The calculations yield the value of Madelung
constant as —1.7476 for a NaCl crystal. For some other important ionic crystals such as
CsCl, Zincblende (ZnS) and wiirtzite (ZnS), the values are —1.7627, —1.6381 and —1.641,
respectively. A detailed account of the method of calculation has been provided by Born
and Huang. respectively.

6.8.2 The Repulsive Overlap Energy:
An approximate analytical form of the potential energy for pair of ions as originally

introduced by Born and Mayer is given by
U =2 1 | 6.31
i = A €XPp T """"" (6.31)

where Aj; and p are the empirical parameters which depend on the nature of theionsi and
J but are independent of the distance between them.

The repulsive term is representative of the fact that the overlap between the electron
configurations of neighbouring ions is resisted. The constants A and p stand for the
strength and range of interaction, respectively, and can be determined with the knowledge
of the experimental values of the lattice constant and compressibility. The range p is
defined as the values of |r;;| for which the interaction is reduced to 1/e of the interaction A;

when the two ions are in contact, treating them asidea point charges.
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Thus the total potential energy of the ions r; and r; can be written as the sum of the

i i (a) : i @
attractive potential energy U ;™ and the repulsive potential energy U such that

2 —Ir.
U® =u@ U 1 q—m” ex L (6.32)
Are, |rij | P
Thetotal potential energy of acrystal of NaCl structure will be written as
2 — —
U= N{— 961, exp( \/ﬂ]+121++ exp{ ﬁr}....} ---------- (6.33)
Are o Jol Jo,

The subscript of A in (6.33) indicate that its value is different with reference to the
interaction between the like ions and that between unlike ions.
If we consider the repulsion only between the nearest neighbours the relation (6.33)

assumes the general from

Where z stands for the number of nearest neighbours (six in NaCl structure).

Since the cohesive energy is referred to as the minimum value of the potential energy,
we can achieve the objective by expressing (6.34) in terms of the nearest neighbour
distance, for which the minimum potential energy occurs .For U to be minimum,

a4

dr
From (6.34), we get

2
d—U:N aq 2_ﬁe—r/p :O
dr Are o p o

=lo

wherery isthe nearest neighbour distance at equilibrium .This condition gives

2
Me—rolp — % -------- (635)
T olo

From (6.34) and (6.35), we get

_ 2
U - Naqz (1_ P ) __________ (6.36)
Are of, o

As an exercise, we apply (6.36) to aNaCl crystal. The potential energy of asingleion in
the crystal is given by
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U, = 4:3;2 (1— fj ---------- (6.37)
For NaCl, o = 1.748, rp = 2.81,& and p is generaly found to bery/9. (A small value of p
shows the short range of repulsive interaction.)

Substituting these valuein (6.37), we get

Uion =—7.97 eV
This is not correct energy of a single ion as every ion is counted twice while taking the
pair interaction. Therefore, the true potential energy of anionis—7.97/2 eV =-3.99 eV,
which is essentialy the contribution of a single ion to the potential energy .With
reference to ionic crystals the quantity, 7.97 eV, isreferred to as the lattice energy which
only the cohesive energy per ion pair .Thisis in excellent agreement with the measured
value of 7.96eV.

The cohesive energy per atom may as well be caculated easily .The ionization
potentia of the Nais5.14 eV and the electron affinity of Cl is—3.62 €V. In the formation
of Na" + ClI" ion pair, the energy spent in the electron transfer is equal to (5.14-3.61) eV
i.e. 1.53 eV, meaning thereby that each atom contributes 0.77 eV to the cohesive energy.
Thus, the cohesive energy/atom of NaCl

= (-3.99 + 0.77) eV

=-322¢eV
The success of the underlined theory is further emphasized by the closeness of the
measured value (3.28 eV/atom).

6.9 Summary:
The potential energy of anionic crystal is considered to be composed of two components,
one representing the el ectrostatic energy and the other belonging to the repulsive overlap,
which hasits origin in the Pauli exclusion principle.

e=-Ae’/r+B/r"

Born’'s theory of the lattice energy is based on the assumption that the crystals under
consideration are built up of positive and negative ions.

For the NaCl structure the result is




ACHARYA NAGARJUNA UNIVERSITY 23 CENTER FOR DISTANCE EDUCATION

e.=—Ae’/r  with A=1.747558......

The constant A is called the Madelung constant. For other crystal structures composed of
positive and negative ions of the same valency, the Madelung constants are
Cesiumchloride  A=1.762670
Zincbelende (ZnS) A =1.6381
Wurtzite (ZnS) A=1641
Assuming that the two types of forces just discussed are the only ones we have to take
into account and neglecting surface effects, we thus find for the total binding energy of a
crystal containing N positive and N negative ions.
Born obtained the unknown repulsive exponent n from measurements of the
compressibility Kq of the crystals

The repulsive exponent n=1+9ca; / K, e°A
It is obvious that the repulsive forces acting between two ions will depend on the
distribution of the electronic chargesin the ions and especially on the number of electrons
in the outer shells. For example, we would expect n to be larger for NaCl than for LiCl,
because the Na' ion has eight outer electrons and the Li* ion has only two. From Born
Haber method we can obtain an expression for lattice energy as
SLep.= Sha + Ina +%DCI2 -Eq+q
For NaCl, al quantities on the right-hand side are known from experiments and thus we
are able to give an experimenta value for ., which may be compared with the one
calculated with the Born theory. For NaCl we find
€Lop=11+51+12-38+43=7.9eV

whereas Born' s theory yields 8.0 eV.
From a study on alkali halide crystalsit is concluded that depending on the ratio of anion
to cation radii of various structures result as

Cesium chloride.............. 1<r,/r; <1.37

Sodium chloride.............. 1.37<r,ry <244
Zincblende .................... 244 <rylr; <455
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Born and Mayer suggested refinements to the original Born’'s theory particularly to the
form of repulsive potential .

Quantum mechanical calculations of the forces between ions indicate that a s mple power
law for the repulsive forces cannot be rigorous. One therefore has to replace this law by

an exponential one of the form
€ () =ce™’?

where ¢ and p are constants.
Other refinements include adding an attractive term has to be to the lattice energy
corresponding to the van der Waal’ s forces which act between ions or atoms with a rare
gas electron configuration and taking into account the “zero-point energy” of the crystal.
The van der Waal’s forces are responsible for the cohesion in the liquid and solid
states of rare gases aswell as for most organic crystals.
The van der Waal’ s contribution to energy can be written as € = — constant / r®
For the akali halides, the attractive energy corresponding to van der Waal term is of
the order of a few per cent of the total lattice energy. For the silver halides it is
appreciably more; e.g., for AgBr it is about 14 per cent. This is a consegquence of the
relatively high polarizability of the silver ion. We should note that the van der Waal’s
energy sometimes plays an important role in the discussion of the stability of different

| attice structures.

6.10 Key words:
Lattice energy — Born's theory — Medelung constant — Repulsive exponent — Heat of
formation — Born Haber cycle — lonic radii — Zero point energy — Polarizabilities — Debye

freguency — L attice constants.

6.11 Review questions:
1. Define Madelung constant and obtain its value for NaCl crystal. Discuss its
physical significance.
2. How do you classify the crystal based on binding energy.
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. Discuss clearly giving examples the relationship between the ionic radii and
stability of different types of structures for ionic crystals. Obtain the necessary
limits for the different structures.

. Obtain an expression for the binding energy of an ionic crystal.

5. How does the stahility of structures depend on ionic radii?

6. (a) Classify solids based on the nature of inter atomic forces. (b) Derive an

expression for the binding energy of NaCl crystal. (c) What is Madelung
constant?

7. Discuss Born'stheory for determining the binding energy of an ionic crystal.

8. (a) Obtain an expression for binding energy of an ionic crystal based on Born's

theory. (b) How the stability of structures depends on ionic radii? (c) Comment

on the refinement of the Born’ s theory.

6.12 Text and reference books:

1. Elements of Solid State Physics by J.P.Srivastava (PHI)

2. Solid State Physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A.Omar (Pearson education)

4. Solid State Physics by S.O. Pillai (New Age)

5. Solid State Physics by C.Kittel (Asia Publishing house)

6. A Text Book of Solid State Physics by S.L.Kakani and C.Hemrgjani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakasan)
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UNIT —1I LESSON: 7
Elastic constants of Crystals

Aim:
To know about elastic constants of crystal and also to learn about elastic waves in cubic
crystal.
Objectives:
» To know the relation between crystal binding (energy) and elastic properties of
crystals.
» To know definitions of elastic stress, elastic strain and the respective relationship
in between them
» To know definitions of dilation, elastic compliance and stiffness constants and
how these are applied to cubic crystals.
» To know about elastic waves in crystal and propagation of waves in the (100)
direction and (110) directions.
Structure Of The L esson:
7.1. Introduction
7.1.1 Elastic Stress
7.1.2 Elastic strain
7.2 Elastic compliance and stiffness constants
7.2.1 Elastic energy density
7.2.2 Application to cubic crystals
7.2.3 Bulk modulus and compressibility
7.3 Elasticwavesin cubic crystals
7.3.1 Propagation of wavesin (100) direction.
7.3.2 Propagation of wavesin (110) direction.
74 Summary.
7.5 Key words.
7.6 Review guestions.

7.7 Text and Reference books.
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7.1 Introduction:

The crystal binding discussed in the earlier lesson establishes how this binding
controls the elastic behavior of solids .The nature of binding forces in a solid often
reflected in its elastic response. The study of elastic properties is essential for the
interpretation of several properties of solids. Elastic properties relate themselves to
thermal properties like the Debye temperature. Now we will know stress-strain
relationship in a crystal treating it as a homogeneous continuous eastic medium. The
crystal’s picture as a periodic array of atoms is replaced with homogeneous elastic

medium.

7.1.1: Elastic stress:

Let us consider uniform deformation of an elementary cube of a crystal. Under the
action of deforming force, an internal force develops within the crystal as a function of
the applied force. The internal force acting on the unit area of a crystal is defined as the
stress. For the present treatment, it is assumed that the applied force is not large and the
Hookes' law isvalid (stressis proportional to strain). The stress acting on the six faces
of the cube is expressed by nine components Gxx, Gxy, Oxz, Oyx Oyy ;Oyz, Oz Ozy 0z, 1he
first subscript denotes the direction of the applied force and the second subscript denotes
the direction of the normal to the force on which the force is applied. The stress is a

tensor of second rank and denoted by a (3x3) matrix namely

XX

[Gaﬁ]: yx W yz

Q a Qq
q
q
)
N’

2
with o, B = X, Y, Z

The components cxx, Gyy, 52, express the normal stress components acting on the yz ,
zx, and xy faces respectively. The remaining six components represent the tangential
stress (two components of each of the three pairs of the faces). If the cubeisin the state
of static equilibrium and it does not rotate under the influence of tangential stress
components c,p and og, Would produce equal and opposite rotations. Hence o3 = ogy
and the nine stress components reduce to six independent components. Figure 7.1 shows

anormal component oy, and a tangential component oy, acting on the respective faces of
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a cube. The stress components have the dimension of force per unit area or energy per

unit volume.
Z
A

oy, (tangential)

| Gyy(normal)

y

Fig 7.1:The normal stress component oy, produced by a force applied in the +y
direction on the xz face (with the normal along the +y direction) of a cube. The
tangential stress component oy, produced by a force applied in the +y direction on

the xy face (with normal along the +z direction) of a cube.

7.1.2 Elastic Strain:

Let the three orthogonal unit vectors i, ],k are embeded in an unstrained crystal.
Suppose on straining the crystal by a small deforming force these vectors are
transformed into non-orthogonal vector |,m,n respectively, with individual magnitudes
differing from unity. We treat the sets of vectors as the new and old coordinate axes. The
new coordinate axes may be expressed as

| =@+e, )l +gxyj +8XZ|2

M=g, i +@Q+e,)]+e,Kp  mmmemmmemeeeees (7.2)

ral ~

N=¢,l +&,]+Q+e,)k

X

where g, define the deformation. These coefficients are dimensionless and very small

(<<1) for asmal strain.

By taking the dot products | -I,m-m,n-n, we can easily show that the magnitude of

the each of the three new vectors is different from unity. Also the dot products

| .m,m-n,n-1 donot vanish indicating that | ,Mand A are not orthogonal vectors.
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The strain components e, are defined in terms of €, as

Ex= Exx, &y = Eyy, €7 = €7z -mm-m----- (7-3(8-))
and

exyzlm;gyx+gxy

e,=MNz¢, +e,r - (7.3(b))

e =nlze_+¢

In relation (7.3b) the sign = may be replaced by the sign =, if the terms of order & are
neglected (eq.p<<1) . It is to be noted that the strain components in (7.3b) are defined in
terms of the changes in angle between the axes. Therefore for a rigid rotation in which
angles do not change e,y = 6y, = €, = 0 and &xy = -gyx, &z = -&zy aNd ex= -&x, . If we do
not consider pure rotation since they are not deformed, we may always take

Exy = Eyxs Eyz = Ezy, AN €2 = £xp =-===m=m-=----- (7.9

using (7.4) in (7.3b) we have

Eyy T :Eexy
1

8yz:8zy=§eyz """""""""" (75)
1

=6y, =—8€,
2

Now consider an atom at position ‘T’ in the unstrained crystal. The position vector is
expressed as
LY O — (7.6)
Let the position of the atom in the strained crystal be given by
F =X +yM+ZN —mmmmmmmmmmmmeee (7.7)
The displacement of the atom under the action of the deforming forceis

AT = F-T —mmmmmmmmeeeee (7.8)
Making use of (7.2) & (7.5) to (7.7) the above relation can be expressed as

a
|

AF—{xe +£ye 1 } +er +ye 1 }j{ixe +1ye +ze }k
w2l 2 2 7 woo 2 ¢ 27 “

Werewriteit as
AF) = Uyl + U, | + UK —mmmmmmmmeemee (7.10)
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where

u, = xe +1ye +£ze
1 XX 2 'YX 2 X

u, = % Xe,, + ye,, + % R (7.11)

U, =lxexz+lyeyZ +2ze,
2 2

Where u;, Up, usz are the displacement components along the coordinate axes of the

unstrained crystal.

All the six dimensionless strain components can now be defined as follows by taking

partial derivatives of u;, U, and uz

ou, . ou, ou,
€y =— €y =—t+—
OX ox oy
L R WL SR— (7.12)
oy oy oz
0z 0z 0OX

Relation in (7.12) give alternative definition of strain components. Relation (7.2) and
(7.3a) indicate that e, ey, and e, represent linear strain i.e., changes in length per unit
length along the three axes. Each of the other type of three components interpret a
combination of two simple shears. Take for example,
ou, ou

It describes two shears one in which the planes normal to y-axis dlide in the z-

vz

direction and other in which the planes normal to z-axis along the y-direction. Like stress,
strain is also atensor of second rank. In genera it is described by nine components with

the matrix representation as

€ €, €,
S — (7.13)
e, € €,
With a,=x,y,z.

7.1.3 Dilation: The fractional increase in volume created by deformation is called

dilation. It is useful in determining some el astic constants such as the bulk modulus.
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Volume of aunit cube after deformation is

Substituting for I,m,n from (2.2) into (7.14) neglecting the product of 2 strain
components (e,p<<1), we get

V'=1+ex+ gyt ey -----mmmmmmm- (7.15)
Therefore the dilation 5 = - —

7.2ELASTC COMPLIANCE AND STIFFNESS CONSTANTS:

According to Hooke's law the strain is directly proportional to the stress for sufficiently
small deformations. Therefore for appreciable small elastic deformations of a crystal the

stress tensor components and the strain tensor components are related as

O C11 C12 Cl3 C14 C15 C16 €
Oy Cu Cpn Cyp Cu Cix Cyx|by
Ou|_ Ca Cu Gy Cy Ci Cyfl€| (7.17)
Oy Ca Ci Cu Cu Ci Cy €y
(o Ca C Gy Gy Gy Gy x
1O | _CGl Coo Cu Cou G Cg J _exy i

Conversely, the strain components can be expressed as the linear function of the stress

components.

G Sn S12 513 514 515 516 O

€y S21 Szz S23 S24 S25 Sze Oy

| |Su S Su Su Ss Se|0m| 718

eyz S41 S42 S43 S44 S45 846 Oy

€, Sy S, S Sy Sy Se|o -

& | L St Se Se Su Ss Sk 10y ]

The coefficients Ciz, Cy1 €etc are called elastic stiffness constants and represent moduli of
elasticity with dimensions of force or energy | The other coefficients S;1, S;2 are called

area  volume
area  volume
or

elastic compliance constants and have dimensions of .
force  energy
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7.2.1 ELASTIC ENERGY DENSITY:
By analogy with the expression for the energy of a stretched spring, the elastic energy

density ¢ isaquadratic function of strainsin the approximation of Hooke's law

1 6 6
¢= > 2 2C,e,6 - (7.19)

v
where theindices 1 to 6 should read as

1=xx,2=Vyy,3=22,4=y2,5=2X, 6 =Xy ------------ (7.20)
The coefficients C, are found to be related to Csof (7.17) as we will see below. We will
exploit the definition (7.19) to show that 36 coefficients in (7.17) or (7.18) can be
reduced in number. The very definition of potential energy allows us to obtain the stress
components from the derivative of ¢ with respect to the associated strain component. For
example, when the stress o4« acts on one face of a unit cube and the opposite face is held
at rest, we have

o, = % - % ] A A (7.21)
An inspection of relation (7.21) reveals that only the combination %(C_:aﬂ +C,,) enters

the stress strain  relations ,implying that the eastic stiffness constants are symmetrical.
Thus we have

Cup = 5(C,y + ) = Cpg wrrorrrre (7.22)

The above symmetrical property reduces the number of constants from 36 to 21

7.2.2 Application to cubic crystals:

In accordance with the Neumann’'s principle, the number of independent elastic
stiffness constants decreases as the symmetry of a crystal increases. This number 21, 13,
5 and 3 respectively for triclinic, monoclinic, hexagonal, and cubic systems. The cubic
crystals being the most symmetric have the least number of independent elastic stiff
constants. We now derive this result.

We pronounce that the relations for the elastic energy density of a cubic crystal hasthe

form
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1 1
¢ = Ecll(efX +e) +e5)+ ECM (e, +ei +€.)+Cp(e e, +e,e, +e.8,)— (7.23)
The above relation does not have the quadratic terms

G N o O (N O (7.24)

4

X
Fig 7.2 One of the four threefold_Rotation axes (the direction of the body diagonal)
in acubic crystal . The[111] direction and its equivalent directions represent other
threefold rotation axes (i.e. thedirection of the other three body diagonals)
The correctness of (7.23) can be confirmed by showing that ¢ is invariant under all
symmetry operations permitted in a cubic crystal. The minimum symmetry requirement
for cubic symmetry is the presence of four three fold rotation along the directions of the
four body diagonals of the cube (fig 7.2).
Counter clock wise rotations by 2z /3 about the (111)direction and three other
equivalent directions interchange the x, y,z axes according to the following four schemes.
XY —>ZX, X—>Z—> -y —>-X
X—>Z>-y>X; X—=>Y—> z—>-x}
It is straight forward to check that the relation for ¢ remains unchanged when x, vy, z
are interchanged in (7.23) according to any of the four schemes (7.25). But every term
appearing in (7.24) is odd in one or more indices. One of the schemesin (7.25) is surely
such that its application to (7.23) would change the sign of the term in (7.24) .This
confirms that the terms included in (7.24) have rightly been excluded from the relation

(7.23) for ¢. We may now easily derive the stress components from (7.23) Thus
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o = % =Cpe, +Cp(e, +8y) (7.26)

XX

(o2

The corresponding relation is given by (7.17) is

0w =Cuey +Cpe, +Cue, +Cue, +Cie, +Cye,, ---mmm-mmmmmmmm- (7.27)
On comparing (7.26) and (7.27) we get

C2=Cy3 Cu= C;5=Cy=0 ------mm-mmm-- (6.28)
Further, from (7.23)

o¢
ny = a = C44exy """""""" (729)
The corresponding relation from (7.17) is
O,y = Caly +Cq€), +Cqx, +Cye, + Cis, + Cyef --mmmmmmmmmmmm- (7.30)

Comparison of (7.29) with (7.30) gives
Cos=Cus, Co1= Cop=Ce3=Cgs =Cg50 -------------- (7.31)
Proceeding this way for other stress components, we find that the array of values of the

elastic stiffness constants of a cubic crystal may be expressed in the following matrix

representation.
'c, C, C, 0 0 O]
c, ¢, C, 0 O O
C, C, C O 0 O
(o e et e—— (7.32)
o o o ¢, 0 O
o o o o ¢, O
0O 0 0 0 0 C,)

Whereo, B =1, 2,3, 4,5, 6.
Matrix (7.32) shows that a cubic crystal has only three independent stiffness constants by
calculating the inverse matrix to (7.32), we obtain the following relationship between the
stiffness and compliance constants for cubic crystals.

Cu=1/Sss; Cii-Cr2=(Si1-S12) % Ci+ 2C1p = (Sp + 2S1p) ™+ - - (7.33)

7.2.3 Bulk Modulus and Compressibility:

Let us consider a strained crystal which is uniformly dilated. This refers to the
mathematical condition
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From (7.23) we obtain the following relation for the elastic charge density of a cubic
crystal.

1
¢ = 5 (Cy +2C )07 —-mmmmmmmmmmmmee- (7.35)
The bulk modulus B is usually defined by the relation
6= % BO? —eemeemcmemmeeee (7.36)

Comparing (7.35) with (7.36), we express the bulk modulus of a cubic crystal as

B- %(C11 o S — (7.37)

The inverse of B has been interpreted as another useful elastic property called the
compressibility K. The compressibility of a cubic crystal is accordingly given by

K= 3
C,+2C,

7.3 Elastic wavesin a cubic crystal:
Consider of an elementary cube of edges Ax = Ay =Az with in the volume of a cubic

crystal. The cube edges are in the direction of x-, y-, and z- axes. When the cube is
strained, let the stress ox«(X) act on the face at x. Assuming that the variation of oy iS
uniform along the x-direction, the stress on the face parallel to that at x can be expressed
as [oxx (X) + (Oox/0X)AX] (seefig 7.3). The net force on the cube due to a o component
is equal to [(Oox/0X)AX] Ay - Az. The other forces in the x-direction arise from the

variation of oy and oy, across the cube. Therefore the net force on the cube along the x-

directionis
oo
o I S — (7.39)
OX ay 0z

The above force is actually the restoring force that tends to bring the cube to its
unstrained state. As aresult, the particlesin the crystal are thrown to a motion described
by the relevant equation of motion. If p is the density of the crysta, the force per unit
volume on the crystal aong the x-direction is p(6uy/ét?) and the equations of motion in

the x-direction becomes
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2 9
5 aatjl _ agxx . agxz . gyxy S— (7.40)
X VA

Volume Ax Ay Az

'

L o)

h ﬁ
\

Fig (7.3) Variation of normal stress component (o) with in a cube along x edge

Using (7.17) and (7.32) the above equation is reduced to the following form for a cubic
crystal.

2 oe oe
pPth P [Py P o [P ) (7.42)
ot oX oX  oX oy oz
On eliminating the strain components with the help of (7.12) above equations assumes
theform
o%u, o%u o%u, d%u o%u, o°u
—1t=C,——+C,| —F+—>|+(C,+C 243 - (7.42
Pz T o 4“( o7 o )Gt Cal 5oy Ber (742

Here u;, Up, U3 are the components of the atomic displacement A(T) along the axes of the
unstrained crystal [see equation (7.10)]. The solution to (7.42) turns out to have a
waveform, indicating that waves propagate within the crystal when it is strained in such a
way as there exists a non-zero stress on the crystal. These waves are called elastic waves
because they are produced here in an elastic continuum by elastic deformation.

Similar to (7.42) there are equations of motion in the y- and z-directions. We write
them by symmetry on the basis of (7.42).

o%u, o%u 0%u, 0o%u o%u, 0o°u
=C 24+C Z+—2|+(C,+C e P 7.43
P T gy “{ o "o |7 (CetCu) oxoy  Oxoz (7.43)
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o%u, o%u o%u, 0d%u o%u, o°u
—3=C,—>+C 2+ |+(C,+C Lp 2| - 7.44
Pz T op “‘{ x: oy (Coo+Cull 562 * 2 (7.49)

Now we proceed to study the solutions of these equations in some common directions in

cubic crystals.

7.3.1 Propagation of wavesin the [100] direction:
First, consider a longitudinal or compressional wave that propagates along the x-cube
edge. Its propagation constant or wavevector k is paralel to the particle displacement u;,
given by

Up = (Un)o exp [i(kX - @t)] ------mmn--mme- (7.45)
where k = 27 /A, and o is the angular frequency. When (7.45) is used as a trial solution
of (7.42) and placed in it, we obtain the dispersion relation.

R A O G —— (7.46)
This gives the velocity of the longitudinal wave in the [100] direction in acubic crystal as
1/2
g (&J ---------------- (7.47)
k Lp

Next, we consider a transverse or shear wave with its wavevector k aong the x-cube

edge and the particle displacement u, in the y-direction. Thus,

U = (U)o exp [i(kx - ot)]  -------=mmmmmmmmm- (7.48)
The substitution of (7.48) into (7.43) gives
°p = Cagk® -mmmmmmmeee (7.49)
Therefore, the velocity of atransverse wavein the [100] direction in a cubic crystal is
v,=2 2 (Ci‘jm ---------------- (7.50)
k p

It can be shown that a transverse wave with wavevector along the x-cube edge and the
particle displacement ug in the z-direction moves with the identical velocity. This result
asserts that two independent shear waves whose wavevectors point along the [100]
direction propagate in a cubic crystal with equal velocities. For a general direction of the
wavevector this result is not applicable. The geometry of the longitudinal and transverse

(wave) propagation in the [100] direction in acubic crystal is shown in fig 7.4(a)
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7.3.2 Propagation of Wavesin the [110] Direction:

The study of eastic waves propagation in the [110] direction (the direction of a face
diagonal) is especially gainful because the three elastic constants can be obtained simply
from the three measured propagation velocities.

Let us first consider a shear wave with wave vector k = ki +k, | propagating in the

xy plane and causing a particle displacement us in the z-direction. Thus
Us = (Ug)o exp [i(kuX + Kyy - @t)]  ---m--mmmmmmmmeen (7.51)
Substituting (7.51) into (7.44) we have

Figure 7.4: The propagations of elastic waves in a cubic crystal L denotes
longitudinal wavesand T denotes a shear wave.

(a). Wavesin the [100] direction (k paralle to i) one longitudinal wave with velocity
characterized by Ci;, two degenerate shear waves with velocity characterized by
Cya.

(b). Waves in the [110] direction (k parallel to (i+j)); one longitudinal wave with
velocity characterized by %2 (Cy+C12+2Cy), two shear waves with velocities
characterized respectively by C44 and %2 (C13-C1o) .

(c) Wavesin the[111] direction [k paralld to (i+j+k)] .

One longitudinal wave with velocity characterized by 1/3(C1;+2C12+Cys), two
degenerate shear waves with velocity characterized by 1/3(C11-Ci12+Ca4) i) ,K
denotes the unit vectors along the cube edges defining the X-,Y-,Z- coordinate axes.
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Next, consider the other two waves propagating in the xy plane with particle velocity in

the xy plane. Let these be represented as

u, = (U, exp i(k,x+k, y-ot)
U, = (U)o exp i(k,x+k, y-ot)

Placing these solutions in (7.42) and (7.43), we get the following pair of equations.
o’ pu; = (Cyukg +Cuky)uy +(Cpy +Cp)kk, U,
o’pu, = (C11k5 +Chk)u, = (Cp, + Culkk,u;
For a wave in [110] direction for which ky = ky, = k2, equation (7.54) have a

characteristically ssimple solution. The solution exists only if the determinant of the

coefficients u; and u; in (7.54) vanishes. Thus
1 2 2 1 2
E(C11+C44)k -0 p E(C12+C44)k
1 1
E(C12+C44)k2 E(C11+C44)k2_w2p

On solving equation (7.55) we get two dispersion relations
w? = C11"'C12 +2C44 K2 @? = C11_012 P (7.56)
2p ’ 2p

These two roots refer to two different types of waves. We now determine the nature of

the waves by finding the direction of the particle displacement caused by the respective

waves. When we substitute the first root in the first equation of (7.54) we get u; = Up.
Since the particle displacement occursin the xy plane, A(F) = us(T + ). This shows that
the displacement takes place in the [110] direction that represents the direction of
(I + ) and happens to the direction of propagation of the wave (see fig 7.4(b)). Thus we
infer that the first root in (7.56) belongs to a longitudinal wave.

Similarly, on substituting the second root in the first equation of (7.54), we obtain u;= -u,
implying that, Ar = u; (I + ]). The direction of the vector (i — |)is indicated as[110]
which is perpendicular to the[110] direction, the direction of propagation of the wave.
Hence the second root in (7.56) must refer to a shear wave [fig 7.4 (b)]. The treatment of

waves in the [111] direction is relatively lengthy though not complicated as for other
general directions. The main features of propagation may be found in 7.4(c).
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The subject matter of the last section is closely linked to the analysis of norma modes
of vibration of crystals. Generaly the direction of particle displacement or the
polarization of normal modes may not be exactly paralel or perpendicular to the
direction of the wave vector k. The analysis becomes easier when k is aong any
symmetry axis of the crystal.

7.4 Experimental Deter mination Of Elastic Constants:

In the experimental determination of elastic constants, a pulse of sound, generated by a
piezoel ectric quartz transducer, travels through the crystal. After reflection from the rear
surface of the crystal, it travels back through the crystal and on emerging out of the
crystal is detected by an electronic device as shown in fig 7.5. The eastic wave velocity
can be determined by dividing the round trip distance by the time taken, and hence, the
elastic constants of a crystal can be determined from the velocities of these waves
through the relationship as mentioned above. In table 7.1 the measured el astic constants
for some materials are given

—— Ultrasonic Pulse

\
Quartz Transducer Crystal

) >

—» Rear Surface

Ultrasonic Pulse «—
of Crystal

Fig 7.5 Ultrasonic pulse method for deter mination of elastic constants

Table 7.1 Elastic constants (in units of Gpa) of some cubic materials
Material Cu Cu Ca2
Diamond 1040 550 170
S 165 79.2 64
GaAs 118 59.4 53.5
NaCl 49.1 12.8 12.8
ZnS 101 44.3 64.4
BaTiOs 222 112 139
SITiOs 316 123 102




M. Sc., PHYSICS 16 ELASTIC CONSTANTSOF CRYSTALS

7.5 Summary:

The nature of binding forces in a solid often reflected in its elastic response. The study
of elastic properties is essential for the interpretation of several properties of solids.
Elastic properties relate themselves to thermal properties like the Debye temperature.

Under the action of deforming force, an internal force develops within the crystal as a
function of the applied force. The internal force acting on the unit area of a crystal is
defined as the stress. For the present treatment, it is assumed that the applied force is not
large and the Hookes' law isvalid (stress and strain). The stress acting on the six faces of
the cube is expressed by nine components oy, Gxy, Oxz, Oyx Oyy ;Oyz, Oz Ozy ,Ozz,

The components oy, Gyy, 02, express the normal stress components acting on the yz,
zx, and xy faces respectively. The remaining six components represent the tangential
stress components (two components of each of he three pairs of the faces).

The fractional increase in volume created by deformation is called dilation. It is useful in
determining some elastic constants such as the bulk modul us.

The coefficients C;,, Cy; are called elastic stiffness constants and represent moduli of
elasticity with dimensions of force volume. The other coefficients Sy;, S are caled
elastic compliance constants and have dimensions of area or volume.

The expression for the energy of a stretched spring, the elastic energy density ¢ is a
guadratic function of strainsin the approximation of Hooke's law

6-133Ce

> 2.5 C ,6,, Wheretheindices 1 to 6 should read as
1=xx,2=Yyy,3=22,4=y2,5=2X,6 =Xy
In accordance with the Neumann’'s principle, the number of independent elastic
stiffness constants decreases as the symmetry of a crystal increases. This number is 21,
13, 5 and 3, respectively for triclinic, monoclinic, hexagona, and cubic systems. The
cubic crystals being the most symmetric have the least number of independent elastic stiff
constants. The three independent elastic stiffness constants for a cubic crysta are Ci;,
Ci2, Cys.
The velocity of atransverse wavein the [100] directionin acubic crystal is

1/2
Y :—:(C;“‘J . For awavein [110] direction for which ky = k, = k/+/2,

I
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we get two dispersion relations

a)2 _ C11+C12+2C44 kz.a)z _ Cll_CIZ
2p ’ 2p

}kz These two roots refer to two different

types of waves. The first root belongs to alongitudinal wave and the second root refers
to a shear wave

7.6 Keywords:

Elastic constant — Elastic stress — Elastic strain — Dilation — Elastic Compliance —

Stiffness Constants — Elastic energy density — Bulk modulus and Compressibility —

Elastic waves.

7.7 Review questions:

1. Define elastic constants of a crystal and obtain respective relationship in between
them.

2. Define dilation, elastic compliance and stiffness constants and elastic energy density,
how these are applicable to cubic crystals.

3. Define bulk modulus and compressibility. What do you understand by elastic wavesin
cubic crystals?. How do these waves propagate along [100] and [110] directions?

4. Show that the longitudinal and shear wave velocities in the [111] direction in a cube

are respectively, given by

C,+2C,+4C, |"* C,-2C,+4C, |
V1 = V2 =

3p 3p
5. Show that in a cubic crystal, the effective elastic constant for a shear across the (110)
(Cn — Clz)

planein the [ 1i1] directionisequal to
6. Discuss the solution for alongitudinal wave in a[110] direction and longitudinal shear
wavein a[110] direction.
7. A cubic crystal is subjected to tension in the [100] direction. Find the expression for
Y oung’s modulus and Poisson’ sratio in terms of elastic compliances or stiffnesses.
8. Show that in a cubic crystal the condition for alongitudinal wave in the [111] direction
to have the same velocity as alongitudina velocity in the [110] direction is that
Cu1- Ci2=2C4s.
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9. Give symmetry arguments to show that there are three independent el astic constants
for a cubic system.

10. For a cubic crystal, obtain an expression for velocity of elastic waves in (100) and

(110) directions. Express Bulk Modulus and compressibility in terms of e astic constants.

11. What are the stiffness and compliance constant so that the stress and strain are

symmetric tensors of the second rank. Describe an experiment to determine the elastic

constants of acubic crystal.

12. Set of the equation of motion for propagation of elastic waves in cubic crystals.

Derive the relation between the velocity of propagation and elastic constants for (100)

and (110) directions.

13. Discuss the analysis of elastic strain and stress in crystals. How are the elastic

coefficient determined experimentally.

7.8 Text and reference books:

1. Elements of Solid State Physics by J.P. Srivastava (PHI)

2. Solid State Physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A. Omar (Pearson education)

4. Solid State Physics by S.O. PFillai (New Age)

5. Solid State Physics by C.Kittel (Asia Publishing house)

6. A Text Book of Solid State Physics by S.L. Kakani and C. Hemrajani (S.Chand)
7. Fundamentals of Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT =11 L ESSON: 8
L atticevibrations

Aim: To know about the theory of lattice vibrations.

Objectives of the lesson:

To know about the introductory remarks about |attice vibrations.
To know the balls and springs model of harmonic crystals.

To look into one-dimensional atomic chain under normal model.
To determine the periodic values of K through periodic boundary condition.
Extension of normal model to one-dimensional diatomic chain.
To look into the salient features of dispersion curves.

To know about the restrahlen frequency band.

To highlight the general theory of harmonic approximation.

To know about normal model of real crystals.

Quantised concept of lattice vibrations.

YV V V V V V V V V V V

Phonon dispersion by inelastic neutron scattering.

Structureof thelesson

8.1 Introduction.

8.2 Theballsand springs model of harmonic crystal.
8.3 Normal model of one-dimensional monatomic chain.
8.3.1 Periodic boundary condition

8.3.2 Salient features of dispersion curve

8.4 Norma models of one-dimensional diatomic chain.
8.4.1 Salient feature of dispersion curves

8.5 The Reststrahlen band

8.6 Genera theory of harmonic approximation

8.7 Norma modelsof real crystals

8.8 Quantization of lattice vibrations

8.9 Measurement of phonon dispersion by inelastic neutron scattering
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8.10 Summary

8.11 Keywords

8.12 Review questions
8.13 Text book reference

8.1. Introduction:

The basis of crystal structure is often described in terms of ions for the interpretation of
the properties of solids. The valence electrons are considered to have been placed in the
force field of the lattice of ions. The roles of ionic and electronic motions are crucia in
the determination of the properties of solids. While some properties depend heavily on
the electronic motion, several others are closely linked to the ionic dynamics lattice heat
capacity, therma expansion and hardness are some examples of properties that belong to
the latter class. In this lesson small vibrations of crystalline solids in terms of normal
modes (independent motions of characteristic frequency) of motion of constituent ions.
In normal modes all the ions mere with well-defined amplitude and phase. A norma
mode has the same amplitude in each cell but varies from one unit cell to the other across
the crystal like a wave with a certain wave vector. Such awaveis called lattice wave and
the vibration with which it is associated is commonly know as | attice vibration.

The analysis of lattice vibrations is faced with the major difficulty of finding a way to
treat the motion of ions that are heavy, separately from that of light electron,. Thisis
accomplished by working in the so called adiabatic approximation, which in this context
of molecules is famous as the * Born—Oppenheimer approximation’. The electron velocity
at the Fermi level V; ~10°m s where astypical ionic velocities are at the most of the

order of 10® ms™'. Thissimplifiesthe calculation of potential energy of ions.

8.2 The ballsand springs model of a harmonic crystal:

Previously we observed that the equilibrium interionic separation in a crystal is
determined by the balance between the attractive forces (large separations) and the
repulsive force (small separation). When thermal agitations displace ions from their
equilibrium points each of them experiences a net force in the form of restoring force.

This force tends to bring the ions back to their equilibrium positions and accounts for the
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elastic property of solids. In a simple mechanical, model we visuaize a crystal as a
three-dimensional periodic array of balls each of which is connected to its neighbours by
massless springs. The balls and springs are respectively the representation for theion and
the coupling bonds of the real crystal. The force on anion in the crystal is calculated by
drawing an analogy between the crystal and its mechanical model. For small contractions
and extensions of springs the Hooke' s law is applicable to the mechanical model.

Each ion inside a crystal moves in a potential well of force field of its neighboring
ions. For small displacements or small deviations from the equilibrium value of
separation of ions, the potential energy curve is parabolic since this form of potential
energy is a well-known attribute of simple harmonic motion, the ionic motion involving
small displacements may be treated as simple harmonic in nature.

Some of the rough estimates made below demonstrate that the harmonic
approximation is generally acceptable in solids. When the separation of ions changes by

dafrom the equilibrium value, the changein potentia energy of theion is written as
U = % (5a)’

where f is called force constant or the spring constant associated with the massless spring
joining the two ions viewed as the harmonic oscillator.

For sa=1A, it givesthe value of U as 1 eV, yielding f = 30 N m™. Using this value of
for a simple cubic crystal, we can readily deduce the macroscopic elastic modulus E for

extension along one edge of the crystal. Thus, we have

2
-t/ T _ o pnm2 (fora=34A)
(0a)/a a

This value of E istypically of the order of Young's modulus identified alternatively as
a stiffness constant. By ignoring the fact that an ion is coupled to several other ions, let us
calculate the frequency of vibration of an ion attached to a spring whose other end is
rigidly fixed. We find that the order of magnitude of frequency for f = 30 N m™ refers to
the IR region which indeed represents the region of vibration frequencies of solids.

Another important aspect is the propagation of long waves in solids. To these waves
such as sound waves, a crystal behaves as an elastic continuum. It enables us to estimate

the velocity vs of these acoustic waves as



M. Sc., PHYSICS 4 LATTICE VIBRATIONS

E f 1/2
VS= — = —_—
1oL

Where pisthedensity M/a® of asimple cubic crystal with M as the ionic mass.

The above relation gives vs = 10*ms™, which isa correct order of magnitude; most of
the solids have vs in the range 1-10 Km s™. This calculation, though rough, also
underlines the importance of stiffness constants in the continuum approach to wave
propagation in solids. In a commonly employed technique for measuring stiffness
constants, an ultrasonic pulse is sent through the crystal. The ultrasonic waves whose
wavelength (~um) measures several thousand times the atomic spacing treat the crystal as

a continuum.

8.3 Normal modes of a one-dimensional M onoatomic chain:

Let us consider the simplest crystal which can be a linear chain of N identical atoms
(Fig 8.1). Thisisequivalent to alinear chain of N primitive cells. With one atom in each
of them. If we wish to describe the vibrations of the chain we are confronted with the
problem of accounting approximately the motion of the ions in the middle and the motion
of two ions at the ends. The broad feature of the motion may still be obtained by
considering only the nearest neighbour interactions and ignoring the ends. The results of
such a calculation are most acceptable when the number of atomsis large. If we denote
the displacement of an ion at any moment from its site | in the static lattice by s, the
effective potential energy of a chain of interionic separation, a, in the harmonic

approximation is

U= T2H(§ =§.0)° e 61)

where only the nearest nei ghbour interactions are included.

-

V\N\NVWVQN\NV\N\N
[ T R M

Fig 8.1 Thedisplacement of ionsin alinear chain of identical
ions connected by springs.
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The restoring force on the ion situated in the static lattice at the site | can be expressed as
M8 = -f[(s —S+a) + (S —S-a)]
=-f(25-S+a—Sa) - (8.2)

The preceding equation represents the equation of motion of a single ion in the chain.
We expect from symmetry a normal mode solution in the form
s=soexplik.1l-ot)] ---------m-mmm- (8.3)
which is a wave with wavevector k varying as exp(ik .x) aong the line of the ions (the x
direction) with amplitude .

Substituting s from (8.3) in (8.2) we get
Mo’ = f[2 —exp (ika) — exp (-ika)]
or

2_ 21

o’ = f(1—coska):i4sin2(1ka]
M M 2

Which given the angular frequency of oscillation as

o (k) = 2\/I sin(1 kaj
M 2

S n(l kaj
2

if the positive root is chosen.

The o is the frequency maximum [2V(f/m)] observed at k = + w/a. It must be noted
that | does not figurein (8.4), indicating that the equation of motion of every ion gives the
same algebraic relation between o and k. This shows that the trial function sisindeed a
solution of (8.2). Relation (8.4) isthe required dispersion relation and the o versus k plot
derived from thisis known as the dispersion curve.

Another important observation is that we started with equations of N coupled
harmonic oscillators (8.2), implying that if one ion starts vibrating, it does not continue
with constant amplitude, but transfers energy to others in a complicated way. Thus the
vibrations of individual ions are not simple harmonic on account of this energy exchange.
Our solutions, on the other hand, are uncoupled oscillations called norma modes. Each
normal mode has a characteristic k-value with a definite o and, therefore, the oscillations

of ionsin different normal modes are independent of each other.
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8.3.1 The Periodic Boundary Condition:

The dispersion relation (8.4) showsthat ® =0ak=0and ® = o & k =+ n/a. This
indicates that al the norma mode frequencies lie in the range of k values from —n/a to +
n/a defining the extent of the first Brillouin zone of a linear lattice. The complete
spectrum of the normal modes is usually determined by involving the periodic boundary
condition originally given by Born and Karman for the electron gas. The condition
reguires the two ends of the crystal to be joined. It is appreciated most easily in the case
of the eéectronic conduction. The eectrical conductivity depends on the details of
electronic motion within the crystal. It implies as if an electron enters the crystal at one
end as soon as it leaves the other end. The fact is equivalent to starting that the two ends
of the crystal behave as being in contact. In the present case the ions at the ends of the
linear chain are imagined to have been joined by an additional spring which is identical
with those considered to couple the successive ions in the chain. The linear chain is thus

transformed into aring as shown in fig 8.2.

Fig 8.2: The Born — Karman periodic boundary condition for alinear
chain of N identical ions.

When we move away from a certain ion aong the ring and take N steps, each of
length a (the interatomic spacing), we are back to the sameion. Then we require that
S=S+Na - (8.5)

Where | =na, n being an integer
Na = the length of the chain L.
Using the solution (8.3) in the condition given by (8.5), we have

exp (ik.Na)=1=exp (i22)  --------------- (8.6)
or k=2—”~£: R A— (8.7)
a N L

Where nis an integer.
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So, the allowed values of k are given by

k:o,i%,izﬁ, -------------------- (89)

From (8.3) it is evident that if k changes by 2r/a and or by its multiples, the solution
remains unchanged. But such changes (2zn/a) in k denotes the reciprocal lattice vector
of the one dimensional lattice under discussion, as such a root of frequency ®
corresponding to a certain k-value repeats whenever the k-value is changed by a
reciprocal lattice vector. This result forms one of the founding principles of the theory of
solid state. The range of the first Brillouin zone is from —n/a to +r/a totaling 2n/a width.
Therefore for every k-value in the second, third or any other zone, thereisa k-valuein the
first zone such that the vibration frequency for the two k-values is common. It happens
so because the points of k-values in the set are connected by the reciprocal lattice vectors
(Fig 8.3). 02

»

> 0
PR O U SN
-k -3¢ -2 -7 0 Vs 2 3r k
a a a a a a

Fig 8.3 Brillouin zones of a one-dimensional crystal of lattice constant a. Wave
vectors ks (extending to the second zone) and ks (extending to the third zone) one
connected to wave vector k; (with in the first zone) by reciprocal lattice vectors g;
and gy, respectively. The form of the solution to the equation of motion is such asto
yield the same value of vibration frequency for ki, ko and ks. Thus all important k-
values (known as unique values) liewithin thefirst zone.

This leads to a conclusion of great significance that al unique values of k that satisfy the
solutions (8.3) lie within the first zone and we need not search for the k-values in other
zones as they yield no new roots of o.

Now, we are in a position to fix the last term in the set of the allowed k-values given by
(8.8) and rewrite the set as
kzO,i%,iZﬁ, ...... ,EE( ”j
The last term coincides with the boundary n/a of the first Brillouin zone. The negative
sign is dropped since -m/a is not independent on account of being connected to + n/a by
the shortest reciprocal lattice vector of magnitude 2rx/a. The total number of unique k-

valuesin the allowed set is N and so will be the total number of normal modes.
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8.3.2 Salient Features Of The Dispersion Curve:

The dispersion relation (8.4) and the dispersion curve displayed in fig 8.4 show only the
nearest neighbour interactions. In this spirit a monatomic linear chain may be considered
to act as alow passfilter. The features of the dispersion curve are further revealing in the
extreme limit of the wave vector k. Inthelimit of small k-values, more often referred to
as the long wavelength limit, sin (ka/2) in relation (8.4) may be replaced with ka/2 in the
first approximation. The dispersion relation would then read as

o(K) = \/gka ---------------- (8.10)

From (8.10) we infer that the frequency varies linearly with the wave vector for small

vectors. Thisbehaviour isclearly evident infig 8.4.

(D(k) A

(Drn—— ,,,,,,,

-k -mla 0

~|-----—— - - — - ===

a
Q

Kk
Fig 8.4 The dispersion curve for a one-dimensional monatomic chain .

The behaviour of elastic waves in continuum is of exactly similar nature. In the long
wavelength limit of the waves where the wavelength is much greater than the interatomic
spacing, the medium behaves as an elastic continuum since these waves pass smoothly
through the medium. The chain of atoms under this condition acts like a heavy elastic
string.

In the limit, the group velocity dw/dk and the phase velocity w/k of the elastic waves
(or sound waves) are equal and both become independent of frequency. But as k changes
to larger values, the discreteness of the medium begins to show up and at the zone

boundary (k = + n/a), the tangent to the dispersion curve is horizontal showing there by
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that the group velocity is zero here. This refers to the total dispersion and no waves
propagate through the crystal indicating that it acts as a discrete medium in this situation.
This sounds perfectly logica as a k = + n/a, the wavelength is twice the inter atomic
spacing (A = 2a) for which the crystal cannot be treated as continuous medium. The zero
value of the group velocity also shows that the motions of the neighbouring atoms are out
of phase and the elastic waves suffer Bragg reflection at this point in k-space. This
behaviour is consistent with the condition for Bragg reflection in a one-dimensional
crystal. The elastic waves are no more traveling waves defined by (8.3) and get
transformed into standing waves at the zone boundary.

8.4 Normal modes of one-dimensional Diatomic Chain:

This chain is different from the earlier one in the sense that there are two different

types of atoms whose positions alternate along its length (Fig 8.5).

! Kt & ! i
! {?ll S | | !
Cdl 1 Cdl 2 Cdl 3

Fig 8.5: Thedisplacement of ionsin three consecutive
unit cells of a one — dimensional diatomic crystal.

The chain may be viewed as a one-dimensional crystal whose primitive cell contains two
atoms of different masses M and m. The relevance of treating one-dimensional atomic
chains as against the reality of crystals being three-dimensional may be questioned. But
these calculations bring out afew broad features of the vibrations of real crystals, as seenin
the earlier section. In other words, it suffices to acknowledge that these exercises introduce
us to the basics of lattice dynamics using simple mathematics.

From fig.8.5 we see that the springs are identical. Therefore, if we consider only the
nearest neighbour interactions, a single force constant (say, f) will be involved in the
equations of motion. Supposing that the heavy ion (M) occupiesthe site 1 and the light one
(m) is at the site 2 in each primitive cell, we obtain the following equations of motion for
theseionsin that order:
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Mgln = _f (zsln - SZn - Sz,n—l) -------------- (811)
ITS2n = _f (ZSZn - Sln - Sl,n+1) -------------- (812)

where s, stands for the displacement of theion at site 1 in the primitive cell n.
We seek the following solutions to the above equations:
s,, = uexp[i(kna—wt)]
and s, =vexplilkna-wt)] --------m-m-mm-- (8.13)
Substituting these solutionsin (8.11) and (8.12), we have

(2f —Mw?)u— f[1+exp(-ika)lv="0
— f[1+exp(ika)ju+ (2f —ME*)V=0 -----mmn-mmme- (8.14)
where u and v (the amplitudes) are unknowns in the above homogeneous equations. The

equations have solutions only if the determinant of the coefficients of u and v in them
vanishes. Thatis,

(2f -Mw?) - f[1+exp(-ika)]| 0
— f[1+ exp(ika)] (2f —mw?)

or
Mmo* —2f (M + mw? + 2f?>(1-coska) =0 -------------- (8.16)

Based on our experience with the monatomic lattice it is advisable to solve (8.16) for
small k (i.e. long wavelength limit) and for the largest k, i.e. at the first zone boundary.
These describe the distinct features of the dispersion curves.

For small values of k, we have
coska=1- % (ka)® +......

Retaining the first two terms of the series and putting this value of cos ka in (8.16), we get

the following two roots:

o= zf(i+£j -------------- (8.17)
M m
and
1f
02 = -2 K282 cemmmemmeee- (8.18)

M +m
The dispersion curve obtained from (8.17) is called optical branch while the one from

(8.18) is known as acoustical branch.

For the maximum value of k, i.e. at k = +7/a, the roots are
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w? = % (optical branch) ~ --------ee-o-- (8.19)

and ° :Vf (acoustical branch) ~ -------------- (8.20)

8.4.1 Salient Features Of The Dispersion Curves:

The most prominent feature of the

dispersion curves shown in Fig. 8.6 is the | [2f(UM+1/ /m)]*
manifestation of a frequency gap between \O_M_\_/ (2f/m)*
the acoustical and optical branches. This M > m )
brings out the fact that a diatomic linear Acoustca (2Afmy*
chain acts as a band pass filter. Other T

features of the observed two branches

representing two different types of normal

modes are discussed below. —n/2a 0 k m/2a

The frequency of the optical branch is Fig 8.6 Optical and acoustical branches

nearly constant in the limit k — 0 as made of dispersion curves for a one-
dimensional diatomic crystal of lattice

out by the approximate nature of (8.17). constant a. The frequency extreme for
But it decreases slowly as k increases, two branches are given.
dropping to the value 2f/m at the zone
boundary.
The acoustic branch corresponds to the single branch, obtained for the linear chain of
monatomic atoms. The linear behaviour of » with k in the limit of smal k (or long
wavelength) is in the limit of sound waves which are longitudinal and treat the crystal as
elastic continuum.

We may, further, exploit the above treatment to derive the state of ionic motions in the
two branches, again for the same two limiting cases.

Substituting o from (8.17) in (8.14), at k = 0, we have for the optical branch,
u__m
v M
or Mu=-mv --------mmmm (8.21)

Relation (8.21) shows that the movements of the heavy and light ions are out of phase,

I.e., they move towards each other or away from each other such that their centre of mass
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remains at rest. Thisrefersto the situation inionic crystals where such a motion of positive
and negative ions may displace the centre of positive charges with the centre of negative
charges creating an electric dipole. The oscillating electric dipole on interaction with the
electromagnetic radiation may absorb the radiation. From a rough calculation we can find
that the frequency of vibration of ionic crystals (e.g. NaCl, KBr, LiF etc.) lies in the
infrared region. That iswhy ionic crystals are known to absorb infrared light. This forms
the basis for giving the name optical branch to the branch under discussion. The
relevance of treating a diatomic linear chain isthus amply justified. The results can be only
instructive as we have allowed the linear chain to produce only longitudinal waves. In real
crystals, there can be two transverse waves for each longitudinal wave. Generaly, the
frequencies of all the modes are different with the exception that the two transverse modes
along directions of high symmetry in the crysta are degenerate (Fig 8.10). The
longitudinal and transverse vibrational modes of a crystal can be clearly separated only in

certain symmetry directions of crystals. The modes for any arbitrary direction are mixed in

character.
For acoustical branch at k = 0, we obtain
u m
= e 8.22
kY (8.22)

which shows that the two ions move in phase.

The state of motions of the ions in the optical and acoustical branches in illustrated for
a transverse wave in fig 8.7. The example of a transverse wave is chosen since the
difference between the motions of ions in the two branches is more striking in appearance

for the transverse motion. Though this motion is not allowed in the linear chain, it is
present in al real crystal.

s

Optical mode
% T
Acoustical mode

Fig 8.7 lllustration of the movement of ionsin the transver se optical and
acoustical modes at equal wavelength in a diatomic linear crystal.
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The variation of the amplitude ratio u/v with the wavevector can be seen in Fig 8.8.
The state of motion at the zone end (k = + #/a, the maximum k) can be interpreted with
the help of thisfigure. The light ions are at rest in the acoustical mode while the heavy

ionsare at rest in the optical mode.  u 4
Vv

Acoustical | 1

{ 0

AR
a: Optical |~m

M
— k

\

o

Fig 8.8 Theamplituderatio u/v asafunction of the wave vector k
for the acoustical branch (upper curve) and the optical branch
(lower curve), u belongstoM and vtom (M >m).

Another significant feature of the dispersion curves is that the gap at the zone end
decreases with the decrease in the mass of heavy ion and approaches zero as M — m. But
it would surprise us to know that we have still two different branches though M = m which
should give only the acoustical branch. For the present chain, if we have monatomic basis,
we need to correct the size of the first zone which will now be double in size owing to the
interionic spacing or the lattice constant being halved a/2. This ensures that the acoustical
branch is continuous over whole region of the modified zone (-27/a to 27/a). The illusory
optical branch of M = m in the origina zone gets effectively reflected on to the regions
added to the original zone.

8.5 The Reststrahlen Band:

In the previous section to treat an extremely interesting phenomenon observed in the
infrared absorption spectra of ionic and partly ionic crystals. These crystals show very
intense reflection of infrared radiation over a small range of frequencies. The range of

frequencies over which this reflection occurs is termed ‘reststrahlen band’. ‘Reststrahlen’
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is a German word which means residua rays. This underlines the fact that these crystals
show strong reflection to aradiation of certain frequency, for which they also act as strong
absorbers. NaCl and GaAs are good examples of such crystals.

It was mentioned a little earlier how an optical mode in an ionic crystal is excited when
an electromagnetic radiation is incident on its surface. The transverse electric field of the
radiation does the trick by exerting force on cations and anions in opposite directions. The
strong absorption (resonance) takes place when the frequency of radiation matches the
frequency of a transverse optical mode of the crystal. A proper explanation to the
reststrahlen phenomenon follows from the theory of optical constants. According to this
theory, when
o o<w < ) 0 mmmmmmmmmemmm—e- (8.23)
no wave can propagate through the crystals.

Here w  is the frequency of atransverse optical mode, @ the frequency of the incident
radiation and ¢ is the dielectric constant of the crystal. In the above condition we have an
evanescent wave that decays exponentially with the increasing distance in the crystal
therefore, in the specified range of frequencies the radiation incident on the crystal from
outside suffers total external reflection. This is what we know as the reststrahlen
phenomenon. The range of frequencies over which this occurs is called the reststrahlen
band.

Now we make an estimate of w o, the frequency at which the strong absorption occurs
using equations of motion set up in earlier for a diatomic lattice. This also gives the
measure of the reststrahlen frequency which is the same as @ o. For NaCl crysta, the
| attice constant a is equal to 5.63 A. With A = 2a, we get the maximum cut-off wavevector
knm = 274 ~ 10" m™. The wavevector associated with a typical infrared radiation of
wavelength 10,000A is about 10°m™. Therefore, the vibration with these relatively small
wavevectors in the optical branch can be determined in the limit k— 0. In this limit,
relations (8.14) reduceto
-Mo?u = 2f(v—)

VRV R { (VSNY) R———— (8.24)
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Relations (8.24) essentially give the force on masses M and m, respectively. When an
electromagnetic radiation with the transverse dectric field E = Ey exp (iw t) is incident,
these force terms get corrected by ¥ eE,. Then relations (8.24) reduce to

-Ma?u = 2f(v — u) — eE

AV, | (VT I R —— (8.25)
Relations (8.25) give the two amplitudes of vibration as
_
M
U=s———  =-=--mmmmmee- 8.26
o7 - (820
e,
m
V=
0l -0’
with
w§=2f(i+%j ---------------- (8.27)

Though relations (8.26) indicate a single frequency at which the maximum absorption
should occur, experiments show that there is a smal range of frequencies of the
electromagnetic radiation showing the reststrahlen phenomenon. This small range of
frequencies forms the reststrahlen band. The frequency ayis referred to as the reststrahlen
frequency.

8.6 General Theory of Harmonic Approximation:

Let the position of alattice site in the static crystal be represented by |. Assume that the
average position of the ion at the site in question is still given by | when the ion vibrates.
Thus the symmetry of the Bravais lattice is supposed to remain unchanged in a vibrating
crystal. Further, it is assumed that the displacement or deviation of the ion from its
equilibrium position is much small in comparison with the interatomic distance. We
denote the displacement of the ion by s and its displaced position by r; (fig 8.9) having the
relation

N=l+9g =—eemeeeeeeee- (8.28)

Small values of the atomic displacements allow us to expand the total potential energy

about its equilibrium value in a Taylor’s series. This makes the exercise of obtaining the

equation of motion quite straightforward, which is otherwise extremely tedious.
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Fig8.9 Anion at sitel of the static lattice being displaced to position r, during
avibration. Thedisplacement s from sitel isvery small.

Thekinetic energy T of the crystal can be written as

T= %%Ml|'sm|2
where M, is the mass of theion at site | and n stands for the unit cell running through al the
unit cells.

And the potential energy U is defined by its Taylor’'s expansion as

ouU 1 o°U
U=U,+XS,;|—| += 2 S S| ———| +eere  mmmmmmmmmmm- 8.30
o '(8& i l 2o " Jl:@s,nj -(3S|.n.j]0 (8.30)

where index j denotes the three Cartesian X, y, z components.

Thefirst term Ug refers to the potential energy at equilibrium which is a constant. It can
be dropped from the expression as it is the changes in potentia energy from Ug that
determine the vibration spectrum of a crystal. The coefficient of sy in the linear term is
equal to the magnitude of the net force on theion at site | exerted by all the other ions when
each of the ions is at its equilibrium position. At equilibrium, this force vanishes and so
should the linear term. The terms of higher orders beyond the third term are not considered
in the harmonic approximation. Therefore, the lone non-vanishing third term in the
expansion expresses the effective potential energy of the crystal in the harmonic
approximation. That is,

1 0°U
T PSP DA R — 8.31
2w [as -as.,n.jl (8.31)

| nj

We combine (8.29) and (8.31) to write the usual Lagrange’ s equation from the equations
of motion for the Cartesian components obtained in the form

{ v }s ---------------- 5:32)

M& =3
| 88,y 0Sy

Iy
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Relation (8.32) represents the jth component (which could be the x-, y- or z-
component) of the net force on the ion at site | in the unit cell n owing to the rest of the
atomsin the crystal. This equation marks the beginning of all theories of lattice dynamics.

In view of the elastic nature of crystals, the coupling between any two atoms is
customarily represented in the material form of a spring. Each spring in a crystal is
assigned a constant, whose value is characteristic of the nature of the ions being coupled.

In classical mechanics, this constant is called by the name spring constant or force

constant.

A comparison of (8.32) with the equation of motion of a particle executing simple
harmonic motion shows that the derivatives in (8.32) serve as force constants in these
equations of motion. For convenience, we will use from now onwards a shorter notation
for these derivatives given by

[LJ:U“QT ----------------- (8.33)

05 nj 'asl'n'j-
The equation of motion (8.32) then reads as
M5 n T > U l‘n‘jISrn.j. ---------------- (8.34)
I'n'j’

I nj

Equation (8.34) is the general equation of motion for ionsin crystals. It is to be observed
that the equations of motion for the linear chains of monatomic basis (8.2) and diatomic
basis [(8.11) and (8.12)] are only the special cases of this equation with V|, having the
dimensions of force constants. They denote the generalized force constants of a system
with many degrees of freedom. The isotropy of space, the translationa invariance and the
point group symmetry require the coupling constants to satisfy certain conditions.

It must be noted that each term within the summation in (8.32) denotes a force that
depends on the relative position of unit cells n and n" and not on their absolute position. It

Is the conseguence of the trand ation invariance which effectively requires that

U I'nj _ U n'-n)j" . (8.35)

I nj loj
We have, now, come to grips with the basic workabl e technique of solving the equations

of motion in crystals.
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8.7 Normal M odes Of Real Crystals:

This exercise concerns real crystals which are three-dimensional and in genera may
have a polyatomic basis having atoms of different elements. The problem is most general
and, therefore, the task of finding its solution is bound to be tedious. But, in principle, the
solution is tractable. We give below the procedure for calculating the frequencies of
normal modes in the framework of atheory based on the harmonic approximation.

The equation of motion of an ion, whose site in the unit cell n is denoted by the position
vector |, is given by (8.34). If the crystal is composed of N unit cells with p atoms in a
unit cell, we get in total 3pN equation analogous to (8.34). It is proper to write the
solutions or the displacement sy in terms of a plane wave with respect to the cell

coordinates. Thatis,

Sin =ﬁuj(k)exr)[i(k-ln—wt] ------------ (8.36)

This plane wave is defined only at the lattice sites, unlike anormal plane wave.

Using this solution for (8.34), we have
—o’u; (k) + IZZ;U ' explik - ('~ )] Uy (K) =0 =--mmmmmmmmeee- (8.37)
=

Let uswrite (8.37) as

—a)zuj(k)+;Dlg'i'(k)u|.j.(k)=o ------------- (8.38)
Where

kY= —__y!'m K-(1'. =1 ) —-mmmmmmmeen )
DI] ( ) %: M|M|. UInJ eXp[I ( n n)] (839)

According to (8.35), the terms in the sum of the above equations depend only on the

difference (" —n) and not on the absolute values of nand n'. The quantity D;;?' (k) , which

is obtained by summing over n', isindependent of n. It isinstructive to note that it couples
amplitudes with each other without having to depend on n. This also explains why the
amplitudes in (8.13) appear without index n. A very common term in lattice dynamics
known as the dynamical matrix is formed by the quantities defined by (8.39). The set of

equations (8.38) belongs to a set of linear homogeneous set of order 3p. The set of linear

homogeneous equations has a solution only if the,

Determinant: { D| /' (k) —»’} vanishes.  --------------- (8.40)
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The above equation gives 3p different solutions, i.e., for one value of k there are 3p values
of w, each of which lies on a separate branch. A branch is characterized by its dispersion
relation. Thus, there are in total 3p branches out of which three are acoustical — one
longitudinal (LA) and two transverse (TA). The number of acoustical branchesisthreein
all crystals as it does not depend on the number of atoms. The rest (3p — 3) belong to the
optical branches; (p — 1) longitudinal (LO) and 2(p — 1) transverse (TO). Sincethereare N
(the number of unit cells) unique values of k for each branch, the total number of
vibrational modes comes to 3pN.

A complete description of the normal modes of a crystal requires the knowledge of
directions along which the longitudinal and transverse waves move for a certain value of k.
These directions are known as the directions of polarization. In an isotropic crystal, the
three solutions can be manipulated such that the longitudina mode is polarized aong the
direction of propagation (parallel to k) and the two transverse modes along directions
perpendicular to k. The picture in anisotropic crystals is not so straightforward. We can
describe the dispersion curves of these crystals in terms of longitudinal and transverse
branches, only if k lies along any n-fold axis of rotation permitted by the crystal symmetry.
In such a case the longitudinal mode is polarized along k, and transverse modes, that are
degenerate, along directions perpendicular to k.

It can now well be imagined that the picture of dispersion curves for crystals with
polyatomic basis will be fairly complex. We take arelatively ssmple example of diamond
whose primitive cell has two identical atoms. The dispersion curves plotted from the
experimental data are shown in fig 8.10 and refer to the propagation of waves along two
important directions [100] and [111]. The wavevector is expressed as a dimensionless
quantity, g = k(27/a), called the reduced wavevector as measured from the centre of the
Brillouin zone. In principle, there should be six branches in total. But we observe only
four, as the transverse modes along [100] and [111] directions are degenerate in the
acoustical and the optical branches, separately. The other important point exhibited by the
curves is that the LA and LO modes at the zone boundary are degenerate. This confirms
the zero gap between the acoustical and the optical branches at this point for the linear

chain of diatomic lattice composed of identical atoms.
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Fig 8.10 Dispersion curve for diamond crystal
8.8 Quantization of Lattice Vibrations:
The energy of the lattice waves is quantized the same way as that of the electromagnetic
waves. In a harmonic crystal, the atomic oscillators are treated anaogous to the Plank’s

radiation oscillators. The energy of a vibrationa mode of angular frequency o with

wavevector k in the branch s is expressed as (nks +%j hwg(k), where nis is an integer

denoting the excitation number or the order of the excitation state of the classical normal
mode. The fact of the normal mode being in its ny excited state is expressed in the
language of quantum theory by saying that there are nys phonons of wavevector k in branch
s. The usage of the term phonon is anaogous to the term photon for the electromagnetic
radiation. Phonon is the corpuscular representation for a quantum of vibration of energy
hogk) carried by a sound wave in the same way as photon represents a quantum of
radiation in an electromagnetic wave. The nys is aso defined as the phonon occupancy
expressed by the Plank’ s distribution function which is afunction of (k) and k.

The thermal energy of aharmonic crystal is given by

E- z[n +%]hws(k) -------------- (8.4)
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Relation (8.41) shows that the energy of an oscillator is not zero even in the lowest
vibration state (n = 0) and has a value % hog(k). It indicates that even the lowest state is
not vibrationless. This isknown as zero point motion and finds its interpretation only with

the use of quantum mechanics. The quantity% hws(K) is called the zero point energy.

8.9 M easurement of Phonon Dispersion by Inelastic Neutron Scattering:
The experiment performed to obtain the phonon dispersion curves are based on the
exchange of energy between lattice vibrations and a probe. In principle, X-rays or thermal
neutrons can be used as the probe in these experiments. The energy of thermal neutronsis
~0.025 eV, which is of the order of their average thermal energy (ksT) at room temperature.
Because of small energy, neutrons show an appreciable change in their energy on being
scattered while exchanging the energy of a vibrational quantum. This change in energy is
easily measurable on the respective energy scale. On the other hand, the energy of X-rays
is much high (~keV). The energy change for such an energetic photon isonly 1 part in 10°
which is difficult to measure on the scale of the photon energy. On account of this reason,
thermal neutrons, also known as slow neutrons, are preferred for the measurement of
phonon spectra.  The assembly of apparatus used for this purpose is caled a triple-axis
spectrometer. Its schematic diagram is shown in Fig.8.11. The experiment is generally
performed around a nuclear reactor which acts as the source of thermal neutrons. The term
sow neutrons used for these neutrons is only relative on the energy scale as the typical
order of their velocity is 10° cms™, which is large compared to the motion of material

objectsin our daily life.
Monochromating
crystal

: \ Analyzing
Calli mato?\ Colimtor crystal

Specim

Detector

Fig 8.11 Outlines of the experimental set-up for measuring phonon spectra
using a triple-axis neutron spectrometer.
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The information from the inelasticaly scattered neutrons is extracted mainly by
exploiting the consequences of the momentum and the energy conservation laws. If a
neutron of a wavevector k is scattered to a state of k' and a phonon of wavevector K is
created or destroyed in the process, the momentum conservation requires that
K-k'=tks+g  ---m-mmmmmmee- (8.42)

Where (+) and (-) signs refer respectively to the creation and destruction of a phonon of
energy hwg(k). The symbol s stands for the branch.

The reciprocal lattice vector g appears for the reason that phonons are plane waves that
are modified for a crystalline medium on the ground of its periodic character. The value of
ksin (8.42) lieswithin the first Brillouin zone.

According to the principle of energy conservation,

n’k?  h’k'"
2m, T 2m

n

Where m, is the neutron mass.

The wavevector of the scattered neutron k' is measured experimentally. For a given
incident neutron k, the wavevector of phonon ks absorbed or emitted and its frequency
ws(k) can be determined. Thisis based on finding the energy gain or loss of the scattered

neutrons as a function of the scattering direction (k — k).

8.10 Summary:

e |onic velocities in crystals are at least a thousand times smaller than the electron
velocity at the Fermi surface. Therefore, the electrons can be assumed to remain in
their ground state for an ionic configuration.

e For small displacements from the equilibrium positions, the ions in crystals may be
treated as harmonic oscillators.

e All lattice vibrations (el astic waves) can be described by wavevectors that lie within
thefirst Brillouin zone.

e A one-dimensional monatomic chain acts as a low-pass filter when only the nearest
neighbour interactions are considered.

e A one-dimensional diatomic chain acts as a band-pass filter by virtue of a frequency

gap occurring between the acoustical and optical branches.
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The reststrahlen frequency for an ionic crystal containing ions of masses M and mis

0, =2f (ﬁ + ij where f denotes the force constant.
m

For acrystal with p atomsin the primitive cell:

Number of acoustical branches = 3 (independent of p) = 1(LA) +2(TA)

Number of optical branches =3(p-1) =(p-1) ....(LO) + 2(p—-1).... (TO)

A quantized crystal vibration or the quantum unit of a crysta vibration is caled a
phonon. Its energy is given by hw, where o is the angular frequency of a crysta
vibration.

The thermal energy of a harmonic crystal is given by
1
E= kzs(nks + E] hao (k)
where nys denotes the number of phonons with frequency o and wavevector k in the
branch s; and % hwgy(k) isthe zero point energy.

When in a crysta a neutron of wavevector k is inelastically scattered to a state of
wavevector k" and a phonon of wavevector Ks is created or destroyed in the
process, the momentum conservation requires that

k-k'=xks+g

where (+) and (-) signsrefer respectively to the creation and destruction of a phonon

of energy hog(k); and g isareciprocal lattice vector.

8.11 key words:

Lattice vibrations — lonic motion — Electronic motion — Balls and springs model — Force

constant — L attice constant — Norma modes dispersion curve — Optical branch — Acoustical

branch — Restrahlen frequency.

8.12 Review questions:

1

Describe the balls and springs model of a harmonic crystal write the significance
normal modes of one dimentional monatomic chain.

What do you infer from periodic boundary condition. Sketch and illustrate
dispersion curve for a one dimensional monatiomic chain.
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3. What is explained in normal modes of one-dimensional diatomic chain and
illustrate the salient features of the dispersion curve.

4. Explain the resthlen band / frequency and what is to be inferred from general theory
of harmonic approximations. Illustrate the dispersion curve for diamond crystal.

5. Write briefly about quantization of lattice vibration and also measurement of

phonon dispersion by inelastic neutron scattering.
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UNIT =111 LESSON: 9

THERMAL PROPERTIES OF SOLIDS- |

Aim: To learn about the thermal properties of Solids.

Objectives of the lesson:

>

>
>

To know about the outstanding properties of solids namely high electrical
conductivity and thermal conductivity, metals obeying Ohms law, Wiedemann-
Frantz ratio etc.

To know about the free electron mode

To derive an expression for the density of electronic states.

To understand the effect of temperature on the parameters of free electrons gas.

Structure:

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Introduction

Free el ectron model

Free electron gas in one-dimensional box

Free electron gas in three dimensions

Density of available electronic states

Effect of temperature on the parameters of the free electron gas
Summary

Key words

Review questions

9.10 Text and Reference books
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9.1 Introduction:

The outstanding properties of metals are

(1) High electrical and thermal conductivities,

(2) Obeying Ohm’s law: Metallic conductors obey Ohm'’s law, which states that current
density () in the steady state is proportional to electric field strength (E ) i.e., | = cE
where o the electrical conductivity isindependent of j or E.

(3) Temperature dependence of conductivity: Resistivity of metals (p) above Debye
temperature is proportional to the absolute temperature i.e. pcT and at low temperatures
the resistivity of metals is proportional to the fifth power of absolute temperature
i.epocT®.

(4) Wiedemann - Frantz ratio: The ratio of thermal to the electrical conductivity k has
(o)

the same value for nearly al metals at a given temperature and (% Ej has the same
(o2

value at any temperature.

The idea that the large electrical and thermal conductivity of metallic substances
might be explained by the presence of large concentration of mobile free electrons in the
metals was first proposed by Drude in 1900. The implications of this hypothesis were
exhaustively investigated subsequently by Lorentz. Drude and Lorentz attempted an
explanation of these properties on the basis of the assumption that these free electrons are
capable of moving through the lattice there by suffering collisions with the atoms. As
such the free electrons in metals as an ideal gas of free particles, which when in thermal
equilibrium would obey Maxwell-Boltzmann statistics. One of the greatest achievements
of the theory was that it led to semi quantitative agreement with the Wiedemann-Frantz
law.

The free electron theory in its simplest form, however, led to a prediction of the
electronic component of specific heat, which was in serious disagreement with
experimental results. Another difficulty encountered in classica theory pertains to the
magnetic properties of free electrons. Each electron has a magnetic moment associated

with its spin and classically should therefore give rise to a paramagnetic susceptibility
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inversely proportiona to the temperature. Experimental results on the other hand show
that paramagnetism of metalsis nearly independent of temperature.

Further another difficulty is. Using the classical theory we cannot understand the
occurance of long electronic mean free paths. From many types of experiments it is
abundantly clear that a conduction electron in metal can move freely in a straight path
over many atomic distances undeflected by collisions with other conduction e ectrons or
by collisions with the atom cores. In avery pure specimen at low temperatures the mean
free path may be as long as 10® or 10° interatomic spacings (more than 1 cm), vastly
longer than we would expect from the known sizes of atoms. We must ask why
condensed metalic matter is so transparent to conduction electrons. The conduction

electrons act as a gas of non-interacting particles. To explain this we have to invoke

quantum concepts and classical statisticsis not valid.

There are two parts to the answer to our question.

(& A conduction electron is not deflected by ion cores arranged on a periodic lattice
because matter waves propagate freely in a periodic structure.

(b) A conduction electron is scattered only infrequently by other conduction
electrons. This property is a consequence of the Pauli’s exclusion principle.
These difficulties were resolved by Sommerfield using Fermi-Dirac  statistics
rather than classical Boltzmann statistics. The Fermi — Dirac free electron picture
serves as a very simple and conceptualy quite direct way of discussing and
visualizing transport effects in metals.

9.2 Free Electron Modd:

In the free electron model, the conduction electrons are assumed to be free, except for
a potential at the surface (fig 9.1), which has effect of confining the electrons to the
interior of the specimen. According to this model, the conduction electrons move about
inside the specimen without collisions except for an occasional reflection from the
surface much like the molecules in ideal gas. The forces between the conduction
electrons and ion cores are neglected in the free electron approximation., all calculations
proceed as if the conduction eectrons were free to move everywhere within the

specimen. The total energy in al like kinetic energy, the potential energy is neglected.
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However the free electron gas in metals

Vacc
differs from ordinary gas in some Metal %
important  respects. First the free =

E E
electron gas is charged (in ordinary lf

gases the molecules are mostly neutra).
Fig 9.1: The Sommerfeld modd. Esisthe

energy difference between an electron at

to aplasmato acertain extent. Secondly ~rest insde the metal and one at rest in
vacuum. At T =0all energy levelsup to E¢

are filled; all higher ones are empty.
islarge: N=10% electrons/m®, Work function ¢ = Es—E;.

In contrast the ordinary gas has about 10® molecules /m°. We may thus think free

Free electron gas is thus actually similar

the concentration of electrons in metals

electron gas in a metal as dense plasma. Our model for metals in short, is a box full of
electrons and nothing else. Our problem is how to treat a box of full of eectrons
guantum mechanically. First we have to apply Pauli’s exclusion principle-no two
electrons can have all the same quantum numbers, but we do not know the quantum
numbers of particlesin abox. The eectronsin box are free, the only constraint to which
they are subjected isthat they arein abox. We must find the allowed states in a box.

9.3 Free Electron Gasln A One-Dimensional Box:
Consider an electron of mass m confined to a length L by infinite barriers Fig 9.2. The

wave function v, (X) of the electron is a solution of the Schrodinger equation.

[0 0] oo
Hy=Ey --------------- (9.2) 4 4
where Hamiltonian H is equal to the sum T
of the Kinetic energy and Potential o~
energy and E is a set of allowed energies >
or eigen values of the electron in the
orbital. Since the total energy is Kinetic 0
x=0 X=L

(Potential energy is neglected). Fig 9.2: An electron of massm confined

toalength L by infinite barriers.
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2

We have H = ZP_ where P is the momentum in quantum mechanics. P the momentum
m

is represented by —in di , SO that
X

The boundary conditions are y;,(0) = 0 and y;,(L) = 0 asimposed by the infinite potential
energy barrier.

The genera solution of equation (9.2) is

Yn(X) = A+ BE™ oo (9.3)
where k* = (?j A (9.4)

and A and B are arbitrary constants
The first boundary condition y;(0) yields A = - B leaving the wave function to be

sinelike. Applying the 2™ boundary condition one singles out those solutions for which
Sin (kL) = 0 or k= ”T” withn=1,2,3... —ecceeeceeer (9.5)

and the allowed energy eigen value E, are given by

2 2
E, =§—m[”{j ---------------- (96)

and the corresponding wave functions are

N7zX

yn= Asin (Tj --------------- (9.7)

Thus only for integral values of n, there are allowed wave functions y;,(x) and the corresponding

energy values E,. The number ‘n’ is called quantum number. The plot of energy E, versusnis

giveninfig 9.3.

The energy spectrum evidently consists of discrete energy levels with their separation

2
depending on % . If Lislarge, the energy levels are thus spaced very close together.

The energy levels are spaced very closely together. For example if L = 1 cm, E;—Eqep = 3.5 x

10 eV. Itisonly when L isof atomic dimensions that the separation

between the levels become appreciable.
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Energy in units
H
5% 54

ol
I

Fig 9.3: Theenergy isaquadratic function of the quantum number
n, for afreeelectron confined to alength L in one dimension

The value of the constant A in equation 9.6 is so chosen that there is unit probability of finding

the electron somewhere on the line. Because v, (X)y, (X) is the probability that the electronsiin

the line segment dx at x, we require that

r=_2/3L

[y 0w, (ydx=1

L
or jAzsinZn—ﬂde:l
0 L

or p-2ie A:\/Z
L L

So the normalized wave functions are

Energy in units h%/2m(1/2L)?
Quantum no .n

Fig 9.4: First three energy levels and wave
functions of a free electron of mass m confined

2 n7X to a line of length L, the energy levels are
v, (X)= \/ESinT ---------------- (9.8) labeled according to the wave functions. The

wavelengths are indicated on the wave
functions. The energy E, of the levd of

The first few lower energy state wave quantum no. n isequal to (*2m)(n/2L)>

functions are represented in fig 9.4.

Now consider that we are interested in to accommodate N-electrons on thisline. This
can be done with the help of Pauli’s exclusion principle. The elementary statement of the
Pauli’s exclusion principle is that no two electrons can have al their quantum numbers
identical. That is each orbital can be occupied by at most one electron. This applies to

electrons in atoms, molecules or solids. In a solid the quantum numbers of an electron in
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a conduction electron orbital are n and ms, while n is any positive integer in eq (9.8) and

ms = 1, according to the spin orientation. Each energy level with quantum number n

can accommodate two electrons. One with spin up and other with spin down. If there are
eight electrons, then in the ground state of the system the filled orbitals are those given in
the table:

Let n; denote the top most filled energy level, where we start filling the level from
bottom (n = 1) and continue filling the higher levels with electrons until all N-electrons

are accommodated. Considering N to be even we have

2= N - (9.9
Table:
n Ms oEéE(;;ggy n Ms oEéE(;;ggy
1 0 1 4 1 1
1 l 1 4 ! 1
2 0 1 5 0 0
2 1 1 5 ! 0
3 2 1 6 2 0
3 ! 1 6 . 0

determines the value of n for the upper most filled level. The Fermi energy E; is defined
as the energy of the top-most filled level at 0°K. From equation (9.7) with n = n; we have

n?(nz)" h?(N/2Y?
g, - o[ :_(—] ----------------- (910)
2m{ L 2m\ 2L

We see that the energy of the top electron depends on the number of electrons in the
box and on the size of the box just asin an atom the ground state depends on the number
of electrons (2) and on the size of the central coulomb field strength i.e., the number of
protonsin the nucleus.

For example if N/L = 0.8 electrons/angstrom = 8 x10’ from equation (9.10) we have,

__h* N?2°_ (66x107)?
47°2m 417 32x9x107*
=9.68x107" ergs=6eV.

x 64 x 10"

=
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Consider the case of N electrons in the lowest energy state of the entire system, the total
energy Ep can be obtained by summing the individual energies E, between n = 1 and

nr =1 N; wherethe factor 2 isintroduced due to the spin degeneracy. Thus

N/2 252 (ﬂjzmz ,
E,. =2 E =—| — n
0=2)E, 2m\ L

N=212+2>+3% 4" +S? where S=N/2

:%S(ZS2 +3S+1) ;%SS forS>1

~1(N/2)®

Thus
ZhZ(ﬂjzl(st 1 h? (N/ij
EO = — —| — == — N
2m{L) 3( 2 32m\ 2L
=iNE;, ------ooee- (9.12)
Hence for one dimensiona problem, the average K.E in the ground state is one third of

Fermi energy.

The Dendity Of States:

We now find number of orbital per unit energy, often called the density of states,

equation 9.7 gives T B
e (nnj =
E = | &
2m{ L g
Differentiating we have g
ae, = () ang ]
=—| = | 2ndn T
" Zm( Lj 3 = —
Now 9" denoted the energy levels per Energy £~ E
dE, Fig 9.5 Density of electronic statesas a

function of energy, for one
dimensional line. At absolute zero, all
States, there are two quantum states and  the states are filled upto Fermi energy
E:.

unit energy. Corresponding the to spin

hence the density of states of free

electron gasis given by
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2 1/2
D(E)=2—m=2~2—T(£j LA m )y (9.12)
dE n*\z) 2n_ h|2E,

n

Thisresult plotted in fig.9.5

9.4 Free Electron GasIn Three Dimensions:
The free electron Schrodinger equation in three dimensionsis
n(oe* o* 07
- + +
Zm(ﬁx2 oy’ oz?

}//k(r) =By, (r) - (9.13)

Where Ei isthe total energy (in this case kinetic energy) of electron in K-state.

If the electron is confined to a cube of edge L, the analogue to wave function (9.8) is

8 ) g mX  (YY ()
v, (r)= /(szsm( ) jsm( 3 ]sm( ) J (9.14)

where ny, ny and n, are positive integers and }(%j is normalizing constant. This is

standing wave.
The solution of the wave equation is a consequence of a particular boundary

conditions imposed. It is better to introduce wave functions, which satisfy periodic
boundary conditions as we did for phonons. We now require the wave functions to be
periodic in X, y and zwith period L. The appropriate boundary conditions are
(%Y, 2) =y (x+L,Y,2)
v(Xy,2)=y(X,y+L,2)| -----mmmmmm (9.15)
(%Y, 2) =y (XY, z+L)

The wave functions satisfying the free particle Schrodinger equation (9.13), the
normalization condition over the volume L* and the periodic boundary (9.15) are of the
traveling plane wave form

WX, Y, 2) = Aclkn = pglkekyskd (9.16)
Provided that the components of the wave vector k (ky, ky, k;) satisfy
=0+ 23 i 9.17)

L L

and similar k, and k.. That is any component of k is of the form ZnT” where n is positive

or negative integer. The components of k are the quantum numbers of the problem; along
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with quantum number ms  for  the spin direction that is the state of electron is specified
completely when we are given the values of ky, ky, k; and ms.
On substituting (9.16) in (9.13) we have

E = ik k) = K e (9.18)

“Tom Y T 2m '
for the energy Ex of the orbital with the wave vector k. The magnitude of the wave
vector isrelated to the wave length A by

2
K=" e 9.19
A ( )

Evidential the energy spectrum consists of discrete energy levels which be usually very
close together (~10™°eV apart) and thus for most purposes may be taken as continuous;
such energy levels are said to be quasi continuous. In fact the separation between energy
levels depends on the size of the box. The above separation (=10™°eV) is for the box
having laboratory dimensions, on the other hand if the dimensions are atomic, the levels
are discrete as well aswidely spaced (~3.6 eV for box of 5 A side)

Using the normalizing condition [y(r)y(r)dz = 1. Constant A can be determined as

.[OL .[OL .[OL Ale ™" . e dxdydz =1

1/2
or A= (ij
\Y,

Hence the normalized wave function is

T ) e p— o2

Suppose there are N non-interacting electrons contained in the box at absolute zero
temperature. Using the effect of Pauli’s exclusion principle on the energy distribution of
conduction electrons — as we did in the case of one dimensional box, it can be shown that
at absolute zero al the levels below a certain level will be filled with electrons and al the
levels above it will be empty. The level which divides the filled and vacant-levels is
called the Fermi level at absolute zero and is denoted by Er ). We note that according to
guantum mechanics even at absolute zero not all the electrons are condensed into the
state of zero energy as happens in the classical theory. They rather occupy states between
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the energy values O and Esq. This feature modifies the parameters of the free electron
gasin asignificant manner.

Let us now discuss the effect of temperature. It is clear at non zero
temperatures, the distribution of filled states would not end abruptly rather some of the
states below Ez) would be empty and some above it would be filled. Enrico Fermi has
shown that the probability that a particular quantum state at energy E isfilled is given by
the so called Fermi- function.

1

f(E):exp{(E—Ef)/kBT}+1

Where E; is the Fermi-energy. Fig (9.6) shows the plot of this function for several value

of temperature including zero.
f(B)

T1<T,<Ts

D J—T=0
N

Ei(T») E(0) E

Fig 9.6: Schematic representation of the Fermi distribution function for
four different temperatures. Note the variation of the Fermi energy with
temperature. The temperature dependence of the Fermi energy depicted
here is, typical of a three-dimensional free-electron gas but the actual
variation in any particular systemswill depend critically upon the density of
statesfunctions (or level degeneracies) for that system.

From(9.21) it is clear that at absolute zero

f(E)=1 for E<E;,
=0 for E>E;q

i.e, the Fermi distribution function becomes simply the step function implying that all the
energy states below Ejq) are filled and all those above it are empty. As the temperature
increases the edges of the step are rounded off, and the distribution function varies
rapidly from nearly unity to nearly zero over an energy range of a few times kgT around
the value E = Ej). At the same time the value E; (energy at the highest filled level) itself
changes as shown in fig (9.6). At very high temperatures, the distribution function loses
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its step like character and varies much more slowly with energy. From (9.21) it is clear
that the value of f(E) at E = E; isfirst £, That is f(E;) = 3.
Hence a quantum state at the Fermi level has a probability of occupations of 4. Thisin

turn means that E; represents a level lying half way between the filled and empty states.
But in case of metals since the allowed energy levels are very closely spaced (~ 10%V)
it isusually taken as reference to the highest filled (or partially filled) energy level.

It may therefore be concluded that if the electrons are heated up from absolute zero to
a temperature T each electron would not increase its energy (log kgT) as is expected
classically, but those which are already with an energy range kg T below the Fermi level
can do it of course. This is because absorption of energy by an electron requires its
excitation into a higher energy state; for electrons lying deep into the energy there are no
empty states with in few kg T into which they can be excited but for electrons lying below
the Fermi level the empty states are available. Thus according to quantum mechanics

very small fraction, that is

KT =L for E, =0.3eV
E, 100

of electrons can absorb energy from an external heat source, Moreover, ordinarily it is

very unlikely that an electron in the distribution will be excited at room temperature, if it
lies more than 0.1eV below Fermi level because this requires that the electron should
absorb about 4 kgT (0.1 €V = 4 kgT) from external surrounding, this is not available.
These modifications in the behaviour of free electron gas have an important bearing on

the problem of the heat capacity of metals.

9.5 Density Of Available Electronic States D(E):

By D(E) we mean that total number of available electronic states (number of orbitals)
per unit energy range at E. This quantity is useful in the description of the behaviour of
the free electron gas. To find the expression for D(E) we consider the linear momentum
which in quantum mechanicsis represented by operator
P=—-invV

Whence for the energy state (orbital) 9.16
Py, (r)=-iaVy, (r) =iky, (r) ----------m--m-- (9.22)
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So that the plane wave v in an eigen function of the linear momentum with eigen

value k. The particle velocity is given by

In the ground state of a system of N free electrons the occupied orbitals may be
represented as points inside a sphere in K-space. The energy at the surface of the sphere

is the Fermi energy, the wave vectors at the Fermi surface have a magnitude k; in the fig

(9.7) such that N
E hk (9.24)
O om '
From equation (9.17) and fig (9.7) we
see that there is one allowed vector ( one
distinct triplet of quantum numbers k,
27 \° /

ky, kz) for the volume element (Tj of Ky ky

_ _ Fig 9.7: In the ground state of a
k space. Thus in the sphere is called system of N electrons the occupied

A orbitals of the system fill a sphere of

Fermi sphere of volume —k? the total n?k?

3 radius k, where E, :2— is the
number of orbitalsis energy of an electron having wave
2(47rkf/3) v o, vector ks on the surface of a sphere

= Ki =N ---mommeme- (9.25)

(2r/L)® 32
where the factor 2 on the left comes from the two alowed values of m, the spin quantum
number of each alowed value of k. We have put the number of orbitals equa to N, the

number of electrons from (9.25) we have

37[2N 1/3
K, =( j - (9.26)

\Y
This depends only on the particle concentration and not on the mass using (9.24) we have

n? (32N
Ef(O):%( v ] """""" (9.27)
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This relates the Fermi energy to the electron concentration %and mass m. The

electron velocity v at Fermi surfaceis

, _hkf _E 372N 13
" m ml Vv

The density of states function D(E) defined from the fact that all the energy states

below Ey() are occupied and thisis equal to the total number of electronsi.e
RS L T VE— (9.29)

Substituting the value of N from (9.27) we have

3/2
Er o) Vv 2mE,
Y

Expressing the integrals as an indefinite integral we have

[ D(EyaE - Y, (ZmEj

32\ n?
3/2
or D(E)=—L1[2M) EY2_CEY? e (9.30)
2%\ i
3/2
where C:L2 [Z_rr;j
22 \n

The result may be obtained and expressed most simply by writing (9.27) as

logN = glog E: o + constant

dN _ 3
N 2 E;,
and we have

or

dN 3 N
dE;o 2E;q
With in afactor of the order of unity, the number of orbitals per unit energy range at the

D(Ef(O)) =

Fermi-energy is just the total number of conduction electrons divided by the Fermi
energy.
These results apply to free electrons with energy (E) proportional to k%. We can obtain

aresult for ageneral relation E(k) by direct analogy as
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dsc

D(E) (grad Fk)

P —

(2r)°

Where the factor 2 arises from the
two spin orientations. V is the volume of
the specimen and ds is the element of
area in k space of the surface of constant
energy E.

It is seen from expression (9.30) that
D(E) is a parabolic function of energy.

Thisisalowed infig (9.8).

D(E)

Fig 9.8: The curve CE*represents D(E) in
accordance with (9.30). The energy
distribution is obtained by multiplying
D(E) with F(E).

Also it increases with increase in the crystal volume; thisis in order to accommodate the total

number of electrons present, which also increases with the size of the crystal.

9.6. Effect of Temperature on the parameters of the free Electron Gas:

Hitherto we have assumed that the electron system is at 0°K and in accordance with
the Pauli’s principle. We fill the levels until we have used up all electrons at the Fermi
level of energy Eqo. Now the kinetic energy of the electron gas increases as the
temperature is increased and some energy levels are occupied which were vacant at
0°Kand some levels are vacant which were preciously occupied at 0°K.

As an example of Fermi function at T > 0 isgivenin fig. (9.6), For energies below E;
such that E; —E > kgT (degenerate Fermi gas) the value of f(E) is till practically unity i.e.
energy distribution in that region isthe sameasthat for T=0. Itisonly in the vicinity
of Es minus a few kgT the f(E) begins to drop below the vaule at T = 0. For energies
above E; such that E-E¢>> kgT one may neglect the term unity in the denominator of
distribution function and obtain

f(E)=e "5t
the Fermi distribution becomesidentical with Boltzmann distribution.

Hereit is of the prime importance to take into account the effect of temperature on the
Fermi energy and average kinetic energy. In order to do this we shall have to evaluate the
integral

| = j:’ f (E) GZ(EE) dE
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where f(E) is the Fermi function and #(E) is a function of energy(E) which has the

property that

Integrating (9.33) by parts, we have
= [FEpE); - 0 T e

of (E
j $(E)——2 ( = (9.35)
Since the product f(E) #(E) vanishes at both the limits. Expanding ¢(E) as a Taylor's

series about the point E = E; we have

¢ i

#(E)=¢(E;)-(E-E )(GEJE . +a2(8E2JE-Ef + (9.36)
Where by (9.35) can be expressed as

| —ao¢(Ef)+ai(anE_Ef +a2(ﬁEZ]E_Ef + (9.37)

where B j (E—E,)" af(E) S (9.39)
But

(E-E¢)/kgT

oAE) ___e CHNSRE S S (T (9.39)

OE {l+ a(E-ED/keT }2 ' keT  kgT

The plot of afa(;) versusEisgiveninfig 9.9.

Fig 9.9: The function f(E), 1-f(E) and fz . (1 — fg) for a Fermi system,
plotted as a function of energy,, The vertical scale factor for the fg .(1- fg)
curveisnot the sameasfor the other curves.
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Now if kgT << E;, afa(:) is negligible for negative values of E and the limits of integral
(9.38) may be extended to + oo to - «. If thisisdone then, we have

_ I*:afa(:) dE=—[f(E)]” =1 -—--mrmmmm- (9.40)

a=-[ (E- E)— dE=0 ------mmeemm- (9.41)

The integral vanishes because

of (E)
E

is an even function of (E-E;) and integrand

from - o to + co must yield zero

2= 3[(E-E )df(E)

E—Ef

Ko T

1, - (ks T) [ xe
wa+e)
Substltutl ng these valuesin (9.37), we have

and putting  x= , We have

7T2 2
K= T (kg T)? e (9.42)

| :ff(E)—a(’ngE) dE =¢(Ef)+%(kBT)2{aa¢E(2E)}E A

This formulais convenient for working out approximate values of Fermi integrals .It
is restricted by the condition (9.34) and by the condition that kgT<<E;. The room
temperature quantities the latter condition. Suppose now that we choose

$(E) = .[OED(E)dE

whence

%E) _ pgyand? ¢(E) _D(E)
E oE
with D(E) as given by (9.30) for the free electrons system, we have from (9.43)

N :j: f (E)D(E)dE

_[E 7 a2 PEL
= [ D(E)JE+ 5 (kaT) { = }E_Ef (9.44)

But from (9.29), we have

J'Ef(o) D
(E)dE = N
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Substituting the values N we have in (9.44) we have

jOE”"’ D(E)dE = jOE* D(E)dE +”—;(kBT)2{—5D(E)}

OE
or o- IEE;(O, D(E)dE + ”—62 (kBT)Z{—ag(EE)}E_E
2 , [6D(E

=D(E,){E, - Ef(o)}+%(kBT) { a(E )}EEf - (9.45)

In the above equation we have assumed that D(E) does not vary much in the interval from
Eqo to Er which for keT<<E; will be only a small fraction of E¢p. Since D(E) is of the

from CE¥? (9.30) with C, a constant, we have

{8D(E)} _lCE,j_/z _1 CE:}JZ 1 D(Ef)
_ =3 ; =
E=E;

oE 2"E, 7 E,

and equation (9.45) can be written as

n? D(E;)
0=D(E,){E, - Ef(o)}+E(kBT)2 3
% (k,T)?
or Ef =t _E BEf """"""""" (9-46)

For kg T <<E;, the second term will be a small correction to be subtracted from relative by

large quantity

2 2
Ef(o),{eg., forE, o, :@v,%%:m—“ev}
f

and the difference between E; and Ejq will be small compared to Efg. Under these
circumstances not much error will be made if E; in the connection term (9.46) is replaced

with Egq), giving finally

5 2
Ef = Ef(o){l%(;BT J ] """"""""" (9-47)
f(0)

Thus the Fermi energy is not constant but decreases slowly as the temperature rises,

the slowness of the variations following immediately from the occurrence of the factor
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2

2

%(;LT} which isvery small. Theresult (9.47) is quite satisfactory but while using
f(0)

it is applicable only at temperature such that kgT<<E;, which incidentally includes the

whole range of temperature for which the metals are solids (500° to 3000°c).

9.7 Summary:

1. When atoms are packed together to form a metal, valance electrons detach from their
own atoms and more through out the crystal without any collision and one treated like
molecules of an ideal gas. Thisis called fee electron gas.

2. The energy spectrum of one dimension free electron gas is discrete with the energy

2

level separation depending on % . For laboratory dimensions the levels are very closely
spaced.

3. The energy spectrum of three dimensional free electron gas is also discrete and at
absolute zero temperature al levels below a certain level will befilled and all the above it
will be empty. The levels dividing filled and vacant levelsis called the Fermi level (Ex()).
4. Fermi energy is determined by the concentration of electrons. Its value is
ﬁ 37°N
2m

213 3/2
j and the density of states is given by 2\;2 (i—rznj EY2 =CEY2. This, at

absolute zero, can be expressed as D(E; ) =3 N/E; -

9.8. Keywords:
Thermal conductivity — Electrical conductivity — Wiedemannn—frantz ratio — Fee electron

gas— Density of states— Fermi level — Fermi sphere.

9.9.Review Questions:

1. Describe the free el ectron mode by explaining wave function and eigen function.

2. Explain in detail the free electron model in three dimensions, explain the Fermi
function and also sketch Fermi distribution function for different temperatures.

3. How do you understand the density of electronic states and also effect of temperature

on the parameters of free electron gas.
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4. Explain Sommerfield’ s treatment of free electron model and work out expressions for
" Fermi Energy ‘ and “density of states.’
Using the free electron model calcul ate the number of orbitals between 1.0 *10® cm™
and 1.2 10%cm1 for the magnitudes of wave vector for a cubic sample of dimensions
Imm* Imm* 1mm.

5. Discuss the successes and failures of free electron theory of metals.

9.10 Text and Reference Books:

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)

2. Solid State physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. PFillai (New Age)

5. Solid State Physics by C. Kittel (Asia Publishing House)

6. Solid State Physics by S.L. Kakani and C.Hemrgjani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)
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UNIT =111 LESSON: 10

THERMAL PROPERTIES OF SOLIDS -1l

Aim: To know about thermal properties of solids

Objectives of the lesson:
» To know about thermal capacity and its dependence on temperature
» Todiscussthe classical and quantum theories of heat capacity
» To discuss about the Einstein model and its deficiencies.
» To know about Debye model the criticism on Debye model

STRUCTURE OF LESSON:

10.1 Thermal capacity of free electron system
10.2 Heat capacity: Classical theory

10.3 The Einstein model

10.4 Debye model

10.5 Summary

10.6 Keywords

10.7 Review guestions

10.8 Text and Reference books

10.1 Thermal capacity of the free-electron System:

The classic electron theory proposed by Drude-Lorentz, in which the free electrons are

assumed to obey Maxwell-Boltznamm satistics leads to the conclusion that (assuming one free

electron per atom) the heat capacity of free electrons should be 2 Nkg .The total hest capacity

would be then the sum of the lattice contribution given by Debye theory and electron

contribution 2 Nks. At temperature large compared to Debye temperature, the total specific heat

of the metal can be expressed as
C,=C, (lattice)+ C, (electronic)
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=3Nkg+3INkg =% Nkg = -eoeoememoemeoes (10.1)

Dulong and Petit observed that the specific heat above the characteristic temperature is the same
for all metals and is equal to 3NKkg, as predicted by Debye theory for the lattice contribution
alone. Since the large specific heat predicted by (10.1) is not observed in metals, it appears that
the hesat capacity of free electron is much smaller than the value predicted by Drude-Lorentz—

Boltzmann model. This was one of the major shortcomings of the original Drude —Lorentz model

With the advent of the Quantum mechanics it became apparent that this shortcoming is due to
incorrect assessment of electrons that absorb thermal energy. When Fermi—Dirac statistics is
used to describe the free electron energy distribution, the calculated heat capacity is much

smaller than the 2 Nkg and in fact is negligible compared to the lattice contribution at moderate

and high temperatures. The Fermi free-electron model is thus much better accord with the
experimental observations, than the original Drude —Lorentz theory .The explanation of the
electronic specific heat of metallic substances was one of the origina triumphs of quantum
statistics.

The reason for much smaller heat capacity of the Fermi-Dirac free electron system isthat only
electrons with in a few kgT of the surface of the Fermi sphere can recelve energy from an
external heat source. Ordinarily a particle of externa heat bath at temperature T  has an energy
of only few times kgT to give an electron of the Fermi free electron system. Electrons deep
inside the Fermi sphere are incapable of interacting with such external exciting bodies because
there are no occupied states with in afew times kgT in energy into which they can be excited. As
such these electrons do not contribute towards specific heat. Only electrons near the Fermi
surface where there are unoccupied states available can participate in interactions with an
external heat source and contribute towards the specific heat. The quantum mechanics therefore

modifies the thermal behavior of the free electronsin asimple and satisfying manner.

Contribution of conduction electronsto specific heat of solids:
In order to make an accurate calculation of heat capacity, it is necessary to find the average

energy for the Fermi free electron gas. The average energy U is given by

U= j:’ A BB — (10.2)
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In order to solve the integral, we choose
E
¢(E) = jo E D(E)dE

Where L(E): E D(E)
oE

0°¢(E) _ @
and £7 aE{ED(E)}

Substituting in (10.2), we have
U :I:E D(E) f(E) dE = r f (E)L(E)dE

and U=["EDE)dE= (k T) [—E E D(E)} -------------- (10.3)

E=E,

Inlesson VIl we derived an expression for the density of states as

D(E) = CE*  (or) E D(E) = CE¥?
) 0 312 3
and from this E {ED(E)dE|. , = ECE =5 D] ( =) JES— (10.4)

Substituting in (10.3), we have

U= j”‘”ED(E)dE j ED(E) dE + —(kT) D(E)

Ef (o)

=U, +[E; - Ef(O)]Ef(O) D(Ef(o)) +7(kBT)2 D(Ef(o)) """""""" (10.5)

Here Uy is the absolute zero value of the interna energy as represented by the integral of E D(E)
from zero to Ejo) and the integral of this quantity over the small range Ejo) to Er has been
approximated by the same procedure, which was used in connection with equation (9.45) of
lesson nine. In the last term of eqn.10.5, D(E) is evaluated at Ef() rather than at Eq; which
introduce asmall error . Substituting the value given by egn.9.47 for

Ef - E¢(g into (10.5), we have

U =U0——(k T) D(Ef(o))+ (k T) D(Ef(O))

2
=Uq + 7 (KT)"D(E; )  eemmmomeeeeeeee (106)

Equation 9.31 gives

3 N 3N
DEw) =5 E =5k
£(0) BlF
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where Tr is Fermi temperature given by Efq =ksTr and Tr =30,000°K, a typical value for
simple metals (alkali and noble) calculated from equation (9.27). Substituting value of D(Eg())
in (10.6), we have

2 2 2
U=U,+% (1) SN _ 0+”—NkBT
6 2k,T, 4 T

The heat capacity is obtained in the usual way as

.............. (10.7)

_oU  m? NkgT
VAT 2 T
The electronic component of specific heat as calculated using Fermi statistics thus amounts to

only small fraction of Drude-Lorentz value 2 Nk and except at very low temperatures is small

compared to the lattice contribution. At temperature small compared to the Debye temperature,
the lattice contribution becomes quite small approaching zero like T as T=0. In this range the
electronic contribution is often a significant factor and in certain temperature may even be the
dominant effect.

Comparison between theory and experiment:

At temperatures much below the Debye temperatures and very much below Fermi
temperature, the heat capacities of metals may be written as the sum of electronic and lattice
contributions:

(OVERTA Y. I ——— (10.9)

Where y and A are constants characteristic of the material and are given by (10.8) ?. The
electronic termislinear in T and is dominant at sufficiently low temperature. The measurements
made in this limit determines primarily the electronic contributions and the direct comparison of
the above theory with experiment is possible.

Kok and Keesom determined the value of y for few metals as a test of the above theory. By
applying these considerations, they, in fact represented the experimenta result by plotting a
curve C,/T versus T2 and from the slope of the straight line graph thus obtained, determined
value of y. Such a plot for Potassium is shown in fig 10.1 and corresponding value of y is
obtained. The observed values of the co-efficient y are of the expected magnitude, but often do
not agree very closely with the value calculated for free electrons of the mass m . By the use of
relation (10.8).
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_ °NK;’Z
T
for amole of material, where N is Avagadro’s number Z is the valancy of the element.

................. (10.10)

w
o

Potassium C/T =2.08 +2.57 T2

C,/T in mj/mole deg.
N
a1
[TTTTTTI

I I
0.1 0.2 0.3
T?in °K)?
Fig 10.1: Experimental heat capacity values for Potassium, plotted C,/T versus T%. The
solid points wer e deter mined with an adiabatic demagnetization of crystal

N
o)

This is the difficulty which one encounters a so for other metals and is a consequence of the over
simplifying assumptions made in the free electron model .The departure involves three separate
effects:

(i) Theinteraction of the conduction e ectron with periodic potential of therigid crystal  lattice.
(if) The interaction of the conduction electron with phonons .An electron tends to polarize or
distort lattice in its neighborhood so that, the moving electron tries to drag nearby ions along,
thereby increasing effective mass of the electron .In ionic crystal, the effect has a name — the
polarization effect.

(iii) The interaction of conduction electrons with themselves. A moving electron  causes an
inertial reaction in the surrounding electron gas, there by increasing the effective mass of the
electron.

The effect of electron —electron interaction are usually described with in the framework of what

is called London theory of Fermi liquid.

10.2 Heat capacity: Classical Theory:
The classical theory is based on the following assumptions
(1) Solids consist of large number of atomic particles executing simple harmonic motion
about their equilibrium position. They are called atomic oscillatros.
(2) The atomic oscillators vibrate with the same frequency, but, their energies are different,

because, they vibrate with different amplitudes
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(3) Theinternal energy islargely dueto vibrational energy of all atomic oscillators.

(4) Thereis no restriction on the energy values of the atomic oscillator and it can take up
continuum of energy values right from 0 to « though, the probability of occupation of
each level isdifferent

(5) Thetotal energy of asolid at a given temperature is N times the average energy (€ ) of
the oscillator.

For asingle three-dimensional isotropic harmonic oscillator the total energy is
= —+V(r) - (10.12)
m

with V(r) = imeg (C+y*+7) = Imag rP=f (P, q)------------ (10.12)

where m is the mass and wp the natura frequency of the oscillator. Assuming Maxwell-

Boltzmann distribution law for energy, we have

f(e)= Ae/%" = Ae P’/2mkeT qmmogri2keT (10.13)

Where A is constant. The average energy is then given by
_JEf(E)dpdgq (10.14)
[(E) dpdq

If we choose spherical coordinate(r, 6, ¢) in co-ordinate space, and (p, 6, @) in momentum

mj

space, we have

2

p 2.2 | —PPromkeT | -mP02?2kgT 2 - 2 .
= LL(Zer%mCOOT Je mele -p“sin 0 ,dp dOpde r°sin6 - dO dr de
E=

LI g P IAMKT | o2k 5 26ing 2dp d0,do, - r’sind - d6 - dr dg
----------------- (10.15)

Since the integrand has no dependence on 6, ¢, 6, and ¢, the integration over these variables

give simply 4x both in numerator and denominator leaving

4
oopi e,pZ/zkaT dp ) J-oo r 2e—mwgr2/2kBT .dr

J': e—PZ | 2mkgT dp . J‘: r Zefmmng/ZkBT dr

*q 2, 4 —mogr?/ 2k T © 2 —P?/2mkgT
_[Ozma)ore o Bdrjope e dp

0 22 0 _p2
J‘O r 2@ medr /2kBTer‘O pze P /2kapo

+
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4 —P?/2mkgT 4 —moZr? | 2ksT
_1j0pe = dp Lre"’0 s dr

B 2m J‘“’ p2e7P2/2kaT dp J’ rze—mwng/ZkBT dr
0 0

+ime? =E +E, - (10.16)

It is apparent that the first term above represents average kinetic energy and the second, the

average potential energy. Evauating integrals with the help of Maxwell-Boltzmann integrals,

we have

A R (0 [ (10.17)

For an assembly of N independent oscillators, the total internal energy is

U=NE=3NKkg T --------mmmmmmmom- (10.18)
and the heat capacity C, is by definition

a_Uj :3NkB =3R - (1019)

CVZ(@T

The heat capacity is found to be a constant, independent of temperature. Thisis Dulong and

Pettit law. Thisresult is certainly in agreement with experimental values at high temperature but

the actual value of C, decreases as T decreases, and in fact, vanishes entirely as T—> 0°K. This

discrepancy between the theory and experiment was one of the outstanding paradoxes in physics

until 1905, when it was resolved by Einstein involving quantum mechanics.

10.3 The Einstein modd!:
The physical model employed by Einstein was simplified but his results definitely indicate that

guantum theory contained the answer to the difficulty encountered in the classical theory. The

salient features of Einstein’s model are:

1.
2.
3.

All the atoms vibrate independently of each other
The solid containing N atoms is considered to be equivalent to 3N harmonic oscillators.
All the atomic oscillators have the same frequency (v) because of their assumed identical
surroundings.
The energy spectrum of oscillators is not continuous but discrete. The possible energy
levels of a harmonic oscillator are given by

en=(N+I)hv  —-mmommmeeee (10.20)

Any number of oscillators may be in the same quantum state of the system.
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6. Since these atomic oscillators form an assembly of systems which are distinguishable or
identifiable by virtue of their location at separate and discrete lattice sites, hence the
oscillators are regarded as having Maxwell-Boltzmann distribution of energies.

Equation (10.20) refers to an isolated oscillator but the atomic oscillations in solid are not

isolated. They are continuously exchanging energy with the ambient thermal bath surrounding
the solid .The energy of the oscillators is therefore continually changing but its average value at

thermal equilibrium is given by

z _ - —(n+d)hv/keT - 1
Y e, e Y (n+hhve ™™ hy 3 (n+ 1)
=0 n=0

€= =0 : = — e (10.21)
_ —(n+3)hv/kgT (n+3)x
Z e en/kgT Z e > Z e
n=0 n=0 n=0
hv
where X= - =emeememeeeeeeee- (10.22)
ke T
Equation (10.21) can be written as
1 AX/2 3 3%/ 2 5 ~A5X/2
=—hv ;€ " +5€e +5€ F o
- ex/2 4 esx/z 4 esx/z 4

3x/2 5x/2 ]

= hvilog[ex’2 +e¥2 ey
dx

x/2

= hvdilog[e (1+e*+e”+e¥ +... )]
X

= hv% [3 x—log(1l—e")]

=hv{%+ e :|=hV|:%+_;:|
(1-¢) (e -1

1
- V{%"' (e _1)} T (10.23)
The internal energy is obtained by multiplying the average energy per oscillator by the

number of oscillators (3N). Hence

_  3Nhv 3Nhv
U=3Ne=""m s nm o mommes (10.24)
2 hv/ keT
and C, =(ﬂj NS L [ — (10.25)
aT ), koT ) (e™™ -1)
putting hv=6cks  ---------mm-mmm- (10.26)

Here Gz iscaled “Einstein’ s temperature”. Substituting (10.26) in (10.25), we have



ACHARYA NAGARJUNA UNIVERSITY 9 CENTER FOR DISTANCE EDUCATION

0, 2 gfe!T
Cv = BNKB(?j (egE/T _1)2 TToTTTmTTTTTTTTTT (1027)

If we plot C, verses T using Equation (10.27), we obtain a curve of genera shape as in Fig

(20.2), which indicates that the theory is now in agreement with experiment at least qualitatively;

over the entire temperature range.

Notein particular that C,~ 0 as T — 0°K 6

¥ £l
a new and important feature, which was = i

S 4
lacking in the classical theory. The I
temperature O is an adjustable g i_
parameter chosen to produce the best fit | |

100 200 O«
to the measured values over the whole Temperature —>
i . Fig 10.2: Specific heat of copper versus

temperature range. Fig (10.2) illustrates temperature. The dots represent

the procedure for copper where 6 is experimental values and the curve is given
by the Einstein’s expression.
found to be 240 K.

We can calculate Einstein’s frequency we = 2nvg, once we have determined the temperature

Oz. Thusfor 6z = 240K, the we = KeOe

= 2.5x10"*sec™ which isin the infrared region.
Let us now examine the behaviour of C, as given by (10.27) in the extreme temperature

limits. If kT >> hv(T >6.), i.e, high temperature limit, we can write

hvikeT _ 9, hv
KgT

e

_ 3Nhv
KgT

u +3NK, T

and C, = (Qj = 3Nk, = 3R
oT

o0

which is Dulog and Petit law. Thus the model is satisfactory high at the high temperature
[imit because the quantum aspects become irrel evant.

At low temperatures T << 6. and

hv/ kgT

e >>1

2
and Cv=3Nkg (QT—EJ €T e (10.28)
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The specific heat approaches zero exponentially as the temperature approaches zero.

Physically, the reason that specific heat becomes small at low temperatures can be understood
by assuming that the crystal is placed in contact with externa heat bath consisting of an ideal
mono-atomic gas at some given temperature; and allowed to absorb energy of the ideal gas. The

average energy of gas atoms is 2 kgT and if the temperature of the system is high enough so that

kgT is of the order of, or greater than, the energy hv required to excite one of the vibrating atoms
of the crystal to a higher energy state, then such excitations will occur frequently when the gas
atoms from the heat bath collide with the crystal. These collisions will then be elastic in
mechanical sense and energy initially belonging to the gas atoms will readily transferred to the
crystal lattice as vibrationa energy.

At low temperatures the mean thermal energy kgT is very much less than the quantum of
energy hv and is insufficient to excite the thermal vibrations of oscillators-most of them are in
the state of zero point energy or frozen energy state and execute zero point oscillations and not
the thermal oscillations. Under these circumstances an occasiona gas atom having much higher
energy than average will be capable of effecting such an excitation and transferring heat to the
crystal lattice resulting in excitation of a small fraction of oscillators. Hence the mean thermal
energy of the oscillator will be much less than kgT. Thus at low temperatures the specific heat of
guantum oscillator will be less than the specific heat of the oscillator.

In most respects Einstein's model has been a remarkable success; its results are in good

agreement with experiment over most of the temperature range. However its drawbacks are;

(2) It explains the specific heat curves up to a certain point (upto 0.26g) but fails completely
at extremely low temperatures (below 0.26;) where T° law holds true.

(2) v and 6 are obtained empiricaly and can not be verified from any other independent
physical data.

(3) Einstein himself recognized that the assumption of the monochromatic vibrations did not
correspond to actual facts. The vibrations of a particular atom must be very complex
indeed because it is under the field of force of thousands of other vibrating atoms.

Nevertheless Einstein’s model was a great step forward in the right direction.
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10.4. DEBYE MODEL: ®|  Einsten Approximation
The main difference between Einstein’s !

model and Debye model is, that, Debye OpticdDgé%ch

considers the vibrationad modes of a Approximatio

crystal as awhole (o=vK) the dispersion Acoustic Branch

relation for a homogeneous solid where

as Einstein starting point was to consider

. . . . K
the vibration of a single atom assuming Fig 10.3. Comparision of Einsteins
that the atomic vibrations to be and Debye approximation for
) dispersion relation of lattice waves,
independent of each other. referred to alinear diatomic lattice.

The Debye mode is based on the following assumptions:
1) A solid is treated as an isotropic elastic continuum, so that the the longitudinal and transverse
wave velocities are independent of propagation direction relative to the crystal axes.
2) The Debye approximation considers the thermal energy in acoustical mode where as Einstein
approximation considers the thermal energy in optical mode fig (10.3).
3) The atoms of the solid have 3N frequencies ranging from 0 to a maximum om. The restriction
to the maximum frequency is a consequence of the fact that the waves of the half wave length
shorter than interatomic distances (4/2 < a) can not be propagated through the crystal.
4) With each frequency Debye associated a distribution function D(w) such that D(w) dw
represents the number of modes of vibrations lying between the frequency interval o and o +
do.
5) These modes of vibration are distributed in energy according to the Maxwell-Boltzmann
distribution law.
6) Since any vibrational motion of the system can be thought as a superposition of independent
normal-mode vibrations, those normal modes are regarded as independent harmonic oscillators

whose alowed energy levels are given by ,= (n +1V) hv and whose average energy e (o) is

. 1
given by h\/|:% + m} .

7) The contribution to the internal vibrational energy of the crystal from these modes of vibration

isgiven by



M. Sc., PHYSICS 12 THERMAL PROPERTIESOF.....(11)

dU =€ (w) D(w)dew ---------------- (10.29)
Thetotal energy of the crystal is now obtained by integrating (10.29). Thus

U= J':"‘E(a)) D(w)de  ------mmmmmmmmev (10.30)
where from, the heat capacity can be obtained using
c_ 49 _ T(Ej _ (5_Uj ----------------- (10.31)

dT oT oT

The procedure was first given by Born and von Karman and according to it the problem of
calculating heat capacity is essentially of calculating the quantity D(w). We therefore proceed to
calculate this quantity.

Density of Modesin three Dimensions:

Let us consider acrystal with dimensions (Lx, Ly, Lz). The Boundary conditions are
S(Lx,y,zt)=50,vy, zt)

S(x, Ly, z, t) =§(x, 0, z, t) p ------------- (10.32(a))

S(X,y, Lz, t) =9(X,y, 0, t)

The equations of motion for the mechanical vibrational amplitude S(x, y, z, t) then lead to

vibrational solution of the form
S(x,y,z,t) = A0 = Ag'{xkyyrka oy

where k?=kj+k?+k?
using the boundary conditions we have

2z n
g =N - 2z n, - (10.32b)
L L L

X y z

k

where ny, ny, n, are integers (positive or negative). A set of allowed values of k, Ky, Kk
corresponds to a single normal mode of vibration satisfying the periodic boundary conditions.
The various allowed normal modes can thus be represented as points in an orthogonal k-space.

2

Therefore there is one alowed value of k per volume in k-space; or alowed values of k

Xy -z
per unit volume of k-space, for each polarization are
LLL V

x—yz

8r? 877_2

Here Ly, Ly, L, =V the volume of specimen.
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The constant k value surface
87°n.n,n
K2 =k2+k2 k2= nre
in k-space are spheres and hence one may calculate D(k)dk the allowed number of normal
modes in an interval dk about the wave number k by evaluating the volume of k-space between
the spherical surface of radius k and k+dk. The required volume is 4rk?dk. Hence the number

of allowed modes are

2
D(k)dk = 4nk?dk 8\/—2 LS
7

21’

For each allowed value of k (allowed point in k-space) there are three independent normal

modes, one corresponding to longitudina vaibration and two others corresponding to two
mutually orthogonal transverse vibrations. To take them into account the right-hand side of the
above eguation should be increased by afactor of 3 giving

3vk?

2
T

D(k)dk = dk

In order to find D(®w) knowing the relation for D(k) requires the knowledge of dispersion
relation. Unfortunately such a relation is not known in any convenient form. Further, the
mathematical form of equation (10.30) is such that if the actual variation is used even some how
or other, the problem of its integration stands up. Debye simplified the problem by assuming the
continuum approximation in which phase velocity (vp) is taken to be constant which he assumed

to be equal to the velocity of long wave-length elastic vibrations propagating through the crysta

i.e
o(K) = vok
Substituting this in the above equation we have
2
O et P — (10.32¢)
2V

0

Debye formula for specific heat:

Substituting 10.23 and 10.32c in 10.30 we obtain
om| 1 ho Vo?

U= jo [Eha) t gholkaT _J 21

3V en| 1, w?
- 27[2VS’ Io [Ew + gholkeT _J deo

do
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4 2
Vo, | 3V "2 do - (10.32d)

= +
1672V 2rvido gl 1

The first term (10.32d) is zero point contribution to the internal energy which, however, is

independent of temperature and contributes nothing to the specific heat. Let us now put

ho
X =

kT
2 1/3
and x = /Om_ Mo ONTT )\ (10.33)
kT KTl V
2 1/3
and 0, = hli"m =%(6':'/” j --------------- (10.34)
B B

The parameter 6 usudly refers to as the Debye temperature, is seen to have dimensions of
temperature and plays the role of characteristic temperature in much the same way as does the
Einstein’'s temperature 6t in Einstein theory. It is of course independent of temperature except
for dight temperature variation introduced by the variation of v and v with temperature.
Substituting (10.34) (10.32d) aong with (10.31) gives

3
T) e X3
Nk.6O., + 9INk.T| —
BY D B (ODJJ.

U_9

== G —— 10.35
3 (10.35)

o e* -1
Differentiating (10.32d) w.r.t temperature, the heat capacity can be found. Theresult is

4 _holkgT

_ 3h2V J'wm w €
v zﬂzvngTZ 0 (ehw/kBT _1)2
IHD/T x'e

3
T
= ONKg| — = dx
B(ODJ o (ef-1?

Tables have been calculated on the Debye theory for U, C, and other quantities and are given in

do

................. (10.36)

the Landolt-Bornstein tables and also in the Jahnke-Emde-Losch tables. The heat capacity is
plotted in fig (10.4). At T >> 6, the heat capacity approaches the classical value 3Nkg
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Fig 10.4: Heat capacity C, of a solid according to Debye approximation.

Theregion of T®law isbelow 0-16p. The asymptotic values of T/0p is 3Nkg (~25
Jmol “deg™).

Heat capacity in Jmol deg™
'_\
o

Let us try to evaluate the integral in equation (10.35) at the extreme value of temperature i.e.,
T—0and T— . AST— o0, X— 0 imply T >> 65. Here we can write

€ = 1+x
X X3 X X3
I " dx_>.|. "X OX = T (10.37)

0 e -1 0 3

2 3

9 T 1(6 9
U= 5 Nk.6, + 9NkBT(aj 5[?'3) =3 NKg0p +3NKgT -----mmmmmmeee- (10.38)
and C, =3Nkg =3R -----------ommm-- (10.39)

The Dulong and Petit law in agreement with both classical and Einstein approximations.

Physically this means that at high temperatures (T >> 6p) there is sufficient thermal energy to
excite al 3N modes regardless of their frequency so that they are contributing to C,. It is thus
equivalent to the Einstein approximation because the frequency is unimportant and to the
classical approximation because the quantum discontinuities are negligible.

At low temperatures T— 0 implies that x— oo so that we can let the upper limit of the integral
4
can be solved by contour integration method and comes out to be equal to T e

3 4

_[m X dx:”—,giving
0e*-1 15

3 4
U = I Nig,0, + NI, T - | =
8 0,) 15

3
= g NK,0,, + gﬂ“NkBT(OL] --------------- (10.40)
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3
ad C =Zrnk| | (10.41)
' 5 lo

D

This exhibits the Debye T law. Its predictions for specific heat in the low temperature region
are in good agreement with experimental data for many substances. The cubic dependence may
also be appreciated from the following qualitative argument.

At low temperatures only a few of these modes are excited. These are the

modes whose quantum energy %o isless than kgT. The number of these modes may be

estimated by drawing a sphere in the k-space whose frequency o = kgT/h, and counting

the number of points inside as shown in fig (10.5). This sphere may be called as thermal

sphere. The number of modes inside the thermal sphere is proportional to K3*~@*~T>,

Each mode is fully excited and has an average energy equal to kgT. Therefore the total

energy of excitation is proportional to T>.
The value of the Debye temperature 6

may be caculated from (10.33).

Methods for determination of a suitable

average sound velocity to be used in

calculating 6o have been given by

Blackmann. The value of 6 can also be

obtained experimentally by choosing

that value of 6p, which leads to the best

fit between the experimental data and the
theoretical expression (10.35). For the Fig 10.5: Thethermal spherewhich isthe
most common metalic elements the frequency contour @ = keT/h.
Debye temperature generaly liesin the

range 150450K.

For actual lattice, the temperature at which the T® approximation holds true are quite
low. It may be below T = 6p/50 to get reasonably pure T behaviour. The heat capacity
is, however, relatively insensitive to changes in the density of modes.

Criticism of Debye model:
1) The continuum model is valid for long wave-lengths i.e., the model assumes that only
low frequencies are active in the solid.
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2) Debye assumed that the number of modes of vibrations are 3N but this is contradictory
to the assumption that solid is an e astic continuum, which is supplied to possess infinite

frequenciesi.e, thereislittle justification for the equation

jo D(w)dw = 3N

3) wm is taken to be the same for longitudinal and transverse waves. But this assumption
can not be justified on physical grounds because of the difference in nature of the two
waves. Born however proposed to cut off the spectrum in such a manner that the
longitudinal and transverse modes have a common minimum wavelength (A1nin). So that
one obtains two Debye frequencies one for longitudinal modes (v; = ¢/Amin) and other for
transverse modes (Vi = C/Amin). Thisis actually more sound theoretically speaking and in
line with the theory of lattice vibrations devel oped by Born and von Karmann.

4) If the Debye model were strictly valid, the values of 6 varies with temperature
(table 10.1). The deviation reaching as much as 10% or even more in some cases.

5) Actualy crystalline nature of the solid has not been taken into account.

TABLE 10.1: Deviation fromthe T 3 law
NaCl KCI Li

T 6 |10°CJTE T 6 |10°C/TY 1| 6, |10%CyT?®
20K | 288°%K | 0.388 |14% | 213%K | 0.960 | 3% | 288% | 0.101
15°%K | 297°k | 0.356 | &K | 222°K | 0.832 | g0 | 297°K | 0.118
10°%K | 308°%K | 0.334 | 4°K | 236°K | 0.708 | 150« | 308°%K | 0.131
3K | 227% | 0.798

10.5 Summary:

e Experiments show that the heat capacity of conduction electrons is much smaller
than predicted by classica statistical mechanics. This is explained on the basis of
exclusion principle. All the energy levels up to the Fermi level are occupied and

when the system is heated, only those electrons near the Fermi levels are excited.

2
The electron heat capacity% NiBT .
F

e The Fermi energy Eg) isfunction of temperature and varies as
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2
2 kT
a5l
£(0)

The atoms in the lattice are arranged as a set of harmonic oscillators and the
thermal energy isthe average energy of these oscillators.

According to classical theory, the average energy for one dimensional oscillator is
£ = KT and the total thermal energy per moleis U = 3NkgT and the molar specific

heatC\,=(2—$ =3Nkg M =3R.

This result, known as Dulong and Petit law, asserts that C, is a constant
independent of temperature. This is found to be valid only at high temperatures
and at low temperatures the specific heat decreases and then vanishesat T = OK.

Einstein rectified this discrepancy by treating the oscillator quantum
mechanically. The average thermal energy for the oscillator is then given by

§=eh+§_lwhich approaches the classicdl value ksT only a  high

temperatures. At low temperatures, the quantum mechanical energy decreases
very rapidly because of the freezing of the motion.

Treating the atoms as independent oscillators, vibrating with common frequency,

2 0c /T
Einstein found that the specific heat is C, = BR(Q—EJ ge?.
T) e* -1

Specific heat approaches the classical value 3R at high temperatures and vanishes
at T =0K. Both thesefacts arein accord with experiment.

Careful measurements show that the decrease in C, near absolute zero is slower
than predicted by Einstein. Debye explained this by treating the atoms not as
independent oscillators but as coupled oscillators vibrating collectively as sound

waves.,

Making the long-wavelength approximation, Debye found that the specific heat is
J-OD T oxe”

3
givenby C, =9 T 5
Op) 0 (-1
This expression for C, approaches the classical value 3R at high temperatures but

at low temperatures C, ~ T 3. This|atter result is known as Debye T° law and isin

agreement with observation.
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e The agreement of Debye model with experiment is good through out the entire
range of temperature. Better agreement can be achieved only by removing the
long wave-length approximation and treating the crystal as discrete | attice.

10.6 Key words:

Drude — Lorentz model — The Einstein model — The Debye model — Thermal sphere.
10.7 Review Questions:

1. Explain in detail the thermal capacity of free electron system.Draw the plot of T2

versus C, and explain the comparison between theory and experiment.
2. Distinguish between classical and quantum mechanical aspects of heat capacity.
3. Explain Einstein model, draw the merits and demerits of Einstein model of specific
heat of solids.
4. Explain Debye model of heat capacity, draw the merits of Debye model over Einstein
model and aso explain the criticism of Debye model.
5. Derive an expression for the electronic contribution to the specific heat of ametal.
How isit verified experimentally?
6. Explain phonon dispersion curves. How are they studied experimentally?
7. Derive an expression for the specific heat of asolid on the Einstein model and show
that at low temperatures it drops exponentially with decreasing temperature.
8. What are Einstein and Debye models for the specific heat of solids?. Derive T2 law for
the specific heat of solids at low temperatures.
9. What are optical and acoustc phonons?. Discuss with theory any experiment to
determine the properties of individual phonons.
10.Discuss the specific heat of a 2-D sguare lattice on the basis of Debye approximations.
Compare the Debye, Einstein and lattice mode theories of specific heats of solids.

Comment on Reshtrhlen frequency.
10.8 Text and Refer ence Books:

1) Elements of Solid State Physics by J P Srivatsava (PHI)

2) Solid State Physicsby M A Wahab (Narosa)

3) Elements of Solid State Physics by A. Omar (Pearson education)

4) Solid State Physicsby SO Pillai (New age)

5) Solid State Physics by C Kittel (Asian students edn.)

6) A Text Book of Solid State Physics by S.L.Kakani & Hemrgjani (S.Chand)
7) Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan)
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UNIT =111
LESSION: 11

Thermal properties of solids- |11

Aim: To explain the thermal properties of solids on the basis of lattice vibrations

in the harmonic approximation and to consider the anharmonic effects.

Objective of the lesson
» To distinguish between classical and quantum mechanical concept of heat
capacity.
» To consider anharmonic effects of lattice vibration to ook into thermal expansion,
finite value of thermal conductivity, temperature dependence of elastic constants.
To know about the phonon collision process, phonon thermal conductivity, Size
effect.

Structure of thelesson:

11.1 Classical heat capacity

11.2 Quantum theory of heat capacity
11.3 Anharmonic effects

11.3.1 Therma expansion

11.3.2 Phonon collision process
11.3.3 Phonon thermal conductivity
11.4 Summary

11.5 Keywords

11.6 Review questions

11.7 Text and reference books
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I ntroduction:

Thermal properties of solids can be classified into two groups.

1. Properties whose broad features can be explained in the harmonic approximation.

2. Properties whose broad features have to be explained considering anharmonic effects

aso

11.1 Classical heat capacity:
The major contribution to the heat capacity of solids comes from the lattice vibrations. In
non-magnetic insulators, lattice vibrations are the only contributors. Other contributions
come from conduction electrons in metals and ordering in magnetic materials. Here we
deal with lattice vibrations only.

Classically, the energy of solid, can be expressed as

where
&sisthe energy of the stetic lattice
and g, isthe vibration energy of the solid.

The classical equipartition energy of vibration of atom is kgT at temperature T, kg
being the Boltzmann constant. This gives the tota vibration energy 3NkgsT. If there are
N atoms in the solid,.substituting thisinto (11.1) We have

= &+ 3NkgT ------------ (11.2)
At T =0, &= & which does not include the zero point energy and in classical theory, there

is no concept of zero point motion. The heat capacity is defined as (the value at constant

volume).
C,= (@j ------------- (11.3)
ot )y
Using (11.2), we can have
Cy=3Nkg -----------m--- (11.4)

The experimentally measured value of heat capacity is referred as the heat capacity at
constant pressure Cp. But for a harmonic solid Cy = Cp, since the difference between the
two is known to depend on the square of the temperature coefficient of linear expansion
which is zero for harmonic crystal. Later it will be known that the expansion of solids

occurs because of the anharmonic motion of atoms. The equation of heat capacity given
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by (11.4) was originaly derived by Dulong and Petit in 1869. This is known as the
Dulong—Petit law. It states that the heat capacity is constant for a solid and independent
of temperature. The measured value of heat capacity approaches this value at high
temperatures and remains constant thereafter in the solid state (Fig11.1). Dulong and Petit
explained the behavior of solids at high temperatures. This law, however, fails to explain
the variation of heat capacity with temperature. Most significantly, the heat capacity
drops to zero at 0°K. The failure of Dulong—Petit law’s to hold at all temperatures is |ater
explained only with the use of quantum theory

25
20— . |
15 09' _

10— 6 -

Cy(joule/mole-kelvin)

Ol—.” | I I I
0 02 04 06 o08 L0
(T/1320) = T/6¢
Fig 11.1 A comparison of the experimental curve (represented by the circles) with
Einstein’'s theoretical curve (dotted) for molar heat capacity of diamond with Qg =
1320K. The horizontal line givesthe classical Dulong-Petit value.

11.2 Quantum Theory of Heat Capacity:

Here we build up the structure for calculating the heat capacity on the principles of
guantum theory. Since lattice vibrations are pictured as quantized in this theory, the term
phonon heat capacity is more appropriate than the conventional term. Phonon heat
capacity is mainly concerned with the evaluation of the average thermal energy, which in
turn requires the knowledge of the vibration spectrum of solid under study. Our first

attempt would be to calculate the average thermal energy of harmonic oscillator.

11.2.1: Average Thermal Energy of a Harmonic Oscillator :

The energy levels of aquantum harmonic oscillator are given by

g, = (n+%)hw -------------- (11.5)




M. Sc., PHYSICS 4 THERMAL PROPERTIESOF.....(I11)

where o isthe angular frequency of the oscillator.

The average thermal energy of the oscillator ¢ in thermal equilibrium at temperature Tis
=2 P&, ----mm-mmmmmmmemeeee (11.6)

Where P, represents the [:robability of finding the oscillator in the energy level &,. Itis

given by

P oc exp(— k‘g“T J (the Boltzmann distribution) -------------- (11.7)

B
The proportionality constant ensures that the oscillator isin one of the allowed levels.

Therefore

> P, = Lemmmemeenea (11.8)
n=0
» 1
or Z PO exp|:_ M} = 1
n=0 B

where Py is the constant of proportionality. Therefore,
P, = exp(—f 1 2k, T) ¥ exp(—hio n/ k,T) =1
n=0

or P — exp(ho 2k, T) (11.9)
® 1-exp(—hw/k,T) '

Therefore,
P, =exp(-nho K, T)A—exp(-hw [ kgT)) ----m-mm-mmmm- (11.10)

Substituting P, from (11.10) in (11.6), we get
(@ T) =[1- exp(~ho [ kT)]he i(n + %] exp(—fio n/k,T)
n=0

Putting exp (—hw /ksT) = X, we have

S frah 21 B g o0
(@, T)=>1- x)ha)[n;o(nx )+ 20 X)} = zha) +([1-X)ho ng,o nx (11.11)
Since
O (11.12)
n=0 1-x

on differentiating (11.12) and then multiplying both sides by x, we get

From (11.13) and (11.11), we have
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g(a),T) — (1 + 1 jha) """""""" (1114)
2 expholk,T)-1
or
e(w,T) :(<n>+%j R -memmmmmeenoes (11.15)
where
m 1 - (11.16)

~ explho K T) -1
<n> must denote the phonon occupancy. This is also known Planck’s distribution
function obtained by Planck for the radiation oscillators. The above exercise is asimple
demonstration of the fact that lattice vibration one quantized the same way as the
radiation oscillators. The <n> stands for the occupancy of phonons in the energy level &,
which is aso interpreted as the expected number of photons in energy state &, of an
oscillator in thermal equilibrium at temperature T.

The calculation of total thermal energy of solid is, not a straightforward one.
Practically it is done by making use of dispersion curves which provide the valuable
information on the number of modes per unit frequency interval. The term giving this
information is known as the density of states. This model proposed by Einstein, serves as

alandmark in the progress of the theory of phonon hesat capacity.

10.3 Anhar monic effects:
While dealing with lattice vibrations, the harmonic vibration is the basis for discussion.
Keeping aside the exceptions like solid helium in which harmonic approximation is not
applicable, we come across a number interesting physical phenomena that cannot be
explained without relaxing the approximation. Some of these are
(1) Thermal expansion
(2) Thermal conductivity has afinite value
(3) The temperature dependence of elastic constants
(4) The falure of Debye heat capacity to attain the classical value a high
temperatures (T>>6p)
(5) The line broadening or measurable width of one phonon peaks in the neutron
inel astic scattering pattern.
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The cause of failure of the harmonic approximation in explaining the above
phenomena rests in questionable relevance of two basic assumptions.

1. Vibrations of atoms may be treated as small oscillations in which the displacement of
atoms from their respective equilibrium positions are small.

2. Only the leading non-vanishing term in the expansion of potential energy about its
equilibrium is retained.

The validity of the first assumption is always questionable at high temperatures where
the amplitude of vibration is large. And when the displacements become large, we
cannot afford to ignore the higher order terms in displacement beyond the quadratic term
in potential energy expansion. In this situation both the assumptions become irrelevant.
This is indicated by the shape of the potential energy curve a large interatomic
separations (fi gll.%).A

R

UO_

Fig 11.2: An exaggerated potential energy curve based on Lennard-Jones potential
for real crystals. The asymmetrical nature of the curve at higher energies does not
allow the motion to be interpreted in parabolic approximation. The increasein the
interatomic separation R at high energies (excited at high temperatures) produces
thermal expansion. The Rqistheinteratomic distancein the ground state. Because
of anharmonicity, the vibration quantum (the spacing between vibrational levels)
does not remain constant. It decreaseswith increasein energy

Where it is more asymmetric showing thereby deviation from the harmonic nature. This
is understandable as atoms can never oscillate like independent harmonic oscillators in a
real crystal because the motion of the adjacent atoms is always correlated. In general we

must accept the presence of anharmonicity to a certain degree in the vibrations of a solid.
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The physical phenomena stated earlier are explained successfully when connections on
the requirement of anharmonicity are included in the calculations.

The anharmonic effects are most reasonably accounted when the potential energy
expansion is truncated not before the quartic term. Dropping the constant equilibrium
term, we write potential energy as

UX) = HC— ¢ —hx* —-mmmeeeeeee (11.17)
Where x is the deviation from the equilibrium separation at absolute zero and all the
coefficientsf, g and h are positive.

The first term in (11.17) is the usua harmonic component and the other two refer to
the anharmonic effects. The cubic term stands for the asymmetry of the mutua repulsion
of the atoms and the quartic term represents the softening of the vibration at large
amplitudes.

As the applications of anharmonic potential we will deal with first two of the
phenomena cited earlier as examples. While the thermal expansion refers to an

equilibrium property the thermal conductivity is awell-known transport phenomenon.

11.3.1 Thermal Expansion:

It is an established fact that solids expand on heating. In the harmonic approximation, all
atoms vibrate about their equilibrium positions within a perfectly symmetric well
(parabold) of interatomic interaction. But the potential energy curve (fig.11.2) as derived
from a Lennard—Jones potential type for real solids, matches this behaviour only in the
range low thermal excitations that correspond to low temperatures.

The potential well gets asymmetrical for larger interatomic separations (figll.2)
occurring at higher energies. The mean interatomic separations at a few vibrational
energies taken in increasing order are denoted by points A, B, C, D respectively. The
values represented by these points are in increasing order as shown by the trend of shift
forward larger values relative to the mean equilibrium separation Ry in the ground state.
It is then imperative that at higher temperatures when higher vibrational states are
sufficiently populated, solids would show expansion. The range of vibration frequencies
of solids is such as can be excited by the thermal energy. These arguments explain the

thermal expansion of solids. Since this property follows from the anharmonic nature of
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the potential energy curve, the thermal expansion is attributed to the presence of
anharmonicity in atomic vibrations.

Now we use (11.17) to calculate the thermal expansion in terms of the mean
displacement (x) of the atomsin a solid. It is nonzero because of the cubic term. A crude

way of determining (X) isto use the condition,

Y _g
OX
and ignorethetermin h. Thisgives
3g9(x*)
X) = ——"  mmmmmmmmeee- 11.18
) =—"2 (11.18)
If the mean sgquare displacement is calculated classically in the harmonic approximation,
we get
“ kT
[ % exp(- 1 1k, T)ax -2 &
o fIksT
X == =
[ exp(- x* 1k, T)dx 1=
7 2\ f/kT
or
kg T
X2y = =B e 11.19
X =—7 (11.19)
Substituting (11.19) into (11.18), we express the mean displacement as
3ok, T
X) = ——2—  mmmmmmmmmmeee- 11.20
S (11.20)

The relation (11.20) shows an increase in the interatomic separations and therefore, a
thermal expansion of solid.

We may define the coefficient of linear expansion o as

0= o (1121)
oT
Using (11.20), we have
39k
= S 11.22
T (11.22)

Though changes in size because of thermal expansion are small in solids, the
knowledge of their expansion coefficients in none the less of great practical value in
industry where even simple jobs like making a permanent joint between two materias

have their tactical importance
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Another striking feature that is associated with the thermal expansion, has reference to
the change of characteristic frequency in asolid. The levels of vibrational energy come
closer at high-energy values (fig.11.2). In the harmonic approximation the levels are
expected to remain evenly spaced and unaffected by the change of temperature. The
gpacing can alter only of the energy quantum hw changes. By taking anharmonic
considerations into account with the use of (11.17), it can be shown that the characteristic
freqguency o decreases with the increase in temperature. This is consistent with
observation of closer energy levels at high energies to which the thermal excitation can
be made by raising the temperature one must appreciate that the anharmonic
contributions at these values of energy and temperature are at their maximum.

The above frequency effect may as well be interpreted as the change in characteristic
frequencies in a solid because of the change in its volume. It is conventionally put in the
form of an assumption that alows both the characteristic frequencies and the volume V to
suffer the samerelative change. That is,

Ao AV

10) V
or

Ao AV (10.23)

0] \Y
Where the proportionality constant y is called Griimeisen constant. It is a measure of the

anharmonic coupling. This anharmonic effect, though small, may be studied by neutron
scattering measurements that provide the change in characteristic frequencies with
temperature.

An exact treatment of anharmonic effects is not so easy. We have to take recourse to
some approximate method like perturbation method of quantum mechanics. As a first
approximation to the true solution, we start with solutions of harmonic potentia (the
phonons). Obviously, the phonons are not the exact eigensolutions to the equation of
motion. The description of a state of motion in an anharmoinic solid in terms of a
phonon or a plane wave changes with time and the accuracy of the description drops
progressively. For an accurate description with time, it is required to recognize the status
of a spectrum of some other phonons. It means that the anharmonic phonons, unlike

harmonic ones, have only alimited lifetime after which they merge or decay to produce
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new phonons. In the next section we discuss these phonon processes as they enable us to

explain the basis for thermal resistance and related features in the next section.

10.3.2 Phonon Collision Process:

An exact quantum mechanical treatment based on the first order perturbation theory
shows that:

a) The cubic term in the potential energy accounts for the following processes.

i) One phonon decay into two

i) Phonons merge into one
b) The quantum term in the potential energy accounts for the following processes:

i) One phonon decays into three

i) Two phonons gets converted into two others

iii) Three phonons merge into one.

We observe that the cubic term is related to the three-phonon processes and the quartic
to the four-phonon processes. It is now necessary to examine the probable collision
processes, especialy in the context of thermal resistance which is in our plan of
discussion. Let us consider the collision involving three phonons. The use of the term
collision should not be objectionable as phonons are treated as particles. If two phonons
have wave vectors k; and k; collide or merge to produce a new phonon with a wave
vector ks, the momentum conservation requires that

ki +ko=kg -------oomm--- (1124)
Thetotal energy of theinitial phononsis completely held by the final phonon. The net

phonon momentum is written as
DL (11.25)
where nys is the number of phonor? with wave vector k in the branch s.

The net phonon momentum j constitutes the phonon thermal current in a solid
between whose two ends a difference of temperature is maintained. In view of (11.24)
the net phonon moment is a constant and, therefore, the phonon current j remains
unchanged. The distribution of phonons (or the distribution function) at any stage when |
# 0 tends to appear its equilibrium value (condition of zero temperature). But in the

present case it is not permitted as | has to remain unaffected. Any distribution of phonon
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flows down the solid unhindered. As if the phonon mean free path were infinite.
Consequently the therma resistance, a measure of the rate at which equilibrium
distribution is approached, becomes zero. This gives an infinite value of thermal
conductivity an unacceptable result. Therefore the collision processes described by
(11.24) do not give rise to thermal resistance. These processes are caled normal

processes or simply N-processes. Figure 11.3(a) shows anormal process of collisionin a
two dimensional square lattice.

Al<y llfy
kl kl
\ k3 k2
> K, ) Ky
ko ks \
k> & g
(@ (b)

Fig 10.3: Phonon scattering processes in k-space for a two-dimensional squar e lattice: (a)
normal process. (b) Umklapp process — two phonons with wavevector k; and k, merge
into ks with the help of a reciprocal lattice vector g (= 2r/a in this case). Note that the
direction of the x-component of the phonon flux has been rever sed.

It should be, however surprising to note that N-processes explain the conduction of
heat in gases where we deliberately impose the conditions that no mass transport of
particles takes place. In this picture, the hot particles while moving along one direction

lose their energy to the cold particles moving in the opposite direction [fig 11.4(a)].

— e - — ~

\// \<_—>/ /;7:;:/

< TN -
(@ (b)

Fig 11.4. (a) Conduction of heat in a gas. hot electrons moving in one direction lose
their energy to cold electrons moving in the opposite direction. During the
conduction process the number of electronsis conserved. (b) Conduction of heat by
phonons in a solid: There is no net particle conservation. Phonons carrying heat
from the hot end get destroyed at the cold end.
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But these ideas are not tenable in the case of phonon gas where there is no net particle
conservation in the true picture. The phonons that carry heat from the hot end one
destroyed at the cold end [fig 11.4 (b)].

The phonons could also suffer collisions with the immobile imperfections and the
crystal bounding surface. But these collisions are known to be elastic in nature, meaning
there by that the collisions do not change the frequency of the individual phonons. This
makes impossible for an equilibrium distribution of phonons to be established locally.

The puzzle of thermal resistance is solved by a different kind of collisions expressed
as

kKitko=ks+g  ------m-mmme- (11.26)
Where g isareciproca lattice vector.

Since in a periodic lattice the energy of a phonon with a wavevector (ks + g) is the
same as that for a phonon with a wavevector ks, the phonon k3 in (11.26) must be
carrying total energy. The specific feature of (11.26) isthat it destroys the momentum hg
and changes the direction of energy flow as show in fig 11.4(b). The x-component of k;
and k, are directed opposite to the x-component of ks. Peierls caled such collisions by
the name ‘Umklapp processes or ‘U-processes. Umklapp is the German term for
‘folding over’. Because of the non-conservation of the net momentum, the equilibrium
distribution of phonons can be restored by these processes at a certain rate that
determines the thermal resistance. This confirms that the U-processes of collisions give
rise to thermal resistance, limiting the value of thermal conductivity to afinite value.

For the condition (11.26) to be satisfied, the sum of k; and k, must extend beyond the
first Brillouin zone and the individual values should not be less than ¥2 g. The sum of (k;
+ kz) can be trandated to the first zone by the reciproca lattice vector — g [fig 10(b)].
The k3 is called the reduced value of (k3 + g) and belongs to a set of unique k-values. U-
processes can be taken up while discussing the effect of temperature on thermal
conductivity. In the refined theoretical picture, a phonon collision is referred to as the
scattering of phonons because of phonon—phonon interaction.

11.3.3 Phonon Thermal Conductivity:
Metals are good conductors of heat and electricity. The energy is transported mainly by

the electrons. But it must not be constructed that thermal conductivity depends mainly on
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the number of available free electrons. Some of the insulators for example the crystalline
sapphire (Al,03) and quartz (S1O,) possess high thermal conductivity than copper at low
temperature. The maximum value of thermal conductivity of sapphireis 200 Wem™*k™* as
against corresponding value 100 Wem™k™ of copper. The observations indicate to the
involvement of some other carriers in addition to the free electrons for the heat transport.
These carriers are phonons as confirmed by the theory explaining the experimental data.
Thus the phonons are unambiguous by the main carriers of heat in insulators and in some
of the insulators the passage of phonons is smooth enough so as to result in large values
of thermal conductivity.

An exact treatment of phonon thermal conductivity is a problem of great mathematical
complexity, we present an elementary classical based on kinetic theory of gases.

Consider an insulating solid cylinder (figll.5) whose two ends are maintained at

different temperatures T, and T, (T>>T,). Let the temperature gradient down its length be
defined as —2—T . At steady state there is a steady flow of heat from the hot and to the
X

cold end maintaining the temperature difference (T,-T;) a a constant value.

T,>T,

A w a B

—dT/dx

Fig 11.5: Conduction of heat by phononsin an insulating solid cylinder along itslength
when a temperature gradient is maintained between the two ends of the cylinder.
Phonons approaching the point x, at an angle @ with the cylinder’s axis (x-dir ection)
and moving with velocity v make a collision at the point. Thetemperature at the point
isT.

It is observed that the energy flowing down the cylinder per unit of its circular cross

section per unit timej is proportiona to the temperature gradient — a . Thatis

joo O (11.27)

OX
or
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OX
where Ky is called thermal conductivity and |j| is the thermal flux per unit time.

j=-K ph(a—Tj --------------- (11.28)

The flow of heat cannot be linear as in that case ] would have been proportional to T.
The heat energy differs from the hot end to the cold end through a random process. As
we consider here only the phonons as heat carriers, the random process involve mainly a
phonon-phonon collisions. The extra phonons created at hot end are destroyed at the cold
end this picture of phonon gas better suited to be treated by the kinetic theory of
molecular gases.

Frequently collisions among phonons limit the phonon mean free path. In arigorous
theory the mean freepath is treated as a function of the temperature and the phonon
frequencies. But we take an average value (A) over the length of the solid cylinder. Let
the non-equilibrium energy density contributed by phonons coming out collisions at the
point x be denoted by u(x). If T be the temperature a X, u(x) is supposed to be
proportional to the equilibrium energy density u[T(x)]. Then, the contribution to thermal
current density j from a single phonon is vy. u(x), where v is the x-component of the
phonon velocity v.

Fig 10.5 shows that the collision at X, involves the phonons approaching it at an angle
0 with the x-axis. The immediate last collision of these phonons on the average should
have occurred at a point whose x-coordinate is shorter by Acos, i.e. at x = (Xo— Acosf ).
The net thermal current j can be calculated by using the fact that j is proportional to the
product vi- u(xo—Acos6) average over all solid angles. Accordingly,

J = (% U(Xo Acosb))
2rsing

:Ivcoseu(xo—Acose) do == jvtu(xo At)dt  -------ememee- (11.29)

0
Expanding u(xo — t) absent u(xo) and retaining onIy the first order terms in the derivative,

1
dt—o- Ly Ut ) _ 1,,0u
x|, 2 x| 3], 3 ox

j — EVA@(_ ﬂ] """""""""" (1130)

we have

== _[wl:u(xo) At—

or

3 OT\ ox
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Comparing (11.30) with (11.28), the contribution of phonons to the thermal conductivity

may be expressed as
Ko :EVA@
3 oT
or
1 1.,
Ko = §CVAV= §CVV T —mmmmmmmmeoee- (11.31)

Where Cy, denotes the phonon heat capacity and 7 is the relaxation time (vz = A).

1

We can define the phonon collision frequency as ¢ ~. The variation of thermal

conductivity with temperature in terms of the parameters A and Cy is explained below.

At high temperatures (T>> 0p)
In its temperature range, the thermal equilibrium phonon occupation numbers given by

1
exp(ro(k)ksT) -1

<nk> =

reduce to
_ kgT
ho(k)
The total number of phononsis proportional to the temperature. Therefore, the higher the

............... (11.32)

temperature, the more will be the collision frequency, resulting in smaller mean free
paths. Since Cy approaches the constant Dulong-Petit value, the change in the thermal
conductivity is predominantly controlled by the change in the mean free path. Thus, the
thermal conductivity decreases with increase in temperature. Though this trend is
confirmed by experiments, the observed rate of fall is given by

S (11.33)

% m
wheremlies between 1 and 2.
At low temperatures (T <<6p)
The phonon occupying in thermal equilibrium may be taken as ~ exp (—hao(k)kgT ). The
probability of occurrence of U-process [as expressed by (11.26)] iswritten as
N Ny, = exp(—ha)kl 1kgT)- exp(—ha)kz 1k;T)

= exp[-n(o,, + o, ) KT =exp(-hao, [kgT)
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Which shows that U-processes are amost frozen at low temperatures and the thermal
conductivity exponentially approachesinfinity.

But, in practice, al solids have finite conductivity even in the ranges of lowest
temperatures. Since no perfect crystal exists in nature, there may be collisions of
phonons with imperfections, impurities or even with the bounding surfaces. At certain
temperature the mean free path on account of these collisions becomes so large that it is
comparable with the size of the sample. This being the maximum realistic value, the
mean free path assumes the temperature independent behaviour below this temperature.

Thisis known as the size effect. Then (11.31) isreplaced by

K,y = %va > J— (11.34)

Where D stands for the size (diameter in the case of rod).

The behaviour of thermal conductivity in this temperature region is mainly determined
by the Debye heat capacity which drops as T 3. In fact, a competition between the
exponential nd the T > terms setsin at the temperature below which the mean free path is

temperature independent. The drop of T 2 being faster than the exponentia increase the

thermal conductivity islimited to afinite value.

200 [—

100 —
a 50—
N
- 20—
IS
; 10 - Crystal dimensions
< 5+ (B (A) 7.55 x 6.97 mm
£ (B) 4.24 x 3.97 mm
g 2 - (D) (C) 2.17 x 210 mm
'g Lk (A (D) 1.23x 0.91 mm
o
= i ©
g o5
E 021
= :

01

0.05[" | | | |

0.02

1 2 5 10 100
T(K)

Fig 11.6: Therma conductivity of isotopically pure LiF crystals as a function of
temperature. The curve are the beautiful demonstration of size effect on thermal
conductivity. The large the cross-sectional area of the sample, the higher the thermal
conductivity.
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The scattering of phonon from crystal walls was suggested by Casimir.  The nature of
the curves of Figl1.6 below 10 K provides a sound proof to the ideas of Casimir. The
larger the cross-sectional area of the sample, the higher the conductivity. From below 10
K as the temperature rises, the U-processes become more frequent and the conductivity
attains maximum value when the mean free path because of the phonon-phonon
scattering becomes comparable with that owing to the scattering from the crystal’s
surface. With further rise in temperature the conductivity falls because of the increasing
phonon-phonon scattering and assumes the expected exponential drop at higher
temperatures where the heat capacity tends to be on level with the constant Dulong-Petit
value.

The presence of rival phonon scattering mechanism is found to soften the ‘sharp
conductivity maximum’ in most of the samples, irrespective of the material. The
scattering from isotropic impurities is well identified among these. Its effect is
demonstrated in fig 11.7 by the experimental curves of two samples of LiF crystals, one
of which contains a mixture of °Li and ’Li isotopes. On cooling, the rise of conductive is
less steep in the sample having both isotopes than in the sample which is amost free from
®Li isotope. In addition it has a lower and flatter maximum. The sharp maximum in the
pure sample is amost totally contributed by U-processes in absence of the rival isotropic
scattering.

10, | | |
99.9%/Li

5,000 LiF

2,000—
1,000—

50%/Li
50%5Li

200 ]

500—

100 ]

Thermal conductivity, K y(Wm™K™)

50 ]
| | I
2 5 10 20 50 100 200
Temperature, T(K)
Figll.7: The influence of isotope scattering on the maximum of thermal conductivity.
The phonon scattering from isotopes lower sthe thermal conductivity asis observed for
the sample composed of ‘Li and °Li isotopes. The other sample almost free of °Li
isotope shows a sharper and higher maximum. The presence of the rival phonon
scattering mechanisms softens the shar p conductivity maximum.
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Insulators characterized by large values of therma conductivity have found wide

applicationsin the field low temperature physics.

11.4 Summary:

1. For aharmonic crystal, heat capacity at constant volume, Cy is equal to heat capacity at

constant pressure Cp because the difference between the two depends on the square of the

temperature coefficient of linear expansions which is zero for a harmonic solid.

2. The achievements of Einstein model of phonon heat capacity are:

(). It explains behaviour of heat capacity at room temperature and above. In the high

temperature limit it gives the classicad value (3NKg) which the experimental value

approaches at these temperatures.

(i1). It shows that the heat capacity approacheszero as T — 0 K, at afact that agrees with

the experiment.

3. The limitation of Einstein model of phonon heat capacity is that the heat capacity at

low temperatures decreses as exp(—ha/kgT) is contrast to the observed T ® dependence.
The Debye T>-law based on a continuum model explains very well at low temperatures

at low temperature. The Debye model enjoys success over the entire useful temperature

range.

4. The anharmonic effects are most reasonably accounted when the potential energy

expansion is truncated not before the quadratic term. That is,

U(x) = i¢ — ¢ — hx*

5. Two phonons of wave vectors k; and k, may scatter against each other (or collide) and

merge to produce a new phonon by either of the two types of scattering processes

Normal process. ki + ko = K3
(N-process)

Umklapp Process: ky + ko = ks + g
(U-process)

6. At high temperatures (T>>6p), the phonon therma conductivity (Kp,) changes

according to

Ko oci wherel<m<2
-I-m
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At low temperatures (T<<6p), the U-process are almost frozen and K, for ideal crystals
exponentially approaches infinity. Real crystals have, however, finite Ky, because of
collisions of phonons with imperfections, impurities and bounding surfaces of specimens.
At very low temperatures, the phonon mean free path is comparable with the size of

specimen (or a constant), so that
1
Ko = gch D

where D isthe diameter in the case of arod. or

Kpn oc T3 (since v and D are constant and Cy oc T )

11.5 Keywords:

Harmonic approximation — Anharmonic Effect — Vibrational energy — Heat capacity —
Dulong-Petit law — Quantum theory of Heat capacity — Plank’s law — Phonon heat
capacity — Potential energy curve — Therma expansion — Lennard — Jones Umklapp
Process — Size effect.

11.6 Review Questions:

1. Distinguish between classical and Quantum theory of heat capacity of solids.

2. How thermal expansion of solids play an important role in the Heat capacity of solids.
3. How anharmonic effects explain heat capacity more effectively than harmonic
approximation.

4. Describe the variety of phonon collision processes in the theory of heat capacity of
solids.

5. How do you account the phonon thermal conductivity at low and high temperature
region.
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UNIT =111 LESSON: 12

Energy band theory

Aim: To know about the Electron Energy Bands.

Objectives of the lesson:

» To know about the failure electron theory in explaining conductivity of materials.

» To know about the Bloch theorem and its proof, the consequences of periodicity.

» To know about wave mechanical interpretation of energy bands through Kronig
Penney model.

To know about the velocity of Bloch electrons and the dynamical effective massm -
To know about momentum, crystal momentum and physical origin of effective mass.

To understand the concept of Hole.

Y V VYV VY

To know about the limiting cases of periodic potential.

Structure of the lesson:

12.1 Failure of free electron theory

12.2 Consequences of the Periodicity: Bloch theorem.

12.3 The Bloch Theorem.

12.4 Kronig Penney model: Wave mechanical interpretation of Energy Bands.
12,5 Velocity of Bloch eectron and the dynamical effective mass.

12.6 Crystal momentum and physical origin of the effective mass.of electron
12.7 Concept of Hole.

12.8 Easy limiting cases of the periodic potential.

129 Summary.

12.10 Key words.

12.11 Review questions.

12.12 Text Books and reference books.
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12.1 Failure of free electron theory:

In lesson 11 we learnt how the free electron model in great detail gave invaluable
information in accounting for the observed metalic properties. Nevertheless this model
is an approximation and has its limitations and even the quantized free electron theory is
unable to explain some property. Let us consider some of the limitations.

1. The method is unable to explain why some materials are metals why others are
good insulators. Their electrical conductivity may differ by a magnitude of order
10* which is unusually high for any physical property.

2. The mode suggests that other things being equal, electrical conductivity is
proportional to electron concentration. But it is surprising that the divalent metals
(Be, Cd, Zn etc) and even trivalent metals (Al, In) are consistently low conductive
than the monovalent metals (Cu, Ag and Au) despite the fact that the former have
higher concentration of electrons.

3. A far more damaging testimony against the model is the fact that some metals
exhibit positive Hall Coefficient, for example Be, Zn, Cd. The free eectron
model always predicts a negative Hall coefficient.

4. Complex transport phenomena in the presence of a magnetic field to, do not find
satisfactory explanation.

5. The continuous parabolic energy curve renders us helpless in finding a clue to the
sharp resonance like structures observed in the optical spectra of solids.

6. Measurements of the Fermi surface indicate that it is non spherical in shape. This
contradicts the model, which predicts spherical Fermi surface.

These difficulties and other, which were not mentioned here, can be resolved by a

more sophisticated theory, which takes into account the interaction of the electron with
lattice.

12.2 Consequences of periodicity —The Bloch Theorem:

To understand the difference between insulators and conductors, one must extend the
free electron model to take account of the periodic potential with periodicity of the
lattice. In one electron model the periodic potentia may be thought of arising from

periodic charge distribution associated with ion cores situated on the lattice sites plus the
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constant (average) contribution due to al other free electrons of the crystals. The later
contribution to the potential accounts in an average sense, the interaction effects of the
single electron with all others. A one dimensional representation of a periodic crystal of
a cubic crystal of lattice constant ‘a is shown in Fig 12.1. So far as the one-electron
guantum-mechanical picture is concerned, the crystal periodicity will usually be assumed
to extend to infinity in all directions, but at surface of any actual crystal the periodicity
will be interrupted, the potential function then behaving somewhat as shown at the |eft-
hand edge of the Fig 12.1. The lattice spacing will be quite uniform near such a surface,
but practically the periodicity will be usually found to be almost perfect after a few
atomic spacings with in the crystal.

V(x)

A
A 4

Surface X

Fig 12.1 Schematic representation of the potential within a perfectly periodic crystal
lattice. Thesurface potential barrier isshown at the left.

jD

I nsulator Metal  Semi Semi Semi

Metal Conductor Conductor
Fig 12.2 Schematic electron occupancy of allowed energy bands for an insulator,

metal, semimetal and semiconductor. Thevertical extent of the boxesindicates the
allowed ener gy regions, the shaded areasindicate theregionsfilled with eectrons.

We can see on the basis of above description that electrons in crystal are arranged in
energy bands (fig 12.2); separated by regions in energy for which no wave like electron
orbitals exists. Such forbidden regions are called energy gaps or band gaps; and will be
shown to result, from the interaction of conduction electron waves with the ion cores of

the crystal. The important question for eectrical conductivity is how the electrons
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respond to an applied electric field. The crystal will behave as an insulator if the number
of electrons is such that the allowed energy bands are either filled or empty, for then no
electron can move in an electric field. The crystal will act as a metal if one or more
bands are partly filled. The crystal is a semi conductor or semimeta if al bands are
entirely filled, except for one or two bands slightly filled or empty.

The possibility of band gap is the most important new property that emerges when we
extend the free electron model to take into account of the periodicity of the lattice of the
solid. We shall encounter other remarkable properties of electrons in crystals. For
example, they respond to applied electric or magnetic field as if the electrons were
endowed with an effective mass m’, which may be larger or smaller than the free eectron

mass, or even may be negative.
12.3 The Bloch Theorem:

The Bloch Theorem is a mathematical statement regarding the form of the one-
electron wave functions for a perfectly periodic potential.
Let the potential energy of an electron satisfy the equation
V(X) = V(x+a)
where‘a isthe period. The Sehrodinger wave equation isthan
2

Oy, 2m

ox>  h®
With reference to the solution of the equation, there is an important theorem known as

[E-V(Xly =0 =mrmeme (12.1)

Bloch theorem ; which states that the solutions are the plane waves modulated by the
functions Uy(X) that has the same periodicity as the lattice. In the theory of differential

equationsit is known as Hoquet’s theorem. Mathematically the solutions are of the form

w(X)=e™U, (X) ------------- (12.2)
where Uk(X) = Uk(x+a)
The wave functions of the type (12.2) are called Bloch functions. We note that Bloch
functions (12.2) have the property
l//(X+ a) — eirik(x+a)Uk (X+ a) — eiikaw(x)
Thus the Bloch functions have the property that

v(X+a)=Ay(X) -----m-m-m-mm- (12.3)
where constant A is
ﬂ« — eiika
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If we imagine the crystal to be a form of aring, N steps of the above displacement or
tranglation will bring the electron back to the same atom at x from where it started.

It meansthat W(x + Na) = W(x+L) = Y(X)

But the net phase shift in the wave function requires that W(x + L) = CY¥(x).

So C" must be equal to 1 or €™ or C = >N withn=0, +1, +2, ...... + N/2. It implies

k=n2—7r;forn=ﬂ;k=ﬂ_LE )
L 2 a

It is clear that if we can show that the Schrodinger equation (12.1) has solutions with the
property (12.3), the solutions can be written as Bloch functions and the theorem is
proved.
Since (12.1) is alinear second-order differential equation, there are two independent
solutions g (x) and h (x) such that
w(X) =Ag (X) + Bh (X) --------------- (12.4)

represents the most general solution of (12.1) with A and B arbitrary constants. Since
w(X) = y(x + a), not only g (x) and h (x) but also g (x + @) and h (x + a) also satisfy
(12.1). Any solution of (12.1) is expressible as a linear combination of the independent
solutions g (x) and h (x). Hence we must have the relations

g(x+a)=a,g(x)+ azh(x)}

h(x+a) = 8,9(X) + B,h(X)

where a, and f3,, are constants and real functions of energy E. Then

y(x+a)=Ag(x+ a) +Bh(x+ a) = (e A+ 1 B) g (X) + (ox A+ 3, B) h (X) ------- (12.6)
Now y(x + a) can always be expressed in the form
yX+a)=Aw(X) =LAg(X) + L Bh (X) -------------- (12.7)

Comparing co-efficients of g (x) and h (x) in (12.6) and (12.7) we have
(a,-A)A+p,B=0
a,A+(pf,-A)B=0
This system of homogenous equationsin A and B has solutions other than A =B = 0 only
if
a,—A B
a, B, -4

or 12_(a2+ﬂ2)l+(a1ﬂ2_a2ﬁ1)zo

=0
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Now we can easily prove that (a1 5, — a2 1) = 1. Thuswe have
e G ) B VR A= O J—— (12.9)
The solution of this quadratic equation in A serves to determine the two possible values of
A for which Equation (12.7) is true. Hence there are two functions y1 (X) and y» (X)
which exhibit the property (12.7). Hence we consider two cases.
(1) For energy rangesin which (a1 + 8)° < 4
The two roots A1, A, of equation (12.9) will be complex and since A1, = 1, they will
be conjugates. In those regions of energy we may write
and A= elk,a } --------------- (12.10)
A,=e"
The corresponding functions ya(x) and y» (X) then have the property
v, (X+a) =", (x) and w,(x+a) =e "y, (x) and thus are Bloch functions. We can
also prove this starting with g (x), h (x) as given below;
Since g (x) and h (x) arerea solutions of (12.1) we have
d’ 9(¥) .
N
d*h(x)
N
multiplying former by h (x) and latter by g (x) and subtracting we have
d? h(x)

{E V(X)}g(x) =0

e {E ~V()fh(x) =0

)9 g‘x)—g()

or W (X) = h(x) dg (X) —-g(x )M = constant.

This is known as Green's identity. R.H.S. of this equation is called Wronskian, W(x) of

the two solutions and is constant in this case. Further, from equation (12.5) we have

ncr2) 490D g0 ) PO (6,5, ) oy - gy NI
o W 2) = (@,f; ~a I
or a,f,—a,p =1
(e @) =€, 0 } _______________ w1
and v, (x+a) = e, (X)
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Such functions are called Bloch functions. The functions are written in the form
v (X) =e™U, (X) ----mmmmmmmeeee- (12.11a)

where Uy(x) is a periodic function of period ‘a. Thus the solutions of Schrodinger wave
equation in this region can be expressed in the form of Bloch function
(2) For energy range in which (o + 2)° > 4
In this case the two roots A; and A, are real. The solutions of Schrodinger equation are of
the type

yy (0 =eU (X) }

and v,(X)=e"*U(X)
where pis ared quantity. Although such solutions are mathematically sound, they can
not in general be accepted as wave functions describing electrons; since they are not
bounded. Thus there are no electronic states in the energy region corresponding to real
roots A; and A,. The above discussion thus leads also to the notion that the energy
spectrum of an electron in a periodic potential consists of allowed and forbidden energy
regions or bands.
In three dimensions the Bloch theorem becomes
A A SN (O R — (12.13)
The wave vector, k used to label the Bloch functions has the properties
(8 Under acrystal trandation which carriesr tor + T we have
e (r+T) =T U (r +T) =Ty (1) —-mmmmmmemeeeee- (12.14)
because Uy (r + T) = Ui (r). Thus€* T is the phase factor by which a Bloch function is
multiplied when we make a crystal lattice translation T.
(b) If the lattice potential vanishes U (r) is constant. We must have
vic(r) ="
asfor afreeelectron.
(c) Thevalue of k enters into conservation laws for collision processes of electronsin
crystals. For thisreason hkis called the crystal momentum of the electron. When an
electron k collides with phonon of wave vector. ks, the selectionruleis
k + ki =k'+G
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If the phonon is absorbed in the collision the electron has been scattered from a state k to
astate k’ and G isany reciprocal lattice vector.

12.4 Kronig-Penney model: Wave Mechanical | nterpretation of Energy
Bands:

In view of the discrete energy levels scheme of isolated atoms, it is unlikely
possihilities that the energy bands would be infinitely continuous. Thisisreally the case.
In general, there is a region of forbidden energies between the two successive bands.
However the bands overlap in some cases. Energy band is amost centered around its
parent level, the N fold degenerate level in an isolated atom of a crystal composed of N
atoms. Kronig and Penney (1930) demonstrated that regions of forbidden energies
intervene the regions of alowed energies. They accomplished this task using a one

dimensional square well crystal potential depicted in fig 12.3.
A V(¥

-V,

L LIL

< atb—»
uz(X)(unlt cell) Uy(X)

Fig 12.3 Ideal periodic square well potential well used by Kronig and Penney to illustrate
the general characteristics of the quantum behaviour of electronsin periodic lattices.

A

The period of potential is (a + b) in region such as 0 < x < a, the potential energy is
assumed to be zero and in regions such as— b < x < a the potential energy isV,. For such
an array of periodic square potentials the exact solution of Schrodinger equations is
possible. Although the potential represented by figl2.3 is some what idealized periodic
potential which is only a crude approximation to that found in the actua crystal, it is very
useful because it serves to illustrate in a most explicit way many of other important
characteristic features of the quantum behaviour of electronsin periodic lattice.

The wave function associated with this model may be calculated in the one-electron
approximation by solving Schrodinger equation,

o%w(X) 2m

o +h—2{E—V(x)}u/(x) =0 - (12.15)
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Since the potentia is periodic, the wave function must have the Bloch form and we have

- AR V10 R — (12.16)
Substituting (12.16) in (12.15) and putting o = { ZEE}M, It is found that the function
U(X) must satisfy
d“j +2ikd—U—{k2 —al+ 2m\/2(x)}u € T — (12.17)
dx dx h

If Uy(x) and U, (X) represent the values of U(X) in the two regions of potential function
i.e intheintervals (0 < x<a) and (- b < x < 0) respectively, we have

d’u, . du

v +2ik dxl—(kz—az)UI:O (0< X < @) ===mmmmmmmmmmmmmes (12.18)
X
2
ddgl+2ikdi<2 ~(K*=B*U,=0 (b<x<0)---mmmmmmmmmmmev (12.19)
X
1/2
where 8 = {%} and is purely imaginary quantity for 0 < E < V. The
solutions of the differential equations (12.18) and (12.19) are
U A e A ( PPV ) P — (12.20)
U, =Ce P 4De BHX (Lh<x < Q) --mmmmmeeeeenev (12.21)

where A, B, C, D are constants. The continuity of the wave function y and its derivative
at x = a and x = —b and remembering that U(x) has the periodicity of the lattice demands

that the wave function U(X) satisfies the boundary condition

U,(0) =U,(0) U,(a) =U,(-b)
(dulj :(dUZJ (dulj :(dUZ] ---------------- (12.22)
dX x=0 dX x:O’ dX X=a dX x=-b
Using boundary conditions (12.22) we find that
A+B=C+D

(@ —K)A (a +k)B = (B —K)C— (B +K)D
Ae' (a—k)a +Be—i (atk)a _ Ce—i (B-kKb + De' (B+k) b
(a—K) Ae (“73_ (g +k) B (**0a S — (12.23)
=(B—k) Ce”' F~HP _j(p +k)De #*P
The coefficients A, B, C and D can thus be determined and the wave function can be

calculated. For our purpose we are more interested in determining the values of energy
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for which satisfactory solutions are obtained. The equations (12.23) have non-vanishing

solutions if and only the determinant of coefficients vanishes. This requires that

1 1 1 1
a—k —(a+Kk) b -k —(B+Kk)
@k gi@rka gl (A-Hp g i (B+KD =0

(a _ k)ei(a—k)a _ (a + k)efi(cuk)a (ﬂ _ k)ei(ﬁ—k)b _ (ﬂ i k)efi(mk)b
Expanding the determinant, it can be shown that this |leads to the following conditions.

a2+[32
20

sin qa sin b + cos aa cos pb = cosk(a + b) ---------------- (12.24)

Since in the range O<E< V,, 3 as defined earlier isimaginary, for these values of energy it
ismost convenient to express S =iy
in thisregion, and noting that cos ix = cosh x and sin ix =i sinh x, equation (12.24) can be

written as

2 2

yz;a sinh yb sin ¢a + cosh yb cosa a=cosk (a+b) ------mmmmn---- (12.25)
4

where yisareal quantity intheinterval 0< E<Vpjust asgisintheinterva Vo< E < co.
Thus we may use (12.24) most conveniently when Vo< E <« and (12.25) when 0 < E <
Vo.

The wave function (12.16) must, like al wave functions, be a well behaved function
as X approaches +o0. Since U(X) is a periodic function whose values are the same in each
unit cell, no difficulty arises on its account provided that the factor € in (12.16) is well
behaved under these conditions. But € is well behaved at both +c0 and —o only if k is
real, whereby € is oscillatory. If k wereimaginary €*would diverge to infinity either at
+o0 or —oo and resulting expression for w(x) would not behave properly as a wave
function. We must, therefore accept only functions of the form (12.16) with rea values
of k. The expressions (12.24) and (12.25) have on left hand side a function of the form
kisin aa + k> cos aa which must the equal to cos (a + b)k. If for a given value of energy,
the function on the left hand side of these equations should have a value in the range
between +1 and —1, there the required value for cos (a + b)k is obtained with area value
of k(a+ b). On the other hand, if the value of the function on the left hand side of (12.24)
and (12.25) should be outside that range, it would mean that, cos (a + b) k would have to
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be greater than +1 or less than —1 which would in turn, requires that, argument k(a+b) be
complex number with imaginary part other than zero. Under these circumstances the
solution (12.16) would not behave properly at infinity and would not satisfy the physical
reguirement for wave functions of the system. The energies associated with such values
of k would simply be forbidden to the electron.

The equations (12.24) and (12.25) can be written as

(az _ﬁz) 1/2
{1+ Wsinz B b} cos(e a—0) = cosk(a+b) ----e---omoe- (12.26)
2 2
where tan 5 = - & *h tangb (V, <E<x)
208
and
(a2+ 2) 1/2
{1+ 4a—2yzsin h?y b} cos(a a— &) = cosk(a+ b) ------------- (12.27)
4
a’+y?
wheretan 6 = — tan hyb (0O<E<V,)

From these expressions it is clear that in both cases the left hand side has the form of
cosine function times a modulating factor whose amplitude is invariably greater than
unity. The value of this modulation factor is actually maximum for a = 0 (hence for E =
0) and approaches unity in the limit of large energies; wherea = 3.

When left hand side of (12.26) and (12.27) are plotted as a function of energy keeping
in mind that o - = &® + v* = 2mVy/h? = constant, the results are as illustrated in fig
(12.4). When the ordinate of the curve lies between +1 and —1, there exists area value
of k corresponding to physically possible wave functions.

Out side of these limits however k must be complex with a non zero imaginary part.
Such values of k can never lead to physically well-behaved wave functions; the
corresponding ranges of energy are forbidden and are shown in figl2.4, as shaded
regions. There are thus formed alternate regions of alowed energy eigen values and
forbidden regions. These regions are usually referred to as allowed and forbidden energy
bands, and the grouping of the permitted energy values into these bands is one of the
most important characteristic feature of the behaviour of eectrons in periodic lattice. It

can be shown that energy bands having the same qualitative aspects as those shown in fig
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12.4 are formed no matter what the form of the potential is, so long as it is periodic.

From the fig 12.4 the following conclusions may be drawn.

f(E)

+2n/atb +4rn/atb
k=0

d NN
Bl

tr/atb + 3n/a+b

Fig 12.4 A plot of the functions on the left hand side of (12.26) and (12.27) versus
energy. The shaded regions show forbidden energy bands where the value of k is
complex, the unshared regions allowed ener gy bands corresponding to real value of k.

1. The energy spectrum of electrons consists of a number of allowed energy bands,
separated by forbidden regions.
2. The width of the alowed energy bands increases with increasing values of
energy.
3. The width of a particular allowed band decrease with increasing binding energy
Vo. In extreme case with Vo — oo the allowed regions become infinity narrow and
the energy spectrum becomes aline spectrum.
These conclusions can be appreciated much more easily by rewriting the equation 12.25
with the condition that even though as Vo — o and b approaches zero the product Vb

remainsfinite. Under these circumstances (12.25) reducesto

(mV,b/h*a) sinoa + cosxa = coska
Let us now define the quantity
P = mV,ba/#h*
which is evidently a measure for the “area’ Vb of the potential barrier. In other words,
increasing P has the physical meaning of binding a given eectron more strongly to a
particular potential well. From the last two equations we find that solutions for the wave

functions exist only if

sinaa

P +cosaa = coska --------- 12.25a

aa
the above conclusions are summarized in fig 12.4a.
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»
»

0 1 0
Pldn — —> 4q/P

Fig 12.4a Allowed and forbidden energy ranges (shaded and open respectively) as function
of P. Theextremeleft correspondsto P = O(free electrons). Theextremeright toP = oc

where the energy spectrum is given as function of P. For P = 0, we simply have the free
electron model and the energy spectrum is (quasi) continuous; for P = oo, a line spectrum
results as discussed under (3) above. For a given value of P the position and width of the
allowed and forbidden bands are obtained by erecting a vertical line;, the shaded areas
correspond to allowed bands.

. _ 2 2m(E-V,)"%. .
Using (12.26) and (12.27) and the value of o = (2mE/A°)"“ and 8 = g itis
possible to plot a curve showing the energy E as a function of k. The result is shown in
figl2.5. The dotted curve is for large energies for which the function E (k) approaches
the free electron relation

h?k?
2m

E=

4. Thediscontinuitiesin E versus k curve occur for

ket V" n=1234.. .
a+b

There k- values define the boundaries of 1%, 2™ 3™ etc. Brillouin zones. The first zone

extends from _ﬂb o+~ = Similarly the second zone consists of two parts, one
a+ a+

extending from —*— to 2" and the other part extending between — " to —or

a+b a+b a+b a+b’
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Fig 12.5 Theenergy E plotted asa function of k accordingto 12.26 and 12.27.
5. With in a given energy band the energy is aperiodic function of k. For example, if one

27

replaces k by k+
a+b

, Where n is an integer, the right hand side of equation (12.26) and

(12.27) remains the same. In other words k is not uniquely determined. It is therefore

frequently convenient to introduce the “reduced wave vector” which is limited to the
region

T T
<k<

a+b a+b
The energy versus reduced wave vector isEE%Jr@ented infig 12.6

I\
A4

RN
~

—7T T
a+b a+b

Fig 12.6 Schematic representation of the E versus a plot of figure 12.5, transformed
to thereduced zone r epresentation.

Kk
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6. The number of possible wave functions per band can easily be shown to be equa to the
number of unit cells N. Now as a result of spin of the electrons and the Pauli’s exclusion
principle each wave function can be occupied by at most two electrons. Thus each energy band
provides for a maximum number of electrons equals to twice the number of unit cells. In other
words, if there are 2N electrons in aband, the band is completely filled.

This conclusion as we shall see has far reaching consequences for the distinction between

metals, insulators and semi conductors.

Properties of Bloch functions:
It has the form of atraveling plane wave, as represented by the factor €, which implies that the
electron propagates through the crystal like a free particle. The effect of the function ui(r) is to
modulate this wave so that the amplitude oscillates periodically from one cell to the next, as but
this does not affect the basic character of the state function, which isthat of atraveling wave.

Because the electron behaves as awave of vector k, it has a deBroglie wavelength
A = 2n/k , and hence a momentum p = hk, according to the deBroglie relation. We shall call the
vector the crystal momentum of the electron.

The Bloch function of yy isacrystal orbital, asit is delocalized throughout the solid, and not
localized around any particular atom. Thus the electron is shared by the whole crystal.

The free electron and Bloch function el ectrons are not identical in their behaviour. The Bloch
function of electron exhibits in many intriguing properties not shared by a free electron,

properties which result from the interaction of the electron with the lattice.

12.5 Velocity of the Bloch electrons and the dynamical effective mass:

For convenience in visualizing the motion of Bloch electrons in solids we shall have
to localize the wave function by superposing the solutions having different values of k.
If thisis done, then the group velocity associated with electron wave packet is

_Go 1dE (12.28)

v, =
dk 7 dk

Where of course E and o are connected by Planck relation E = hw. Thisin itself shows

21,2

K~ and (12.28)
m

the importance of E versus k curves. In the case of free electrons E = f
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simply leads to the identity v = h—r: = % In the band theory, however E isin general not

proportional to k* as may be seen from fig (12.6). Employing an E(k) curve such as
represented in fig 12.7(a) one obtains according to (12.28) for the velocity as a function
of k, acurve of the type illustrated in fig 12.7(b). For the free electron v is proportional
to k and is represented by dashed line in 12.7(b). At the top and bottom of the energy
band v = 0, because from periodicity of the E(k) curves it follows that dE/dk = O, the
absolute value of the velocity reaches a maximum for k = ko where ko correspondsto the
inflection point of the E(k) curve. It is of importance to note that beyond this point the
velocity decreases with increasing energy; a feature which atogether different from the
behaviour of free electrons.

Suppose that the eectron is acted upon by an externa electric field Ep acquiring an

increase in velocity dvo, over adistance dx in time dt, it has gained an energy

dE ek, dE

dE = —-dk = —eE,dx = —eE v, ,dt = ————dt
dk hoodk
where by
dk = _% dt
h
or h% _dp_ —eE,=F - (12.29)
dt dt

Where we now use the symbol p to denote the crystal momentum. The equation (12.29)
shows that the ratio of change of k is proportional to and liesin the same direction as the force F.
This relation is a very important one in the dynamics of Bloch electrons and is known as
acceleration theorem.

Let us know consider consequence of the acceleration theorem. Considering the one-
dimensional case, equation (12.29) can be written in the form

dk_F

da 7n
showing that the wave vector k increases uniformly with time. Thus as t increases, the
electron traverses the k-space at uniform rate as shown in fig 12.8. If we choose the
repeated zone scheme, the electron starting from k = 0 for example moves up the band

until it reaches the top (point A) and then starts to descend along the path BC.
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Fig 12.7 (a) The band structures, and (b) Fig 12.8 (a) The motion of an
the corresponding electron velocity in a electron in k-space in the
one dimensional lattice. The dashed line presence of an electric fied
in (b) represents the free electron (directed to the left) (b) The
velacity. corresponding velocity.

If we use the reduced zone scheme then once the electron passes the zone edge at A, it
immediately reappears at the equivaent point A’, then continues to descend along the path A’ B’
C'. Recdling the trandational symmetry property the points B’, C' are respectively equivaent to
the points B, C SO that we may use either of the
schemes.

In the presence of electric field, the electron isin constant motion in k-space and never
itisat rest. Fig(12.8) showsthe velocity of electron asit traverses the k-axis. Starting at
k = 0, as time passes the velocity increases, reaches maximum, decreases and then
vanishes at the zone edge. The electron then turns round and acquires a negative velocity
and so forth. The velocity we are discussing is the velocity in real space i.e. the usua
physical velocity. It follows that a Bloch eectron, in the presence of static eectric field,
executes an oscillatory periodic motion in real space, very much unlike a free electron.
Thisisone of the surprising conclusions of electron dynamicsin crystal.

If one differentiates (12.28) with respect to time, theresult is

Wy _ li(d_Ej _1d°Edk
dt  Adtldk) 7 dk® dt
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By using (12.29) this can be written as
dv, eE,d’E F

e el (12.30)
d 7° dk m*
Where the effective mass m* is given by
hZ
M =—— - 12.31
4°E (12.31)
dk?

Thus, in so far as the motion in an eectric field is concerned, the Bloch electron behaves like a
free electron whose effective massis given by (12.31). The mass m* isinversely proportiona to
the curvature of the band, where the curvature is large that is d°E/dk? is large-the massis small, a

small curvatureimpliesalarge mass. Thusif the energy is quadratic in k

S i — (12.32)
Where a is a constant, then equation (12.32) yields
2
——
200
h2k?
Whichisequivalentto E = .
m*
m
I I\_)'
| |
| |
| |
! Lk
| |
|

) B e
(b)

Fig 12.9 (a) The band structure and (b) the effective mass m* versusk.

Figure 12.9(a) and (b) shows respectively the band structure and the effective mass m*, the
latter calculated according to (12.31). Near the bottom of the band the effective mass m* has a
constant value which is positive, because quadratic relation (12.32) is satisfied near the bottom of
the band. But as k increases, m* is no longer a strict constant being now a function of k, because
the quadratic relation is no longer valid.

Beyond the inflection ko the mass m* becomes negative since the region is now close to the top
of the band, and a negative mass is to be expected. The negative mass can be seen dynamically
by noting that the velocity decreases for k > ko. Thus acceleration is negative i.e. opposite to the

applied force, implying a negative mass. This means that in this region of k-space the lattice
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exerts such a large retarding force on the electron that it overcomes the applied force and

produces a negative accel eration.
12.6 Crystal Momentum and Origin of the Effective M ass:
What has been said is that Bloch eectron in the state y behaves as if it had a momentum 7k.

Basically, there are three different reasons to support this statement.
(2). The Bloch function has the form (12.13).

= €7 U(r)
which, since Uy is periodic, appears essentialy as a plane wave with k a constant of motion and

that 7k will have the dimensions of momentum. Asthe energy of electron increases (The particle
becomes there by nearly free) the value of k in general approximates that of free-particle
momentum divided by h.

(2). When an electric field is applied, the wave vector varies with time according to equation
(12.29)

d(7k)
—-F,.
dt e
again indicating that 7k acts like a momentum. Here F+. refers to the external force applied to

the crystal.
(3). In collision processes involving a Bloch electron the electron contributes a momentum equal
to 7k.

It can easily be seen that these conclusions must hold no matter what particular form periodic
potential takes. It is therefore customary to refer 7k as the crysta momentum and is not equal to
the actual momentum of Bloch electrons. To make the distinction between the actual momentum
of electron (p) and the crystal momentum p. = A7k more clear, we evaluate the average
momentum using quantum mechanica method.

SRS B v [ — (12.33)
Where —i#V is the momentum operator and y is the Bloch function. On solving this integral

using the properties of the wave function yy one finds that

P = MgV
Where my is the mass of the free electron and v is the velocity given by (12.28). Thus time

average momentum of electron is equal to the time mass my times the actua velocity v. If pc =

hk were the true momentum, then the force appearing on the right of (12.29) should have been



M. Sc., PHYSICS 20 ENERGY BAND THEORY

the total force and not just the external force, because there is a force exerted by the lattice, yet
this force does not influence p,
The above idea may now be assembled to give a physical interpretation of the true momentum,
one may write

mydv _ F

dt tot
Where F; and F_ are, respectively, the total force and the lattice force acting on the electron. By

S Y L — (12.34).

lattice force, we mean the force exerted by the lattice on the electron as a result of itsinteraction

with the crysta potentia. Equation (12.34) can be expressed in terms of the effective mass as
dv  Fy
M G =M
where m* is given by

_ Mo (12.35)
Foo +FL

Now we see the reason why m* is different from my, the free mass. If F_ were to vanish the

effective mass would be come equal to true mass.

The effective mass may be smaller or larger from than my, or even negative depending on the
lattice force. Suppose that the eectron is “Piled up” primarily near the top of the crysta
potential as shown in figure 12.10a. When an externa force is applied it causes the electron to

“roll down hill” dong the potential curve.

Electron »Fex —» Fe
Wotential Wotential
(b) Electron

(@
Fig 12.10 (a) Electron spatial distribution leading to an effective mass m*
smaller than mg (b) A distribution leading m* > mjy

As aresult, a positive force becomes operative and hence, according to (12.35) m*< my. This
is what happens in akali metals for instance in the conduction band in semi conductors. Here
m* is less than my because the lattice force assists the external force.

On the other hand, when electron isfilled mainly near the bottom of the potentia curve figure
(12.10b) then clearly the lattice force tends to oppose the external force; resulting m* > my . This
is the situation in akali halides. If the potential curve is sufficiently steep, then F. becomes

larger than Fe and m* becomes negative.



ACHARYA NAGARJUNA UNIVERSITY 21 CENTER FOR DISTANCE EDUCATION

However, the crystal momentum P. = 7k is still a very useful quantity. In problems of
electron dynamics in externa field, the crystal momentum is much more useful than true
momentum, since it is easier to follow motion in k-space than in real space. Therefore we shall
continue to use P; and refer to it as the momentum, when there is no ambiguity and even drop
the subscript c.

In other words, the effective mass m* and the crystal momentum 7k are artifices which alow
us - formally at least- to ignore the lattice force and concentrate on the externa force only. This
is very useful, because lattice force is not known a priori, nor is it easily found and manipulated
asisthe external force.

12.7 Concept of Hole:

In a one dimensiona crystal some of the allowed bands will be entirely filled, some will be
entirely empty and one may be partially filled, because at absolute zero the electrons of the
system will occupy the states, one per state as required by the Pauli’s exclusion principle from
the lowest state up to a given energy determined by the number of available states, their
distribution in energy, and number of electrons in the crystal. This energy is, of course, the
Fermi energy of the crystal at zero temperature. If an eectric field is applied, it is obvious that
no current can be contributed from filled bands. This can be understood by nothing that the
current density arises from a given band will be

| =—nev
where V is the average velocity and n is the number of electrons per unit volume belonging to

that band. But v can be expressed as

V=—2V,
where the summation is taken over all the velocities associated with individual electronswithin

the volume V of the material. Hence current density | can be expressed as

| = —VE;vi --------------- (12.36)
This, however, must yield zero when summed over full band, because due to the symmetry of the
curves of figure (12.6) about the E(k) axis, for every state of positive velocity i JE/ck
corresponding to a +ve sope, there is a state corresponding to a negative velocity of equa
magnitude (negative slope) at k' = k. We must conclude that only bands which are partialy

filled can contribute to current flow. This can be understood on physical grounds by observing
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that in a partidly filled band there are always electrons which can be excited gradually to
unoccupied states of higher energy and momentum, where as in a filled band, on a account of
Pauli’s exclusion principle, their gradual field excitation can never occur since al the states are
occupied.

For a band containing a relatively small number of electrons, the current obtained when a
small voltage is impressed is most ssimply given by (12.36) summed over all the electronsin the
band. If the band is nearly full, however, and there are only a few states (which in equilibrium
state will be concentrated near the top of the band) the current equation (12.36) is best expressed

by writing in the form

=23 == 2v, -2 |4 STy e (12.37
Here the sum over i represents the sum over al velocity states occupied by electrons, the sum
over j represent the sum over al velocity states in the band and sum over k represents and the
sum over un occupied velocity states. As we have seen before the sum over |, taken over all
states in band, must vanish. The remaining sum over the unoccupied states correspond to a
current which could be produced by a corresponding number of positive charge carriers. It is
possible (and advantageous also) to express the current from amost full band as a current
derived from the motion of a comparatively small number of empty electronic states or holes
which behave like positive particles, rather than a very large number of electrons. The velocity
associated with ahole is that which an electron would haveif it were to occupy the empty energy
state, which is ordinarily near the top of the energy band. But since the E versus k relation there
is concave downward, d’E/di® is negative, giving a negative electron effective mass from
(12.31). A particle with negative effective mass experiences acceleration in a direction opposite
to that of applied force. A negative charge particle with negative effective mass would thus be
accelerated in the same direction as applied field and would thus exhibit the same dynamical
behaviour as a positive particle of positive mass. We may, thus, regard the situation in a nearly
filled band as one involving a relatively small number of positive particles of positive mass,
which we shall refer to as holes, whose velocities and momenta are those corresponding to the un
occupied electronic states in the band. We shall see later that in certain materials the physical
nature and the dynamical behaviour of holes is very easily visualized in terms of defects in the
electronic valence bonds which connect nearest neighbour atoms and provide the cohesive forces
which hold the crystal together. We have not discussed in detail the behaviour of electrons and
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holes under the influence of magnetic force, but it can be shown that they move as would

negative or positive particles of effective mass m* under the influence of usual magnetic force
9(vxH).
C

12.8 Easy Limiting Cases of the Periodic Potential:

The periodic potential model led to the formation of alowed and forbidden energy bands
resulting in the energy (E) versus k relation of the form shown in fig 12.5. The resulting
electronic behavior was similar to free electron picture except that an effective mass had to be
viewed as positive holes. We have emphasized these quantitative conclusions, which are
independent of potential function aslong asit is periodic.

The potential (fig 12.3) taken was only illustrative and is poorly related to the actual form of
the potential, and consequently these qualitative conclusions are only illustrative. An exact
description of the electronic behavior in a crystal must take into account the actual potential
experienced by electron due to the ion cores and all other electronsin the crystals. Thisisavery
complicated problem and an exact solution of the problem, even in one electron approximation is
impossible. However two easy limiting approximations:-

(1) Nearly free e ectron approximation

(2) Thelight binding approximation

are of considerable interest. When the periodic potentia is very weak, we can treat it as a
perturbation and we have the “nearly free electron approximation”. When the periodic potential
is very strong each electron is ailmost bound to a minimum in the potential and so the rest of the
lattice may be regarded as a perturbation on the above minimum. Thisis known as “tight binding
approximation”.

It may be remarked that in some solids the former approximation is quite good, while in
others the latter one is more nearly correct. There are also solids where neither is adequate and
the situation being intermediate between these two extreme cases. |In this intermediate range we
must use much more complex methods such as, orthogonalised plane wave (OPW) or an

augmented plane wave (APW) method.

12.9 Summary:
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1. The solutions of the wave equation in the periodic lattice are of the Bloch form y(r) =
e’ Ui(r), where Uy (r) isin variant under acrystal lattice translation.

2. The energy spectrum of the electron is comprised of a set of continuous bands
separated by regions of forbidden region are complex.

3. Thenumber of orbitalsin aband is 2N, Where N is the number of unit cellsin the
specimen.

4. Regarded as afunction of k, the energy E(K) satisfies severa symmetry properties. First it
has transitional symmetry properties.

E(k+G)=E(K)
which enables us to restrict our consideration to the first Brillouin Zone only. The

energy function E (k) aso hasinversion symmetry, E (—k) = E (k) and
rotational symmetry in k-space.
5. Anéectron in Bloch state y x moves through the crystal with avelocity

1
v==A_E(k
ARE®K)

This velocity remains constant so long as the | attice remains perfectly periodic.
6. Inthe presence of an electronic field, an electron moves in k space according to the
relation

=—eEy/h
The motion isuniform and its rate proportional to the field. One obtains this

relation if one regards the electron as having momentum /#k.
7. Theeffective massof Bloch electronisgiven by

me =A%/ (d*E/di®)
The mass is positive near the bottom of the band, where the curvature is positive. But near

the top, where the band curvature is negative, the effective mass is also negative. The fact
that the effective mass is different from free mass is due to the effect of lattice force on the
electron.
8. A hole existsin aband, which is completely full, with one vacant site. The hole
acts as a positive particle of positive charge +e.
12.10Key Words:

Positive and negative hall coefficient — The Bloch Theorem — Periodic crystal potential — Energy
gaps or band gaps — Kronig — Penney model — Dynamical effective mass m* — k-space.
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12.11 Review Questions:
1. Investigate the motion of electronsin aperiodic field discuss the electronic energy
levelsin acrystal
2. Prove that effective mass of an electrons in energy band is given by
(ij _ 1 0°E
m* ), h? okok,

3. Distinguish between extended zone, reduced zone and periodic zone scheme of

plotting energy bands. Derive an expression for the effective mass m* of the
electron in a crystal and explain the physical basis of m*

4. Discuss the essential features of the electron energy band structure on the basis of
Kronig-Penney mode.

5. (@) Provethe Bloch theorem and explain the reduced zone scheme.
(b) Explain the significance of the effective mass of the electrons.

12.12 Text and Reference Books:

1. Elements of Solid State Physics by J.P .Srivatsava(PHI)

2. Solid State Physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)

5. Solid State Physics by C. Kittel (Asia Publishing House)

6. Solid State Physics by S.L. Kakani and C. Hemrgjani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)
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UNIT -1V LESSON: 13

BAND THEORY OF SEMICONDUCTORS

Aim: To know about energy bands, free electrons model and zone schemes for energy

bands, free electrons model and zone schemes for energy band.

Objective of the lesson:

» To know about the nearly free electrons model and to show that the band gap
energy is equal to twice the magnitude of the leading Fourier coefficient of the
crystal potential isto show AE = 2V.

» To identify the three different zone schemes for energy bands i.e. the extended

zone scheme, the reduced zone scheme and the periodic zone scheme.

» To know the energy bandsin a genera periodic potential and to find solution
near the boundary.

» Todistinguish in between insulators, semi conductors and metals.

2
where

» To consider thetight binding approximation and to show m= = ra?’
ra

m: is the effective mass of the electron, ais the lattice constant, r isthe overlap
of atomic orbitals.
h?k?

> To consider the Wigner — Seitz cellular method and to show ¢, = ¢, + 5
m

and also to show about estimation of cohesive energy.
» To depict qualitative method of band structure of calculation.

Structure Of The L esson:

13.1 Nearly free electron mode.

13.2 Zones shemesfor energy bands.

13.3 Energy bandsin agenera periodic potential.
13.3.1 Solution near the zone boundary.
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13.4 Insulators, semi conductors and metals .

13.5 The Tight — Binding Approximation.

13.6 The Wigner — Seitz cellular method.

13.6.1 Estimation of cohesive energy .

13.7 Methods of band structure calculation in use: A qualitative view.
13.8 Summary.

13.9 Key words.

13.10 Review questions.

13.11 Text and reference books.

I ntroduction:

In lesson 12, we considered the consequences of the periodicity of crystalline lattice.

There we observed that the potential energy function is a periodic function satisfying
V(r)=V(r+t,) - (13.1a)

Wheret, isan arbitrary trandation vector in the direct crystal lattice.

Being periodic in the crysta lattice, the potentia V( r) may be expanded in a Fourier

series and expressed as
V() =Y Ve’ e (13.1b)
¢}

where g denotes a reciprocal lattice vector.
To find an appropriate solution to the following one electron time independent
Schrodinger equation.
2
HY () = [‘ z_m
we can try the plane wave expansion

lP(r) =¥ = ZCke”"'
k

solution and obtai ned

h2k?
( - —chk +ZVoCyg =0 mrmmmmmeeeeeeeee (13.1d)
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when subject to Born-von Karman periodic boundary condition, the number of allowed k
values for the electrons waves will be equal to the number of unit cells, say N

the wave function with eigen value gx may be written as

Y (r)= %Ck_ge‘(k‘g’)'r T (3 [ A ——— (13.1e)
with u,(r) = %Ck_ge‘i@"r --------------- (13.1f)

From (13.1€) we infer that u(r) modulates the plane wave €' to a form that serves as a
solution to the wave equation (13.1c) for single electron state k it is essentialy the

statement of Bloch function W(r) which iswritten as

O (oY — (131g)
we note that u(r) is periodic in the direct crystal lattice. That is,
Uk(F + ) = Ug(r) =-mmmmmmmmmm- (13.1h)

In lesson 12 we applied Kronig penney model to obtained band structure in one
dimension solids. Which was rather a crude approximation. The practical situation in

this lesson we try to remove some approximation by using more appropriate models.

13.1 Nearly free eectron mode:

The energy bands of solids have generally complex structures. Therefore, it would be
appropriate to study the influence of a crystal potentia on electron in a certain limiting
case and then extend the ideas to a genera situation. Let us assume that the crystal
potential grows slowly from zero value. In the limit of a vanishingly small potential, the
Fourier coefficients Vy may be equated to zero in the first approximation. The
descriptions of free electron states as given by the energy parabola (fig 13.1) is bound to
alter in view of equation (13.1i).

B (13.1()
AE
| » k
_4_7'[ 271' o > E 4_7[
a a T a a
g=—
a

Fig 13.1: Periodic occurrence of the parabolic energy curves of afree electron in
one-dimensional reciprocal space. The periodicity in the real spaceis‘a. The
electron is supposed to be placed in a periodic lattice with a vanishing potential.
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The allowed energy states are no more confined to a single parabola in the k-space. The
states are represented by other parabolae as well, that are displaced by any reciproca
lattice vector g.

h2
gk = gk+g = %“( + g| _______________ (132)
On the ground of simplicity, the parabolae for one-dimensional crystal are drawn in

fig (13.1). The periodicity in real space is ‘a and in the k-space it is given by the
reciprocal lattice vector g = {n . 2?”} n being an integer. At zone boundaries the energy

values are degenerate as two parabolae intersect here. The first zone boundaries occur at

k = J_r1 g= +” . Therefore the electron wave function with these k-values must be
a

2
represented by a superposition of at least two plane waves which for a small potential

may be taken as

o3 o (1)]--03] 059

The waves move in opposite directions.

But here, the reciproca lattice vectors larger than Eshould also be considered. The
a

value of Cy as determined from (13.1d) is appreciably large when & and &g both

21,2

approach the value (h K
2m

j. In this, the absolute magnitude of Cy _ 4 is approximately

equal to that of Cy. The two plane waves (13.3) at the first zone boundaries ideally
correspond to this condition. Hence other reciprocal vectors can be ignored in the
approximation for the construction of wave functions at the zone boundary. The wave

functions may be expressed as
e A — (13.4)
a

R T e — (13.5)
a

These standing waves appear as aresult of Bragg reflection occurring
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a k =+ g/2 =+ n/a The eectron plane waves when Bragg reflected superpose the
waves moving towards the same zone edge where the former suffered Bragg reflection.
The probability densities of the two sets of standing waves are

The electron potential energy in one-dimensional crystal is showninfig 13.2

V(X), potential energy
A

Ionc/ore | . ‘
v W W

R FOP e

g

v v
(b)

Fig 13.2 (a) Qualitative form of the electron potential energy V(X) in a one-
dimensional crystal lattice. Dark circles denote the positions of the positive ion
cores. (b) Distribution of probability density for the standing waves ¥(z) and the
planewaveinsidethe crystal lattice.

The potential field belongs to the positive ion cores whose valance electrons move in
thisfield. The figure aso depicts the probability distributions of the standing waves and
the simple plane waves. The plane waves exp (ik-x) have the same probability density at

al points since exp (-ik-x). exp (ik-x) = 1. The distribution for ¥ favours the piling of
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electronic charge exactly above the ion cores. On the other hand the ¥,y waves push the

electronic charge away from the iron cores. The eigenvalues of ¥ and ¥, differ,

though both correspond to the same k-value (% or —%]. The energy dispersion curve

which is continuous throughout the zone shows a gap with two unequa roots at the zone
boundaries (fig 13.3). This explains the origin of the band gaps observed in the energy

band structure.
AL

44
V| N

J

SN (@™
270 ox 2 K
a a a a
—>
-7

Fig 13.3 Discontinuity in the energy parabola of the free electron at the
edges (k = +r/a) of thefirst Brillouin zonein a one-dimensional lattice.

The Eigenvalue of ¥+ is lower in energy since the maxima of its probability density
occurs at the points of minimum potential energy. The plane wave energy at the zone
edges is centred between the two eigenvalues ¢ ) and ¢ () corresponding ¥+ and ¥, in
that order. Now, we are in a position to make an approximate measure of the band gap.
The Fourier expansion of aone-dimensiona crystal potential has the form

V(X) =2V, exp(ig. X) -----===------- (13.8)

Appreciating that the pote?wtial energy function is real, one can rewrite (13.8)

considering only the shortest reciprocal lattice vector as

V(X)=2V cosm --------------- (13.9
a

with V = Vgl = Vgl
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Since the magnitude of Vg is known to decrease as g increases, for an approximate
calculation one can ignore the contribution from the larger reciprocal vectors.

Using the first order perturbation theory, the band gap is written by
27X s .
AE=¢,)—¢) = 2\/_[ COS? [T(+)T(+) -Y,¥ ]dX """""""" (13.10)

Normalizing the wave function at k = + 7 over the crystal’slength L, one can have
a

............... (13.11)
2 1/2 X
o (_j a
L a
Using(13.11) one can have from (13.10)
L
AE = ﬂj(n cos?” dex
L5 a
or
AE=2V - (13.12)

Thus, the band gap is equal to twice the magnitude of the leading Fourier coefficient of
the crystal potential. The range of allowed energy states covered by the dispersion curve
Fig (13.3) in the first Brillowin zone constitutes the first energy band. Similarly, the
higher bands are identified with respective dispersion curves in other zones.
13.2 Zone Schemes For Energy Bands:
There are 3 schemes in which the energy bands are drawn.
1. The extended zone scheme. 2. The reduced zone scheme. 3.The periodic zone scheme
The Extended Zone Scheme

In this scheme different energy bands are drawn in different zones in the k space.
Thefirst band is shown in the first zone (—n/a < k < n/a) and the next higher in the second
zone (n/a< k < 2n/aand —2n/a< k < —n/@), and so on.
The Reduced Zone Scheme

All energy bands are shown in the first Brillouin zone in this scheme. As an example,

the free electron parabola is shown in this scheme by figl3.4. The curves in the two
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segments of the second zone are translated to the first zone by reciprocal vectors 2n/a and
—2rn/a, separately. Similarly the energy pictures in other zones are translated to the first

zone by appropriate reciprocal lattice vectors.

le—First Brillouin zone—»

Fig 13.4 The free electron energy parabola plotted in the reduced zone scheme for a
one-dimensional lattice. The curve AC, when trandslated by —2n/a, reproduces the
usual free electron curve for the negative k-values represented by the dashed curve.
Similarly, the trandation of A’C by 2x/a will give the curve for the positive k-values.
This often gives a useful description of the band structure of a crystal.

The Periodic Zone Scheme:
Every band is drawn in every zone in two schemes. The first three energy bands of a

linear crystal as drawn in the three schemes are shown figure 13.5 for the purpose

€k I /
Extended zone /
scheme

comparison.

educed Zone scheme

Periodid zone schieme

s
¥

n
>

k
Fig 13.5 First three energy bands of a one-dimensional crystal in the extended,
reduced and periodic zone schemes.
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13.3 Energy Bandsin a general Periodic Potential:

The wave equation

2
HY, {—h—vz +V(r) =g\Pm} --------------- (13.13)
2m
in principle can be replaced by
n°k?
( om —eJCk +%V9Ck7g =0 - (13.19)

with out any loss of generality. Hence, the process of treating a general periodic potential

in continuum with (13.14) can be written as

) O N S (13.15)
¢}
with
h2k?
A= 13.16
= (13.16)

Equation (13.15) is called the central equation. It represents a set of simultaneous linear
equations that couple the coefficients Cy _ g for al reciprocal lattice vectors. The number
of these equations equals the number of reciprocal lattice vectors. The equations are
consistent if the determinant of the coefficients of Cs vanishes. Considering only one

Fourier component Vy, we write three consecutive equations which yield the following

determinant
(/lkfg —€) V 0
V (A —¢) V| - (13.16a)
0 V (/lkfg —£)
with
Vgl = [V—g| = V.

It is a small portion of a huge determinant that is evolved from the set (13.15). By
equating (13.164) to zero and solving for € we get three roots that fall in three different
energy bands at a certain value of k. The size of the determinant is chosen according to
the extent of the energy spectrum that is required. But the size factor is no more a

consideration now, with the availability of fast computers.
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On choosing k that differs from a value in the first Brillouin zone by a reciprocal lattice
vector, there occurs no change in the energy spectrum as the same set of equations in a
different order appear giving the same roots of energy. Therefore, very often the k-values
within the first zone alone are considered.

Roots that refer to a wave vector k are designed as & withn =1, 2, 3... for the first,
second, third.... Bands, respectively, forming the energy spectrum whose different levels
belong to different energy bands. The roots &y are evaluated by varying k over the
allowed set of values. These when arranged on an energy scale produce the fall band
structure. The picturesin the three dimensional space are fairly complex. On the account
of k being direction dependent, the band structure in general appear differently in
different directions.

13.3.1 Solution near the Zone Boundary:
It is important to study the solution of the central equation near the zone boundary
because of the large deviations in the behavior of free electronsin thisregion. According
to (13.15) if Cig isan important coefficient then Cy is equally important.
In the two-component approximation, the electron wave functionsistaken as
Y =Crexp (ik - x) + Cgexp[(i(k . g)) - X] -------------- (13.17)
The two equations coupling Cy and Cy.¢ are obtained from the central equation (13.15),

we have asolution if

(A—¢) \

\ ()’k—g _8) -

with
h2

kg —%Ik—glz

Solving it for ¢, we obtain
1 1 1/2
g (¥)= E(lk_g + lk)i[z(lk_g +24,)° +V2} -------------- (13.18)

The roots & (£) when plotted as a function of wavevector give dispersion curves for

the first two energy bands as shown in fig 13.6.
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Zone boundary

—First band! |
k - (201

Fig 13.6 Qualitative form of solutions of (13.18) in the periodic zone scheme
near the boundary of thefirst Brillouin zone. The free electron curveisdrawn
for comparison.

The corresponding roots at the zone boundary [k= % g] may be written as

P 0 0V A —— (13.19)
where
2 (1 )
A=—|=g| e 13.20
zm(zgj (1320)

The A is the free electron energy at the zone boundary. We find that the band gap
obtained from (13.19) isidentical with the one given by (13.12). It isinstructive however

to express the roots near the zone boundary in terms of the wave vector k as measured

from the zone boundary. The k and k one related by

Using (13.21), (13.18) can be expressed as
e-()=¢e()+ Ak (11 2—’1] ----------------- (13.22)
k 2m \%

Thus in this definition of the wave vector, the dependence of energy on wave vector is

similar to that for the free electrons. When V is negative, ¢ (-) corresponds to the upper
band.
13.4 Insulators Semiconductorsand Metals:

The Electronic transport in solids is found to be closely controlled by their band
structures. With the knowledge of the band structure it is possible to predict whether a
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solid is good conductor of electricity. By basing on qualitative difference in the band
structure we distinguish between Insulator, semiconductor and metals.

We know that the number of energy states in a band is equa to the number of
primitive cells (say N) in the crystal. Since each state can accommodate two electrons of
opposite spins a number of (2N) electrons would be required to fill the band completely.
Therefore if a primitive cell contributed an even number of electrons to a band, the band
would be completely filled. For example, in a monoatomic crystal in which each atom
has one valance electron, the band would be fully occupied if there are two atoms in the
primitive cell. With two valence electrons per atom, only one atom in the cell will fill the
band completely. Solids in which one or more bands are completely filled and al others
are empty, behave asinsulators at 0 K. The lowest alowed empty band is preceded by a
region of forbidden energy gap, across which electrons need be excited for electric
conductions. Since the usually applied electric field are not large enough to provide to
this excitation, the material behaves as an insulator. When the energy gap isin the range
of an eV, the materia shows a conductivity intermediate to values of insulator and metals
and the materia is classified as a semiconductor. The difference between insulator and

semiconductorsis one of degree and not of type.
\ x e \W/\

0 k—> n/a 0 k— n/a 0 k— n/a
(@ (b) (©
Fig 13.7 Qualitative band schemes for insulators and metals. (a) insulators — the
lower band and all below it are completely filled; all higher bands are empty, (b)
metals — a partially occupied band, and (c) metals of relatively low conductivity —
overlap between, afilled band and an empty band.

Energy
Energy
Energy

| EF

On the other hand if the number of valence electrons per primitive cell in an odd
number, the top most occupied band is only partially filled. Such a materia shows the

flow of current on the application of an electric field. These solids are thus good
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conductors of electricity and are called metals. Alkali metals and noble metals are the
best example of this class where one valence electron is contributed by each primitive
cell and the highest occupied band is exactly half filled. Now take up few specific cases
to see how far the actual band structures conform to the above principle.

Sodium: It belongs to the group of akali metals all having the bcc structure with a
rhombohedral primitive cell that contains effectively one atom. The electronic
configuration of a sodium atom is [1s* 25* 2p°] 3s' since there is a correspondence
between the discrete states of an isolated atom and the Brillouin zones in a solid, we
expect that the 10 electrons in the closed inner shells form narrow bands in the sodium
metal occupying the first five zones (1 for each s—shell and 3 for the p—shell) in the
extended zone scheme .the single outermost (3s’) el ectron produces the half filled band in
the next zone. Accordingly the sodium is metallic and so are other alkali metals.
Magnesium: It is a member of akaline earth metals all of which have two valence
electron per primitive cell irrespective of the symmetry. The magnesium atom has
electronic configuration [1s" 2s* 2p°] 3s°which would apparently give the insulating
behaviour to the solid magnesium, contrary to the observed metallic character. The
metallic character arises because of the overlapping of the empty 3p band with the filled
3s band. Thus the 3s electrons can be amost continuously excited to states in the 3p
band. The overlap only saves the alkaline earth metals from being branded as insulator.
They are not the same good conductors of electricity as the alkali metals. They are rather
classified as semi-metals. A quantitative demonstration of the band overlap is shown in
figure 13.7 (). The Fermi energy & in magnesium occurs at an energy which fills the 3s
band about 90% with just a small % occupancy for the overlapping sp band.

Diamond:- The isolated carbon atoms have the electronic configuration —1s? 25” 2p°.

The mixing of 2s and 2p wave functions in the tetrahedrally bonded diamond crysta is
well known to result in the sp* hybridization. The sp* hybrid band further splits into two
because of the modification of the s- and p-levels in the crystal. Each of the two hybrid
sub bands can accommodate 4 electrons. The 4 electrons belonging to the 2s- and 2p-

states fill the lower sub-band, leaving the upper one empty. There exists a forbidden gap
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Ey of 5eV at 0 K between the two sub-bands. These features that account for the
insulating property of diamond are shown in figl3.8. Band structures of the semi

conductors Ge and Si are characterized by similar feature.

Conduction band
P
>
(@)
z
(5} S
c
o
3
w Number of
available quantum
states per atom
Valence band

l'o

Fig 13.8 Behaviour of energy bands as a function of interatomic separation for
diamond (C), Si and Ge. Theband gap E4 is defined at the equilibrium separation
ro. The figure shows that the band gap is not tied to the periodicity of the lattice.
Amor phous solids can also show a band gap.

13.5 The Tight-Binding Approximation:-
In the NFE model plane wave part exp (ik.r), of the Bloch function [uk(r) exp (ik.r)], is
emphasized and the atomic part is overlooked. But electrons in the low-lying inner core
levels of afree atom are strongly localized in space. The property is largely retained by
these electrons when atoms are assembled to form the solid. It points out to the
inadequacy in describing every band character in terms of quasi-free electrons. In order
to deal with localized electron, an aternative approach, is followed in which the atomic
part of Bloch function is stressed. This approach is known as tight binding
approximation. The single electron wave function in the crystal is expressed as a linear
combination of the atomic orbitals (LCAO) that the electron occupiesin afree atom. The
forms of Bloch function in alinear crystal for k = 0 and k= 0 aredrawn in figure 13.9.
The tight-binding approximation isideally suited to deal with the inner core electrons.
It has been successfully been applied to the d-electrons in transition metals and to the
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valence electrons in the diamond live and inert gas crystals .We give below the simplest

case of s-state € ectrons.

AT AT
U, UV

Fig 13.9 (a) Bloch functions corresponding to k = O state, built from atomic orbitals
(dashed) with small overlap. (b) Bloch functions for a large overlap of the atomic
orbitals (dashed). (c) Schematic representation of wave functions corresponding to k
# 0. Itsform is approximately the product of (b) and cos k (shown as dashed). The
real part of the wave function isshown.

Consider an s-electron in an isolated atoms positioned at r,, with the ground state wave
functions ¢(r-r,) where r determines the electrons position in space. Then the one
electron schrodinger wave equation for free atomis

Hod(r - rn) = &0 (r - rn) =----mm==-nmmme- (13.23)
Where Hp and & are Hamiltonian and the ground state energy of the electron in a free

atom. The Hamiltonian for an electron in the crysta is expressed as

2

H=Ho+Wr-ry)= {—%Vz +V(r—r,)+v(r —rn)} ------------------ (13.24)
With
V(r—r.)= 2 Vy(r —r,)-------m-mmmmmmmm (13.25)
In the abO\rT/];n equations, vo(r- ry) denotes the potential energy of an electron when
localized at the isolated atom positioned at r,. The influence of atoms in the vicinity of
I, where the electron in question is strongly localized on relative terms, is treated as a
perturbation on Ho and represented by v(r- r,). Now, our aim is to look for solutions of
the following Schrddinger equation:

H¥((r) = ac Pk(r) ------------------ (13.26)
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Where gy isthe electron energy in the crystal and W(r) the Bloch wavefunction.
In trying the solution
Yi(r) =2 exp(ik.r )o(r —r,)-----m--mmmm-mmmm- (13.27)
The above function satisfie; the properties of a Bloch function. For example it is quite
simpleto check that the function is periodic in the k-space, useing
exp(ig-r)=1
According to the perturbation theory, thefirst order energy is given by

[ (AP, (r)av
& = e (13.28)
[we (W (av
Using (13.27), we have
[ (W (NAV = T explik- (r, =r)1[ ¢ (1 =1,)p(r —1,)aV -memmemsemeemeaeen (13.29)

For a strongly localized electron, ¢(r-rp,) is significant only in the proximity of rp.
Therefore, we evaluate (13.29) by putting m = nin the first approximation. If thereare N
atomsin the crystal, we have

[P (W (NAV = Z1= N oo (13.30)
Making use of (13.23),(13.24) and(13.3nO) electron energy e iswritten as

&y 2% 2 explik-(r, - rm)]jgb “(r=rpleo +v(r —r)lg(r —r,)dV ----mmmmmmmee (13.31)
For the term containing &, we again neglect the overlap between the nearest neighbors,

putting m =n. Therefore

g—l\f; S explik - (r, = 1,)][ @ * (F = 1) = 1,)AV = g -oromeeroeeeeeee (13.32)
Including the overlap upto the nearest neighbors for the perturbation term, we write
[o* (r=r V(r =1)p(r =1,)dV = =g —=remrememmeeeees (13.33)
(on the same atom)
Jor (r=r W =r)p(r =1,)aV = =y -roeoeemeeeeees (13.34)

(between the nearest neighbours)
All terms in the summation over n , each of which is evauated over al m (either the

same atom or the nearest neighbor) are equal in magnitude on the demand of periodicity.
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Since the summation over n runs over al atomsin the crystal, the sum is simply N times
the value of single term. Thisfactor of N cancels with the factor N in the denominator. In
view of this and relations (13.32) (13.33) and (13.34), the electron energy & assumes the
form

g ~gy—o—y e (13.35)
The sum in (12.35) is carried only cr)nver the nearest neighbors. In a simple cubic crystal
with lattice constant a the nearest neighbor atoms are at

m—rm=(£a, 0, 0); (O, =4, 0) (0, 0, +a)

This gives s-state energy in the crystal as

€, ~ &, —a —2y(cosk,a+cosk a+cosk,a) -------------- (13.36)

When the atoms are brought together to form a crystal, the single atomic energy level ¢
broadens to constitute an energy band whose component levels are defined by (13.36).
We can determine the bandwidth as follows.

Energy of the band at its bottom:

The bottom liesat k=0, giving

Epott — E0 — AL — GY ----------- (1337)
Energy of the band at its top:

Thetop occurs at k = + nt/a, giving

Eop= €0 — A + By  -m-m-mmmmemeoee- (13.38)
Therefore, from (13.37) and (13.38),
the bandwidth = 12y ------------------ (13.39)

Thus the bandwidth is proportional to y which represents the overlap of atomic
orbitals (13.34). A qualitative illustration of the results of tight-binding calculation for a
simple cubic crysta is made in fig 13.10. Where as y determines the bandwidth o is
interpreted as the lowering of the center of gravity of the free atomic level on forming the
solid. As one proceeds from inner to outer shells in an atom, the width of the respective
energy bands goes on increasing because of more and more overlap. This is consistent
with the result of the Kronig-Penney model and also confirmed by experiments. It is

amply clear from even Fig (13.10) where the second band appears as much wider.
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Fig 13.10 Illustration of the result of a tight-binding approximation for a primitive cubic
lattice of lattice constant ‘a’. (a) Position of energy levels g and &, in the potential V(r) of
the free atom. (b) Variation in broadening of the levels g and &, as a function of the
reciprocal atomic separation r . (c) Variation in one electron energy ¢ as a function of
the wavevector k (1, 1, 1) in the direction of the body diagonal [111].

Furthermore, the effect of tight binding on the energy surfaces of a simple cubic
crystal can be examined with the help of (13.36). It is instructive to do this for the
limiting k-values in the reduced zone scheme, i.e. near the centre and the boundary of the

first zone. Near the centre ka < 1 and we expand the cosine function to obtain

g, &y — 0 — 6y +yK*a®  —mmmmmmmeeeeeeee- (13.40)
These values refer to the bottom region of the band and conform to the constant

spherical energy surfaces. But as the wavevector increases, the shape gets distorted and
deviates sufficiently from the spherical nature at large value of k [fig 13.10(a)].
In order to investigate the region near the zone boundary, we express k in terms of its

value k' as measured from the zone boundary:

k=—-k' --m-mmmmmme- (13.41)
Substituting (13.41) in (13.40) and appreciating that k'a < 1 near the zone boundary, we
obtain
R R v Rl R - O —— (13.42)




ACHARYA NAGARJUNA UNIVERSITY 19 CENTER FOR DISTANCE EDUCATION

The above result is similar to that of (13.40) with the difference that the spherical
surfaces are centred at the corners of the zone (fig 13.11a). We may compare the energy
surfaces in the TBA with those in the NFE model, shown in (fig 13.11b). The main
difference lies in the fact that the spherical shape is maintained to much larger values of k
in the NFE model. This only shows that the results in the two models are aimost similar
for small wavevectors. In view of thisfact, the k-dependent part of the energy dispersion
(13.40) near the zone's centre is comparable with #%k%/2m (for the free electrons), and we

have
h2k?
k2a2= ---- (13.43
y o ( )
giving
N
2y a’

©

N

N,
(b)

Fig 13.11 (a) Constant energy curves for the tight-binding approximation for a simple
cube crystal in the plane k, = 0. Energy surfaces are spherical around the zone centre
for only small k-values. The surfaces are again spherical with centersat the corners of
the zone for small k-values, measured from the corners. (b) Constant energy curvesin
the NFE model. Energy surfacesare spherical up tofairly large values of k. Noticethe
changes caused by the zone boundary.

where m* is identified as the effective mass of the electron, implying that electron mass
should be treated as variable. Equation (13.44) predicts m* is larger for electrons in the
inner shells whose overlap is far less. We consider this as an invaluable result of the

theory of tight bounding approximation, especially because the concept of effective mass
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has remarkably improved the understanding of several physica properties ranging from
electronic conduction to the complex optical phenomena.

13.6 The Winger—Seitz Cellular Method:

The significance of the Wigner-Seitz model is substantiated by the impressive success it
achieved in accounting for the band structure and the cohesive energy of alkali metals.
The first systematic calculation of energy bands appeared in the form of this model. The
technique of calculation, referred to as a cellular method, is based mainly on the
symmetry properties of a certain primitive cell designed by Wigner and Seitz themselves.
The method of construction of this cell has been described earlier. The alkali metals have

the bce Structure for which the Wigner-Seitz is a polyhedron and is shown in fig 13.12.

Fig 13.12 Thefirst Brillouin zone of aBCC crystal. Itis
rhombododecahedral in shape.

The entire crystal volume is imagined to have been filled up with identical polyhedra,
assuming that there is only one electron in a given polyhedron at atime, together with the
positively charged metal ion at the centre. The polyhedra being neutral, the interactions
among themselves are initially neglected and only the interaction within each polyhedron
is considered. The electron is supposed to move in the spherically symmetric potential
field of theion. Thefield isassumed not to extend past the boundaries of the polyhedron.

We consider the extreme case of the k = O state. Then the Bloch wavefunction Wy(r)

hastheform
P(r) = uo(r) ----------m-m----- (13.45)




ACHARYA NAGARJUNA UNIVERSITY 21 CENTER FOR DISTANCE EDUCATION

This wave function itself is periodic in the crystal i.e. the wave function remains
unchanged when translated from one face to the opposite face of the cell. It requires that

Z_\r}\’ =0 a the boundary of the polyhedron, with n as a direction normal to any of the

faces of the polyhedron. The above condition in the crystal replaces the free atom

boundary condition, ¥(r) — O asr — oo, by

oY
(Ej S J— (13.46)

where rs is the radius of a sphere to which the polyhedron may be approximated.
Accordingly, the volume of the polyhedron may be given by 4nrs/3.

The solution of the one-electron Schrodinger wave equation is much easier for k=0
than for any general k-value because uy(r) is non-degenerate and observes the full
symmetry of the crystal. Wigner and Seitz gave an accurate estimate of ug(r). In view of
the boundary condition (13.46), the exercise simply reduces to solving the radial
Schrodinger wave equation:

Liz@—‘i(rza—ar}i—ﬂ“(so —vo(r))}wr) oY J—— (13.47
where Vo(r) is the potential energy of an s-electron and ¢ is the energy eigenvalue in the
field of acrystalineion within one of the polyhedra.

However, for a general wavevector we have to solve,

{—;—;Vz +V0(r)}uk(r)exp(ik ‘r)=¢gU(r)expik-r) ------m-mmmmm-- (13.48)
But,
V2[u,(r)exp(ik-r)] = V[iku,(r) exp(ik - r) + exp(ik - 1)V u,(r)]
=exp(ik - N)[V?u,(r) —k*u,(r) + 2ik - Vu,(r)] ---------- (13.49)
Putting (13.49) in (13.48), we get
{—ﬁ(v2 + 2ik- V) +V0(r)}uk(r) = (ek L juk (I (13.50)
2m 2m

It must be observed that up(r) is not an exact solution to (13.50) which is in fact

satisfied by uk(r), the periodic part of the general Bloch function.
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We treat the k-V terms as a perturbation and insist that uk(r) obey the boundary
condition (13.46). This gives electron energies & in the form.
hzkz
2m
which gives energiesin the shape of aband as measured from the level of &.

Ey =Eg+—— mmmmemmmeeee- (13.51)
We must appreciate that these calculations depend only on the atomic volume and are

independent of the crystal structure. Therefore, for a solid metal and a liquid of equal
density we expect the same results in this model.

| ——C Metal, k=0

v 1 /‘\\_\ [T Free atom
0 IR

;

\V

0 1 2 3 4
rlag—

Fig 13.13 Variation of the radial wavefunction for the 3s electron in sodium.
The continuous curve describes the Wigner-Seitz wavefunction (cellular
wavefunction) at the Brillouin zone center (k =0). Thelower of the dashed curve
represents the cellular wavefunction at the zone boundary. The dashed curvein
between the celular plots denotes the wavefunction in the free atom. The
distance r of the electron from the centre of the atomic polyhedron is measured
in units of the Bohr radius a,

The 3sradia wave function in sodium metal as estimated in the Wigner-Seitz model at k
= 0 (the Brillouin zone centre) and at the Brillouin zone boundary is plotted in Fig.13.13.
The 3s atomic wave function is aso drawn for comparison when the wave function is
subject to the boundary conditions (13.46). Midway between the neighbouring atoms (r
=), the radiad Schrodinger equation (13.47) for k = 0 yields the eigenva ue (&) as 8.2
eV. Thisvalueisconsiderably lower than the ground state energy of the free atom (-5.15
eV), obtained by applying the boundary condition d¥/dr — O asr — c. The calculated
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energy of 3s orbitals at the zone boundary is found to be +2.7 €V. It should be realized
that these orbitals are empty because the 3s energy band in sodium is only half-filled and
the corresponding states are located near the top of the band. The negligible amplitude of
the Wigner-Seitz wavefunction (often referred to as the cellular wavefunction) at the zone
boundary is consistent with this fact since it gives little probability for the states in this
region to be occupied. It is significant to notice that al the three wavefunctions are
identical in the core of the metal ion.

The shape of the cellular wavefunction at the zone centre (k = 0) carries the most vital
information about the behaviour of the 3s electron in sodium metal. The plot infig 13.13
shows the variation of the wavefunction as afunction of the distance of the electron from
the centre of the atomic polyhedron. The wavefunction is flat over about 90 percent of
the atomic volume. The tota charge distribution in the flat region corresponds to the
charge on an electron. This takes us to the conclusion that uy(r) remains constant (up)
over most of the atomic volume and the plane wave part of the wavefunction aone
determines the electron motion in this region. Thus the valence electrons of sodium
behave mostly as free electrons. Thisisfound to be true for other alkali metals too. But
the results for the noble metals, also monovalent, are on the other extreme. The ratio of
the ionic to the atomic radius is close to unity making them act like hard spheres.
Because of this reason, the noble metals in contrast to the akali metals cannot be treated
in the frame work of the free electron approximation.

13.6.1 Estimation of Cohesive Energy:

Concepts of cohesive energy were discussed earlier. We know that binding of atoms
results in the lowering of their ground orbital energy. Thus the ground state energy of an
electron in the crystal is lower than that in the free atom. This lowering in energy, taken
as a measure of the cohesive energy, is a consequence replacing the Schrodinger
boundary condition in the free atom by the periodic boundary condition (13.46). On the
demand of energy conservation, an increase in the binding energy is offset by the Fermi

energy contribution to the kinetic energy of valence electrons. The spherical
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approximation of the Wigner-Seitz theory works satisfactorily in the bcec and fcc crystals.
We take sodium metal, a bce structure for our discussion.

The electron energy in the crystal is given by (13.47). The vaue of ¢ is estimated
from the Wigner-Seitz model. The second term in (13.47) denoting the average kinetic
energy per electron, is obtained from the free electron theory. The ground state energy of

the valance electronsin the crystal isthen,

21,2
hz:f] =g, + gé‘,: """""""""" (1352)

For sodium, gp=—-8.2 eV, &= 3.1 eV (from tables). These values give, & =—6.34 eV.

Ey =&yt

The above value of g when subtracted from the corresponding value in the free atom
(-5.15 eV) gives the cohesive energy as equal to 1.19 eV. The close approximation value
(1.13 eV) demonstrates the success of the Wigner-Seitz approximation in alkali metals.

The model provides additiona information from the g versus rs plot. The minimum
value of g (13.52) defines the theoretical lattice parameter. For this value of rs, the
cohesive energy and compressibility of alkali metals have been calculated and found in
good agreement with the experiments.

13.7 Methods of band structure calculation in use: a qualitative view

We discussed two extreme cases of band structure calculation in the form of tight
binding and Wigner-Seitz approximation. While one overstresses the atomic aspect, the
other over stresses the plane wave aspect of the Bloch function. The tight binding
approximation is useful for interpolation and the Wigner-Seitz approximation gives a
good account of severa properties of akali metals. But the methods that actually work
for a variety of solids are some what much different. Though these methods are
mathematically tedious, the problem has eased considerably with access to modern
computers. Of these the orthogonalized plane wave (OPW) and the augmented plane
wave (APW) methods are most prominent and advanced. The pseudo potential method is
also often used on account of its ability to predict the energy-wavevector relationship
with acceptable accuracy.
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The knowledge of atomic orbitas at each site readily enables us to distinguish
between a plane wave and the complete wavefunction. Based on this idea Herring
formulated the OPW method. The orthogonalized plane waves are in fact linear
combination of plane waves and mixtures of atomic wave functions of the occupied states
of the cores. This takes care of the electron behaviour both within and outside the core
regions. The method has been applied to several metals and non-metals with reasonable
success in getting the band shapes.

With alarge value of the parameter P, the Kronig-Penney model changes over to
aone-dimensional form of the APW method. It is another way to improve upon the NFE
model by approximating the periodic potentia suitably in the regions within and outside
the cores. The potential within a sphere around each ion core is taken as the usual atomic
potential and assumed constant outside the core regions. The Schrodinger wave equation,
when solved in the two regions, yields two separate solutions that are matched on the
spherical boundaries between the region. The wavefunction within the core is expanded
in spherical harmonics. But outside the core region it is represented by a combination of
plane waves, known as an augmented plane wave. The matching of the plane waves on to
the atomic functions is the most difficult aspect of the exercise.

The Pseudopotential approach has its roots essentially in the effectiveness of the NFE
model in many solids. The admixture of core states shows, surprisingly little effect on the
energy of higher statesin many metallic materials. In this approach the periodic potential
energy function is replaced by a modified potentia energy function with a few Fourier
coefficients Vg that refer to only short reciprocal lattice vectors. The modified potential is
called Pseudopotential. In the well-known Empirical Pseudopotential Method (EPM), the
Fourier coefficients are deduced from the theoretical fits to the optica reflectance and
absorption data of the crystal of interest. The potential is fairly smooth and free from the
deep wells of the free potential. Success in the interpretation band structure not
withstanding difficulties in the description of some other properties of eectron come to

surface. It is likely to happen since the method may yield an in correct wave function.
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Such a problem is resolved by correcting the wave function for the due representation of
the atomic component.

The band structure as derived from cal culations are too complicated to be discussed.
13.8 Summary:
1. The statement of Bloch theorem is

Wi (r) = uk(r) exp (ik-r)
where ¥ (r) denotes an electron wave describing an eectron with wave vector k at r

in the crystal and uk(r) is the periodic in the crystal lattice. That is u(r + t,) = uk(r)
wheret, isan arbitrary trandation vector. The function y(r) is called the Bloch function.
2. Bloch function W(r) and their eigenvalues g are periodic in the reciprocal lattice.
That is,

Wisg (r) =WPi(r)
E+g— &
3. Inacrystal of N primitive cells, there are 2N independent orbitals in an energy band.

4. Energy bands are separated by regionsin which no solution to electron wave functions
exist. These regions are called band gaps.

5. The bandwidth is proportional to the overlap of atomic orbitals.

6. The electron effective mass (m*) isinversdly proportional to overlapi.e. m* islarge for
electronsin inner shells.

7. The cohesive energy of simple metas is estimated by calculating the lowering of the
k=0 orbital in the conduction band. In the calculations, the boundary conditions on the
wave function is changed from Schrodinger (Y— 0) as (r — o0) to Wigner-Seitz
[(d¥/dr), = s= O] condition.

13.9 Keywords:

Fourier coefficients — Brillouin zone -NFE model — Central equation — Insulator — Metal
— Semiconductor — Tight binding approximation — Effective mass of eectron — The
Wigner-Seitz cellular method — Cohesive energy — OPW method — APW method — EPM
method.




ACHARYA NAGARJUNA UNIVERSITY 27 CENTER FOR DISTANCE EDUCATION

13.10 Review Questions.

1. Describe the nearly free electron model and show that the band gap energy is equal to
the twice the magnitude of Fourier coefficient of the crystal potential.

2. Define different zone schemes for energy bands and describe the energy bands in a
general periodic potential and obtain the solution near the zone boundary.

3. Distinguish in between insulators, metals and semiconductors based on band theory of
solids.

4. Explain the tight binding approximations and obtain the expression for the effective
mass of the electrons.

5. Explain the Wigner-Seitz cellular method and obtain the energy &«. Illustrate the plot
of variation wave function versus r/ay.

6. Explain how to estimate the cohesive energy. Give a brief account of the various

methods for band structure cal cul ation.

13.11 Text and Reference Books:

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)
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7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
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UNIT -1V LESSON: 14

INTRINSIC SEMICONDUCTORS

Aim: To learn about intrinsic semiconductors

Objectives:
» Classical semiconductors through their band structures.
» Deriving expressions for carrier densities.

» Studying the behaviour of Fermi level.

Structure of the L esson:

14.1 Introduction

14.2 Semiconductors — classification

14.3 Examplesof band structure

14.4 Intrinsic semiconductor

14.5 Electron and hole densities in intrinsic semiconductors
14.6 Fermi level in Intrinsic semi conductor
14.7 Summary

14.8 Key words

14.9 Review questions

14.10 Text and reference books
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14.1 Introduction:
The values of electrical conductivity of solids are spread over aimost the widest range for
any common physical property. Hence these form a basis for classifying solids. Solids
characterized by extremely high and extremely low values of electrical conductivity are
identified as metals and insulators, respectively. A pure metal a 1K may have a
conductivity of the order of 108 ohm™ m™ against alow of 102° ohm™m™ for an extreme
insulator. Materials with conductivity values intermediate to these extreme orders of
magnitude are called semiconductors. Typical conductivity values for semiconductors lie
in the range from 10" to 1 ohm™ m™. The most useful feature of semiconductors is that
their electrical conductivity generally decreases with increasing purification in contrast to
metal s where the conductivity always increases with increasing purification.

Notwithstanding the enormous technological importance of semiconductors, their
study is even more crucia to the understanding of electronic properties of solids. We
will see that it is possible to apply the Maxwell-Boltzmann statistics to deal with charge
carriers in semiconductors. This gives exact analytical solutions of many problems that
can be solved only by approximate or numerica methods in metals where the Fermi-
Dirac statistics hasto be used. Furthermore, with remarkable progress having been made
in the technology of growing semiconductor crystals, the degree of purity and perfection
achieved in growing single crystals of semiconductors is much higher than that in metals
and insulators. It is amatter of absolute importance to the study of electronic properties,
some aspects of which are obscured by effects arising because of the presence of
impurities and crystalline imperfections. It simply amounts to say that the quantitative
studies of some phenomena that are generally difficult or cannot be made accurately in
metals, are easily carried out in semiconductors with the required precision. Thus the
study of semiconductors is helpful in interpreting the electronic properties of solids in
general. In this lesson we concentrate on shaping the basic theoretical ideas in the
framework of the band theory of solids.
14.2 Semiconductor s — classification:

The classification of solids made on the basis of their band structures gives a lead to
exploiting the band theory for the interpretation of many solid stete properties. We learnt
in lesson 13 that completely filled and completely empty bands do not contribute to the
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flow of current. The highest filled band (the valence band) in metals is only partialy
filled and the flow of current occurs on account of amost continuous excitation of
valence band electrons to empty states of the band under the influence of an electric field.
Therefore, a material that has only completely filled and completely empty bands
behaves as a perfect insulator at absolute zero when there can hardly be found any
electrons in the lowest empty band (the conduction band) as a result of the thermal
excitation of electrons in the valence band. But if the difference between the upper edge
of the valence band and the lower edge of the conduction band is not large and less than
2 eV, there is a finite probability for a small fraction of electrons occupying the
uppermost states of the valence band to be thermally excited to the conduction band at
moderate and high temperatures. At these temperatures the width of the energy range
over which the Fermi distribution function rapidly changes is relatively substantial. This
enables the consequences of the change in the distribution function easily observable. A
representative band scheme for metals, semiconductors and insulators is drawn in fig

14.1. Thefigure portrays aqualitative difference in the band structures of these solids.

A

Meta Serniconduct Insulator
© Iconductor Conduction band
>
(@]
&
@ =
C b — o —— s — s —_— — . — . —_—.——
5 e i
: @
m
Vaence band
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Fig 14.1 Comparative energy band schemes for metals, semiconductors and
insulatorsat T = 0 K. The valence band is completely filled in semiconductors
and insulators but only partially filled in metals. A relatively much smaller band
gap E4 in semiconductor sdistinguishes them from insulators.

Thereisalong list of semiconductor materials. Only afew of them are elements. S,
Ge, grey Sn and grey Se are some examples. The first three arein Group 1V and Seisin
Group VI of the periodic table. Rest of them are mostly binary compounds, mainly of
two types. In one type (e.g. GaAs, InSh, GaP) one element from Group 11l (e.g. B, Al,
Ga, In) is combined with an element from Group V (e.g. N, P, As, Sb). The other type of
binary compounds are formed with one e ement from Group 11 (e.g. Zn, Cd, Pb) and the
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other from Group VI (eg. S, Se, Te). Some important examples of this type are ZnS,
CdSe, PbTe. SIC isthe lone example of binary semiconductors whose both components
are from Group V. Some oxides aso show semiconducting behaviour — TiO,, Cu,O and
ZnO are prominent examples of this class. A list of technologically important
semiconductor materials is given in Table 14.1 which also contains the relevant data on

these materids.

Table 14.1 Data on the band gap of some important semiconductors (D = direct gap,

| = indirect gap)
E, (eV)
Crystal Type of gap oK g 00K

S | 1.17 11
Ge | 0.75 0.67
Grey Sn D 0.00 0.00
GaAs D 1.52 1.43
GaSb D 0.81 0.68
GaP I 2.32 2.25
InSb D 0.23 0.17
InAs D 0.43 0.36
InP D 1.42 127
ZnS — 391 3.6

Sc - 2.86

Semiconductors are primarily of two types — intrinsic and extrinsic. The intrinsic
semiconductors are usually pure monatomic or diatomic solids. An intrinsic materia is
converted into the extrinsic type (or the impurity type) by adding traces (~1 part in one
million) of a suitable impurity with the aim to enhance the level of the charge carrier
density. Vaues of electrical conductivity of intrinsic semiconductors lie far below the
range that is useful for the purpose of applications. But semiconductors are gifted with
the unique quality that their electrical conductivity can be increased by severa orders of
magnitude by mixing with them suitable impurities in small concentration. This has
enormously increased their technological importance. Thus it is mostly the extrinsic

semiconductors that form the basis for semiconductor devices.
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14.3 Examples of band structure:

We know from Lesson 13 that the band structure of a solid is closely related with its
crystal structure. Not many crystalline structures are favourable to the semiconducting
behaviour. Most of the thoroughly investigated semiconductors have a diamond type
lattice. We take examples of Si, Ge and GaAs which are distinguished for their large
number of applications. The S and Ge crystals have diamond structure. The crystal
lattice of GaAs is zinc blende type which is only a modified diamond lattice. We
describe below the band structures of these crystals.

14.3.1 Silicon and Ger manium:

The outer electron configurations of Si and Ge are 3s’3p? and 4s?4p?, respectively.
The origin of band structure of these materials has been discussed in Lesson 13. The
tetrahedral bonding orbitals (sp®) are formed because of the mixing of s- and p- wave
functions. Near the bonding distance, at equilibrium, these orbitals were shown to split
into bonding and antibonding orbitals which constitute the valence band and the
conduction band, respectively. All the four s- and p- electrons occupy states in the
valence band, filling it completely. The completely empty conduction band should
combine with this picture to produce an insulating behaviour. Thisisreally the case with
the diamond crysta (carbon) which has a similar band scheme. But on account of small
band gap (Egy), S and Ge show semiconducting properties.

Figure 13.8 in lesson 13 reveals an important feature of the band gap regarding its
dependence on temperature. The observation that the size of the energy gap (or the
splitting) between the valence and conduction bands decreases with increase in the
interatomic separation, indicates that the gap is smaller at higher temperatures where the
interatomic separation becomes larger because of thermal expansion. This fact is
confirmed by the measured values of the band gap Eg at different temperatures (see table
14.1).

Band structure are calculated by fitting the measured physical quantities, such as the
band gap, the positions of points of high symmetry in the Brillouin zone (critical points),
and the curvature of energy surfaces (the effective mass). The calculated band structures
of S and Ge are shown in fig 14.2. The features of the two band schemes appear quite
different in contrast to the qualitative similarity as expected on the basis of fig 13.8. This
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is obviously the effect of the difference in electron wavefuctions associated with 3s*3p
and 4s’4p?, configurations.

The symbols, T", X and L stand for positions of certain points of high symmetry in the

Brillouin zone. They refer to the points at the zone centre (000), £ (100) and
a

E(%%%j , respectively, where ‘a’ is the lattice constant. The valence band maximum
a

occurs at the zone centre, i.e. k = 0 for both S and Ge. But the conduction band
minimum occurs for k along the [100] direction in S and for k along the [111] direction
in Ge. This amounts to saying that €l ectrons of the lowest energy in the conduction band
have thelr wavevectors oriented along the [100] direction in Si and along the [111]
direction in Ge. In both materials the valence band maximum and the conduction band
minimum thus occur at different values of k. Semiconductors having this type of band
structure are minimum thus occur at different values of k. Semiconductors having this
type of band structure are called the indirect gap semiconductors and those for which the
maximum and minimum in question fal at the same value of k are referred to as the

direct gap semiconductors.
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Fig 14.2 Calculated band structures of S and Ge later J.R. Chelikowsky, M.L.
Cohen, phys. Rev. B14, 556 (1976). The structures confirm the indirect gap
naturefor both Si and Ge. For Ge, the spin-orbit splitting isalso consider ed.

Thefirst Brillouin zone of Si and Ge crystals is a truncated octahedron appropriate to

the fcc symmetry of their unit cell. In parabolic approximation (i.e. retaining terms up to
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the order k? in the expression for g, the surfaces of constant energy are ellipsoids as
confirmed by cyclotron resonance studies

In S there are six symmetry — related minima of the conduction band at points in the
[100] directions. Each of the six elipsoidsis an ellipsoid of revolution about a cubic axis
by symmetry. They appear as cigars elongated aong the cube axes as shown in Fig
14.3(a). The eectron has two effective masses — the longitudinal m* (along the axis) and
the transverse my* (perpendicular to the axis). Their values in terms of the free electron
mass m are given as - m* = 0.98m and m¢* = 0.19m. The vaance band shows two
degenerate maxima both located at k = 0 with spherical symmetry within validity of the
ellipsoidal expansion (fig 14.2). The two effective masses are 0.49m and 0.16m.

The conduction band minima in Ge occur at the zone boundaries in the [111]
directions. The minima on parallel hexagona faces of the zone correspond to the same
energy levels giving four symmetry-related conduction band minima [fig 14.2b]. The
constant energy surfaces are elipsoids of revolution with elongation along the [111]
directions and effective masses, m* = 1.57m and m* = 0.082m. The two degenerate
valence band maxima in this case give the characteristic effective masses of 0.28m and
0.44m.

Silicon

@) (b)

Fig 14.3 Constant energy surfacesfor S and Ge
Properties of holes are equally important as those of electrons for the study of
semiconductors. Details of the cyclotron resonance studies show that the structure of the
valence band maximum near T'(k = 0) in Si and Ge is more complicated than what

appearsin Fig.14.2. In addition to the two degenerate bands at I, there is athird one that
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is gplit off dlightly by energy band A towards a lower energy band (fig 14.4). The
splitting is caused by the spin-orbit interaction. On the basis of the effective mass values,
the two degenerate bands are attributed to the light and heavy holes. The holes associated
with the identity of the third band are named as ‘ split-off holes’. The split-off energy A
has been estimated at 0.044 eV in Si and 0.29 eV in Ge.

&

ight Heavy
holes holes
Ih) (m tih)

“split-off”
holes
(m*soh)
Fig 14.4 Structure of the valence band (qualitative) in S or Ge near thetop.

14.3.2 Gallium Arsenide:
GaAs crystal enjoys a specia status, firstly on account of its direct-gap and secondly

because of its band-gap energy being closely below the energy range of visible radiation.
These properties render it most suitable for the fabrication of efficient optical devices.

The crystal has zinc blende (ZnS) structure. It is an example of the mixed ionic and
covalent bonding. The chemical bonding is interpreted as the superposition of these two
extreme cases of bonding. In ionic bonding, an electron is transferred from Ga to As to
give the ionic structure Ga” As”. On the other hand in the second extreme case, with the
displacement of an electron from As to Ga, the number of electrons in the outer shell of
both Ga and As atoms becomes four which results in the sp* hybridization as in the case
of Si and Ge. The observed tetrahedrally coordinated ZnS structure of GaAs serves as a
certain proof to the effect that the effects of covalent bonding dominate.

The band structure of GaAs is shown in Fig 14.5. All the valence band maxima and
conduction band minima occur a I' (k = 0) showing its direct gap nature with a gap of

143 eV a 300 K. The constant energy surfaces are accordingly spherical. The

conduction band effective mass m_ is 0.07m. There are three distinct valence bands
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similar in form to those for S and Ge at I'. The three respective effective masses are

givenas m, = 0.12m, m,, =0.68mand m_, =0.2mwith A =0.34€V.

)
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Fig 14.5 Calculated band structures of GaAs, arepresentativeof I11-V semiconductors.

14.3.3 Determination of Band Gap:

A number of methods are used to determine the band gap of semiconductors. The
technique of continuous optical absorption is more often used on account of its accuracy
and the important information gained about the band structure. An abrupt increase in the
absorption of optical radiation takes place as soon as the energy of the incident radiation
ho becomes large enough to exceed the energy gap.

In direct-gap semiconductors (e.g. GaAs, InSb), where the conduction band minimum
and the valence band maximum occur at the same k-value in the k-space, the optical
threshold at @ (= Eg/h) directly gives the band gap [fig 14.6(a)]. But in indirect-gap
materials (e.g. Si, Ge, GaP), the direct photon absorption accompanied by the transfer of
an electron from the top of the valence band to the bottom of the conduction band would
not conserve the crystal momentum because the initial and final points of the transition in
the k-space do not have the same k-value. Hence such a direct transition is not allowed.
The transition process will have to be indirect in which the absorption of an optical

photon must be accompanied by some other process with whose involvement the
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condition of momentum conservation may be satisfied. The intensity of a continuous
absorption spectrum gets sufficient contribution from phonons. With the involvement of
a phonon in the indirect transition under discussion, the sum of wavevectors before the
transition becomes equal to their sum after the transition, showing the momentum
conservation. There can be two possibilities-one in which a phonon is emitted (created)
after the transition and the other in which a phonon is absorbed (destroyed) along with

the optical photon to materialize the transition.

» M
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Fig 14.6 (a) Absorption of a photon in a direct-gap semiconductor.
(b) The photon absorption in an indirect-gap material.

Let us denote the wavevector of the optical photon by K, and that of the phonon by
Koh. If the wavevector at the conduction band minimum as measured from the valence
band maximum be represented by K, then in the case of phonon emission [Fig 14.6(b)],

we have

Kop: Kc+ Kph """"""" (14.1)
(before the transition) (after the transition)

But the photon wavevectros K,, are negligibly small in the range of energies

concerned. Therefore, from (14.1),

Relation (14.2) states that the increase of crystal momentum by 7K during the transition
is offset by an equal amount owing to the emission of a phonon with wavevector (—K¢).
Since the phonon takes away a part of the energy of the incident photon (though very
small), the optical threshold energy is greater than Ey [seefig 14.6(b)]. In thiscase,

hoop = Eg+ hogh ----mmmmmmem (14.3)
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At high temperatures a good number of phonons are present in the crystal. With the

absorption of phonon during the transition, the momentum conservation is given by

Kop + Kpn = K¢ =mmmmmmmmee- (14.9)
(before the transition) (after the transition)
This gives the optical threshold as
hoop = Eg—hwph ------=------- (14.5)

So, the optica threshold is lower than E;. The change in optical threshold in these
proceses is generaly of little consequence because the phonon energies are
characteristically small (~afew hundredths of an eV) as compared to the size of the band
gap. This change, however, is of considerable value in semiconductors having a small
band gap.

Since the indirect transitions generate heat when phonons are created, the direct-gap
materials are preferred in order to have efficient devices. A mixture of the two types of
materials is a desired manipulation in some devices such as injection lasers where it is
practiced on account of the demand for higher power.

Another method commonly used for determining the band gap is based on the
temperature dependent study of the electrical conductivity . The electrical conductivity
of semiconductors depends on temperature according to the following proportionality:

o o eXp (—Ey/2kgT) -------m--mmmm- (14.6)
An approximate value of Ey is given by the In(c) versus U/T graph. The gap is aso
determined from the intrinsic carrier concentrations derived from the experimental values
of Hall coefficient. The value of band gap and nature of gap for a number of important

semiconductors are given in Table 14.1.

14.4 Intrinsic semiconductor :

The difference between the electrical conductivity of semiconductors and metalsin the
form of former’s strong dependence on temperature indicates that thermal excitations
control the conductivity of semiconductors in a big way. The therma excitation of an
electron from the valence band across the forbidden energy gap Ey to the conduction band
creates a hole in the valence band. The number of these carriers that contribute to the
flow of electric current increases more and more with a continued thermal excitation. In
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this section we calculate the density of these carriersin the state of thermal equilibriumin
an intrinsic semiconductor considered as highly pure such that the contribution to the
carrier concentrations from impurities may be neglected. Calculations based on
appropriates statistics show that the electron and hole concentrations equal in the present
case, are strongly temperature dependent which thus accounts for the conductivity

behaviour. The conductivity of a semiconductor may be expressed as

& = [el(pan + Pptp) ----eeemeeeeee (14.7)

where n and p are electron and hole densities (per unit volume), respectively, and u, and
up represent the corresponding mobilities. The contribution from electrons and holes in
(14.7) ssmply add up because of the opposite sign of their charge and opposite directions
of their drift velocities.

It is easy to appreciate that in excitations of our interest the carriers near the band
edges or the parabolic part of the valence and conduction bands are involved. In this
region the effective mass can be treated as constant in the first approximation. This takes
care of the neglect of energy dependence of mobility in (14.7). For calculations in
semiconductors the chemical potential ¢ appearing in the Fermi distribution function is
replaced by the Fermi energy ¢-. But the level of chemical potential always lies in the
region of the forbidden energy gap where no single-electron energy levels exist. The
very definition of the Fermi level which is considered as the highest occupied level at
absolute zero, thus becomes redundant since no single-electron energy level is available
to coincide with the Fermi level. Therefore, in the fitness of things the Fermi level in

semiconductors should be interpreted as a synonym to the chemical potential.

14.5 Electron and hole densitiesin intrinsic semiconductors.
The occupancy of energy levels in semiconductors must be described the by Fermi-
Dirac distribution function f(e, T) asin the other solids:

1
1+exp[(e —&ep )/ KgT]

f(e,T) = SE— (14.8)

If Do(e) and Dy(e) denote the density of states in the conduction and valence band,

respectively, the charge carrier densities are usually written as
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n=[D,(e) (6, T)de  --rememmeomeem- (14.9)
E,
with f. as the electron occupancy and
EV EV
p=[D, (&) (s, T)de = [ D, (e)[1- f (&, T)]de  —=reorememmeem- (14.10)

with f, as the hole occupancy.

Here E. and E, refer to the energy values at the edges of the conduction and valence
band, respectively (fig 14.7). The electron energy as measured from the bottom (or edge)
of the conduction band is (¢ — Ec) where ¢ is the absolute value of electron energy.
Similarly, the hole energy when measured from the top (or edge) of the vaence band is
equal to (Ey — &). Applying the parabolic approximation, i.e. assuming the effective mass

to remain constant, the two density of states are written as

3/2

2m,
Dc(s)=27r2 h; (R =39 R —— (14.11)
and
1 (2m \"*
Dv(g):zﬂz hzh (E, —&)? —mmmmmmmeee- (14.12)

When electron and hole energies are such that |¢ — &| >> kgT, the respective
distribution

f—exp = ‘EF)} S (14.13)
KT
(in the conduction band)
and
fo1-fex ﬂ} -------------- (14.14)
KT

(in the valence band)
In this condition the carrier density is not large and the semiconductor is caled a
non-degenerate semiconductor.
Substituting (14.13) in (14.9), the electron density in the state of thermal equilibrium
at temperature T has the form,

1 (2m )" »
”=2ﬂ2( th exr{ JI(S—EC) exr{— k:T]ds -------------- (14.15)

s
KgT



M. Sc., PHYSICS 14 INTRINSIC SEMICONDUCTORS

ch ch cA et
De(s) De ()
(&) Do f(¢) De(e)
E, e E /S
EGErr—————— "1 —"—————
sfrr——————m———1r—-——--—-
E, D—EV E, 775,
[1-(£)]Du(e) [1-f(£)]Du(e)
Dv(g) Dv(g)
> « > L « >
D() f(&) dn dp D(a) f(o) dn dp
de ' de de ' de
(@ (b)

Fig 14.7 A schematic behaviour of the Fermi function f(g), the density of states D(g),
and electron (n) and hole (p) densities in the conduction and valence bands when:
(a)the densities of states in the conduction and valence bands are equal and (b) the
densities of statesin the conduction and valence bands ar e not equal.

Using the substitution (1—? J = x?, we get

B

+\3/2
1(2m —(E.—€) |7
n=—|"—"2| (kqT)¥?exp ——F || x® exp(-x?)dg -------m----- 14.16
EZ(EZ](B) T Jj p(-x*)de (14.16)
But,
[ X exp(-x*)de = A (14.17)
5 4
(from standard tables)
Using (14.17) in (14.16), we have
* 3/2
nog MKl | g Z(Eemee)) (14.18)
2nh KT
Similarly for holes, using (14.14) and (14.10), we get
* 3/2
p=g MkeT | o f =6 —E) - (14.19)
27th?® KT

By multiplying (14.18) by (14.19), we get the following generally valid relationship:
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kBT ’ * *\3/2 Eg
= S — 14.20
np 4(%2) (m,m,)** ex T (14.20)

where we have used E; — E, = Eg.
Relation (14.20) represents the law of mass action. It states that the product of
electron and hole concentrations in a certain semiconductor that is completely

characterized by its band gap Eq and effective masses m,and m; in the conduction and
valence bands behaves as a function of temperature and as independent of the position of
the Fermi level.

As already mentioned, the number of electrons is equal to the number of holes in an
intrinsic semiconductor. So, in this case if n; and p; denote the respective concentrations,
we get from (14.20)

kT2 . . E
n=p =22 mm )¥*exp - —2— | ---mmmmme- 14.21
i pl [Zﬂhzj ( e h) p{ 2kBTJ ( )

The numbers as determined at 300 K in Si, Ge and GaAs are 2.4 x 10%,1.5 x 10*° and
5 x 10" cm™, respectively.

14.6 Fermi level in Intrinsic Semiconductors:

E, /KT

From 14.20 it isevident that np = np=n’ = p? = const. T’ *
Where n; is a constant depending upon the temperature and width of the forbidden gap. It
does not depend on the impurities introduced as long as the impurities do not change the
width of the forbidden energy gap.

In intrinsic materials the Fermi level at a certain temperature adjusts its position that is
required to maintain the charge neutrality condition consistent with (14.18) and (14.19).
This demands that

< N\3/2
expl 2 o[ M| o BB (14.22)
kg T m, kg T

6. —E, + % E, + % kT In(ﬂj] --------------- (14.22)
m,

giving

or
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Thus the Fermi level shows a weak temperature dependence. But if the electron and

hole effective masses are equal, ¢ = E, + %Eg and the Fermi levd lies exactly in the

middle of the gap. Thisistrue at al temperatures.

But in general when the density of states of conduction and valence bands and the two
effective masses are unequal, the Fermi level is asymmetrically placed with respect to the
positions of E; and E,. It is demonstrated in fig (14.7(b)) where the two density of states
are unequad.

Intrinsic conductivity:
From equations (14.7) and (14.21) the electrical conductivity in the intrinsic region will
be

2 E
Ui=2|e|(kBTj (memh)gmeXp( 2 j(/ieJﬁuh)

27th? 2k, T
As the mobilities are likely to depend on temperature only as a simple power law over

an appropriate region, the temperature dependence of the conductivity will be dominated

by the exponential dependence of the carrier concentration.

Mobility in theintrinsic region:
The mobility is defined as the drift velocity per unit electric field. In an ideal intrinsic
semiconductor the mobility is determined by lattice scattering; that is, by collisons
between lattice waves and electron waves. In actual intrinsic specimens there are always
some impurity atoms which may dominate the scattering of eectrons at low temperatures
when the lattice waves are quiescent, but at higher temperatures the lattice scattering is
dominant.

The mobility associated with |attice scattering in a non-polar (covaent) crystal such as

diamond, silicon, or germanium has been calculated by Seitz and others. Seitz' finds

21/261/3 Nllgetl2k2®2M
u = 5/6 . 5/8 2 3/2 Tttt (14'23)
475 m*>8 C2(KT)

where O is the Debye temperature; k is the Boltzmann constant; N is the density of unit
cells; m* is the effective mass;, M is the atomic mass; and C is defined using the Bloch
function u(r)e*" by



ACHARYA NAGARJUNA UNIVERSITY 17 CENTER FOR DISTANCE EDUCATION

h? 2
C= o I gradul"dr e (14.24)

and istreated as an unknown parameter of value of the order of 1to 10 eV.

Table 14.2 Typical order of carrier mobilities at room temperature in some important

semiconductors.

Crysta Mobility (cm?%V. s) Crysl Mobility (cm?%V. s)
Electrons| Holes Electrons Holes
S 1350 480 InSb 800 450
Ge 3600 1800 InAs 30,000 450
GaAs 8000 300 InP 4500 100
GaSb 5000 1000 PbSe 1020 930
AlAs 280 _ PbTe 2500 1000
AlSb 900 400 SiC 100 10-20

Experimental values of the mobility at room temperature are given in table 14.2. In
most substances the quoted values are probably representative of lattice scattering. We
notice a tendency for crystal with small energy gaps to have high values of the electron
mobility. Thisisbecause small gapsimply small effective masses and (14.23) shows that
small masses favor high mobilities. The low mobilities generally characteristic of holes
in diatomic crystals are believed to be connected with the complex degenerate forms of
the energy surfaces in such crystals at the top of the valence band. By comparison the
mobility of metallic copper is 35 cm?/v-sec at room temperature.

14.7 Summary

Semiconductors are primarily of two types — intrinsic and extrinsic. The intrinsic
semiconductors are usually pure monatomic or diatomic solids.

Vaues of electrical conductivity of intrinsic semiconductors lie far below the range that
is useful for the purpose of applications

Not many crystalline structures are favourabl e to the semiconducting behaviour. Most of
the thoroughly investigated semiconductors have a diamond type lattice.

The outer electron configurations of Si and Ge are 3s°3p® and 4s°4p?, respectively.
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All the four s- and p- electrons occupy states in the valence band, filling it completely.
The completely empty conduction band should combine with this picture to produce an
insulating behaviour. Thisisreally the case with the diamond crystal (carbon) which has
a similar band scheme. But on account of small band gap (Eg), S and Ge show
semiconducting properties.

The valence band maximum occurs at the zone centre, i.e. k = O for both S and Ge. But
the conduction band minimum occurs for k along the [100] direction in Si and for k along
the [111] direction in Ge. This amounts to saying that electrons of the lowest energy in
the conduction band have their wavevectors oriented along the [100] direction in Si and
along the [111] direction in Ge. In both materias the valence band maximum and the
conduction band minimum thus occur at different values of k. Semiconductors having
this type of band structure are minimum thus occur at different values of k.
Semiconductors having this type of band structure are cadled the indirect gap
semiconductors and those for which the maximum and minimum in question fall at the
same vaue of k are referred to as the direct gap semiconductors.

In S there are six symmetry — related minima of the conduction band at points in the
[100] directions.

The conduction band minimain Ge occur at the zone boundariesin the [111] directions.
Properties of holes are equaly important as those of electrons for the study of
semiconductors.

GaAs crystal enjoys a specia status, firstly on account of its direct-gap and secondly
because of its band-gap energy being closely below the energy range of visible radiation.
These properties render it most suitable for the fabrication of efficient optical devices.
GaAs crystal has Zincblende (ZnS) structure. It is an example of the mixed ionic and
covaent bonding. All the valence band maxima and conduction band minima occur at T’
(k = 0) showing its direct gap nature with agap of 1.43 eV at 300 K. The constant energy
surfaces are accordingly spherical.

A number of methods are used to determine the band gap of semiconductors. The
technique of continuous optical absorption is more often used on account of its accuracy

and the important information gained about the band structure. An abrupt increase in the
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absorption of optical radiation takes place as soon as the energy of the incident radiation
h e becomes large enough to exceed the energy gap.

Since the indirect transitions generate heat when phonons are created, the direct-gap
materials are preferred in order to have efficient devices. A mixture of the two types of
materials is a desired manipulation in some devices such as injection lasers where it is
practiced on account of the demand for higher power.

The law of mass action states that the product of electron and hole concentrations in a

certain semiconductor that is completely characterized by its band gap Ey and effective
masses m,and m. in the conduction and valence bands behaves as a function of

temperature and as independent of the position of the Fermi level.

The Fermi level shows a weak temperature dependence. But if the electron and hole
effective masses are equal, e = E, + %Eg and the Fermi level lies exactly in the middle

of thegap. Thisistrueat all temperatures.

But in general when the density of states of conduction and valence bands and the two
effective masses are unequal, the Fermi level is asymmetrically placed with respect to the
positions of E; and E,.

In a semiconductor at a given temperature, the product np of the eectron and hole
concentrations is constant and independent of purity of crystal.
Effective density of states in the conduction band
* 3/2
N, = 2( ZﬂrgeszTJ
and the effective density of statesin the valence band

% 3/2
2rm kT
w2

Electrical conductivity of an intrinsic semiconductor.
o = le] (Npe + pun)

14.8 Key words

Valence band — Conduction band — Indirect gap semiconductors — Direct gap
semiconductors — Band gap — Mobilities of charge carriers — Fermi level — Optical
absorptions.
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14.9 Review questions

1. What are intrinsic semiconductors? Obtain expression for the intrinsic carrier
concentration in an intrinsic semiconductor. Under what condition will Fermi
level be in the middle of the forbidden gap.

2. Derivethelaw of mass action in semiconductor.

3. Describe the band structure of Germanium and Silicon. Compare the band
structure of these with that of Gallium Arsenide.

4. Describe how you determine the band gap in indirect gap semiconductor.

5. Derive an expression for electrical conductivity of intrinsic semiconductors.
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UNIT -1V LESSON: 15

EXTRINSIC SEMICONDUCTORS

Aim: To estimate the population of donor and acceptor levels and to study the Extrinsic

carrier densities and temperature dependence of electrical conductivity.

Objectives:

» Tolearn about the properties of extrinsic semiconductors.

» To obtain an expression to the population of donor and acceptor levels.

» To obtain an expression for the electrical conductivity of extrinsic semiconductor.
» To obtain an expression for the Fermi level in extrinsic semiconductors.

Structure of the Lesson:

15.1 Extrinsic Semiconductors

15.2 The n-type semiconductors

15.3 The p-type semiconductors

15.4 Population of Donor and acceptor levelsin the state of thermal equilibrium
15.5 Extrinsic carrier densities

15.6 Fermi level in extrinsic semiconductors.

15.7 Temperature dependence of electrical conductivity
15.8 Hall Effect

159 Summary

15.9 Key words

15.10 Review questions

15.11 Text and reference books



M. Sc., PHYSICS 2 EXTRINSIC SEMICONDUCTORS

15.1 Extrinsic Semiconductors:

As mentioned in lesson 14, the extrinsic semiconductors were developed because the
electrical conductivity of intrinsic semiconductor is, generaly, not large enough to meet
the requirement of devices. Besides, it is hard to imagine of an absolute intrinsic
material. Even the purest single crystals have impurity contents to a certain degree. But
these impurity contents normally do not increase the carrier concentration to a useful
level. GaAs is, however, an exception. The purest available single crystals of GaAs
show a carrier density of about 10" cm™ which is enormously high compared to the
intrinsic value (5 x 10" cm®). In general, the standard method of increasing the
conductivity of an intrinsic material isto add to it a suitable impurity or electrically active
element in small concentration. The method is known as doping. Impurities that enhance
the carrier density by contributing additional electrons to the conduction band are called
donors and those which create additional holes in the valence band are known as
acceptors.

For example, let us consider the electrically active elements suitable for doping in Si
and Ge crystals. When pure crystals of S and Ge are doped with any element from
Group 111 (e.g. B, Al, In), p-type semiconductors are formed.

15.2 The n-type Semiconductors:

Suppose a pure Ge crystal is doped with As, an immediate neighbour to the right of Gein
the periodic table. The arsenic atom may enter the germanium crystal lattice either by
replacing a germanium atom (i.e.substitutionally) or by occupying a position where no
germanium atom is supposed to be located in a pure and perfect crystal (i.e. interstitialy).
Data on lattice constant measurements show that the arsenic atom enters the crysta
substitutionally. The electronic measurements show that the arsenic atom enters the
crystal substitutionally. The electronic configurations in the outermost shells of
germanium and arsenic atoms are 3s” 3p® and 4s” 4p®, respectively. The germanium
crystal has a diamond structure in which each atom forms tetrahedral bonds with its four
neighbours. When an arsenic atom that substitutes a germanium atom finds itself
surrounded by four germanium atoms, its four electrons get engaged in tetrahedral bonds
with al four neighbouring atoms as depicted in fig 15.1. The arsenic atom is |eft with an

extraloosely bound valence electron which may be easily freed and made available in the
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conduction band for the purpose of conduction. On account of having these additional
electrons for conduction, the doped crystal is called an n-type semiconductor where n
stands for electrons.

e
7 N _ g
e/ Ge/ N\
NSZ 7
/Ge\ /G >
7
Ge\ \Ge/\ /Ge\ N\
N 7 N
/AS< :Ge\ /G
Ge< Ge\/ \Ge/ »
< \\Ge// \Gei/ \Ge\/f e/
J N\ _ 7 Y
7 \Ge/ \Ge/ \Ge/ \G \
\G// NeZ 7
e & e
7 N\ N7 N\

Fig 15.1 A donor impurity atom As is shown to substitute a Ge atom in the
germanium crystal.

According to a model proposed to interpret the replacement of a germanium atom by
an arsenic atom the arsenic atom is pictured as an occasiona germanium atom with an
additional positive charge of e fixed at its core to which an additiona e ectron is bound.
Thus the donor impurity can be described as a hydrogen-like centre in which the
Coulomb attraction between the core and the vaence electron is screened by the
neighbouring germanium electrons. The centre being a bound system is characterized by
a set of quantized energy levels whose scheme is qualitatively similar to that of the
hydrogen atom. The ionization energies of the hydrogen and the donor atoms are
expressed as

me*

E,L=—— - 15.1
" 2(4re,h)? (15D
for the hydrogen atom
and
- .
m.e _mE, (15.2)

©T 2dne n)? mel

S

for the donor atom
Here g is the permittivity of vaccum space and &sis the relative permittivity or the static

dielectric constant of the medium of the germanium crystal. The constant &, (= g €s)
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represents the permittivity of the medium of the crystal. The values of the static
dielectric constant of some important semiconductors are given in Tablel5.1.

For calculating E4 we take the effective mass of the conduction electron in germanium

as m,= 0.12mwhere misthe free electron mass. Using this substitution in (15.2), we get

_ (012)E,

2
S

Eq

&
With Ey = 13.6 eV and gy = 15.8 for Ge, Eq is found out to be about 6.5 meV. For S,
m.= 0.3m and & = 11.7 and, therefore, Eq comes to about 30 meV. The position of the
donor’s ground energy level Ep with respect to the conduction and valence band edgesis

shown in Fig.15.2(a). Its energy as measured from the conduction band edge is E4. The
energy continuum of the energy level scheme begins at the conduction band edge.

A n-type semiconductor A p-type semiconductor
E. Ec
2 Donor level 3
5| R & 3
& 5
5 & 5 Ea
S ‘§ Acceptor level
w ol ~ToTTTTTTTT _l _____________ EA
E, ;
, _ # 200777 =

(@ (b)

Fig 15.2 (a) A qualitative picture showing the position of the ground donor level Ep
relative to the conduction and valence band edges E. and E,. The E4 denotes the
ionization energy of the donor atom. (b) A qualitative picture showing the position of the
ground acceptor level E, relative to the conduction and valence band edges E. and E,.

The E, denotesthe ionization ener gy of the acceptor atom
Therefore, the electron from a donor atom can be transferred to the conduction band by
simply ionizing the donor atom at the expense of only afew meV (~ 6.5 meV in Geand ~
30 meV in Si) and not of afew eV of energy as is the case with the intrinsic material.
This makes abundantly clear why the conductivity of an n-type semiconductor is severd

orders bigger than that of the corresponding intrinsic material.



ACHARYA NAGARJUNA UNIVERSITY

5

CENTER FOR DISTANCE EDUCATION

Crystal €s
S 11.7
Ge 15.8
AlAs 10.1
AlSb 10.3
GaAs 13.13
GaSb 15.69
InSb 17.88
InAs 14.55
InP 12.37
SC 10.2

Table 15.1 Values of static dielectric constant g5 for some semiconductors

An odd feature of the model described above is that it gives the same value of Eq for
al donor impurities such as P, As and Sb in a semiconductor host. The experimental
values, however, show adlight variation (see Table 15.2). The description of screening in
terms of the dielectric constant is rather crude and it restricts the operational domain of
the model. The limitations are reflected in the model’ s failure to account for some of the
subtle consequences of the atomic effects. The effect of screening on the Bohr radiusis

further revealing. The Bohr radius of the donor impurity atom is written as

Are e i’ [ me,
ry = = fy

Tomet (m
whererg is the hydrogen Bohr radius (0.53 A).
Table 15.2 lonization energies for a few donors and acceptors in silicon and germanium

(Eq: 1onization energy of donors and E,; ionization energy of acceptors)

|mpurity _ Eq(meV) Impurity _ E.(meV)
Si Ge Si Ge
P 45 12 B 45 10.4
As 49 12.7 Al 57 10.2
Sh 39 9.6 Ga 65 10.8
In 16 11.2

= 20A inS

Using the respective values of € and m_, we get
rq =70A inGeand
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So we see that screening increases the Bohr radius enormously. Increasing the Bohr
radius is the same thing as loosening the binding which is reflected in drastically reduced
values of the ionization energy Eq in proportion to that of hydrogen (13.6 eV). The
calculated large values of the Bohr radius ryq are exhibition of the fact that the bound
valence electron of the donor impurity is smeared over thousands of lattice sites. Thisis
shown in fig 15.1, though not to scale. Thus the first Bohr orbits of impurity levels is
formed. It is referred to as the impurity band. Conduction occurs even in the impurity
band as soon as ionized donors are available to initiate the hopping of electrons from
donor to donor. It is a well-established mechanism of conduction in extrinsic
semiconductors and is known as hopping conduction.

15.3 The p-type Semiconductors:

The formation of p-type materials may be conveniently discussed by taking examples
of valence four elemental semiconductors, i.e. S and Ge. The elements used for doping
to convert these materials into p-type are from Group 11l (eg. B, Al, Ga, In) with sp°
electronic configuration of the outermost shell. The substitutional impurity in this case
completes only three of the four characteristic tetrahedral bonds of the host crystal. The
doped impurity atom lacks one electron to complete the bonding with its all the
neighbours. A vaence electron of the host material may meet this requirement by
ionizing the impurity atom negatively and creating a hole in the vicinity. Since the
impurity atom is willing to accept an electron, the impurity atom is called an acceptor.
The acceptor model is similar to the donor model. For example, a boron atom substituted
in the germanium crystal is pictured as a germanium atom with a charge of (-e) fixed at
its core and a hole of charge (e) bound to it. The impurity acts as the centre of a bound
system whose energy level scheme is similar to that of the hydrogen atom. The ground
acceptor level Ep lies close to the valence band edge as shown in fig 15.2(b). The
ionization energy E, as measured from the valence band edge is again very small as
compared to the size of Eq. The values of E, for some acceptorsin S and Ge are given in
Table 15.2. Arguments concerning large values of conductivity and hopping conduction
follow the same lines as those for n-type materials. With the latest methods of doping,
the lowest impurity concentrations that can be obtained in semiconductors are of the

order of 10 cm™. Hence Si that hasan intrinsic concentration of 1.5 x 10'°ecm™ at
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300K does not show intrinsic conductivity though Ge does, on account of its higher

intrinsic concentration (2.4 x 10™ at 300K).

154 Population of Donor and acceptor levels in the state of thermal
equilibrium

Let usfirst define the symbols that will be used in our future descriptions:

No/Na : density of al available donors/acceptors.

NS /N, : density of the neutral donors/acceptors.

N, /N, : density of ionized donors/acceptors.

np/pa : density of electrons bound to donors/density of holes bound to acceptors.
n . density of electronsin the conduction band.
p . density of holesin the valence band.

For small impurity concentrations (i.e. for non-degenerate semiconductors) the
occupancy of the conduction and valence bands is as usual described by the Boltzmann
distribution function. Therefore, at these concentrations the law of mass action (14.20) in
lesson 14 which was derived on the basis of the above conditions must apply even to
extrinsic semiconductors. But in the extrinsic case the value of the Fermi energy, not
figuring in the law of mass action, depends on a more complicated charge neutrality

condition. For homogeneous doping, the neutrality condition can be expressed as

n+ N; = p+ NS """"""""" (155)
with
Np= NJ+N; ------m-m-m- (15.6a)
NA = NX + N; """"""" (156b)
The above terminology may be appreciated better with the help of fig 15.3.
A Electrons
E—t
2 EoN 'N°
@] b b
3 _
= N N?
. EAﬁé —&
= Holes

Fig 15.3 Electrons in the conduction band and holes in the valence band made
available either by inter-band excitation or by impurity ionization.
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Let usfirst consider the calculation of population of the donor levels. At low impurity
concentrations (up to 10" cm™), the interaction between electrons bound to separate
donors may be neglected. We further assume for simplicity of calculations that the
impurity introduces only a single one-electron level. Under these approximations the
level could either be empty, or contain one electron of either spin, or contain two
electrons with opposite spins. The double occupation is not favoured on account of its
high energy arising from the Coulomb repulsion between two localized electrons. In the
state of thermal equilibrium, the mean number of electronsin a system is expressed as

;Nj exp[—(&; — €N, )/ KgT]

<n> B ZeXp[_(gj _gFNj)/kBT] ------- (15.7)

where the sum is over all states of the system; the g and N; denote the energy and the
number of electronsin statej. With asingle impurity we have just three states: one with
no electrons, thereby making no contribution to the energy, and two distinguishable spin
states with a single electron of energy Ep. Hence from (15.7), we have

<n> _ 2exp[_(ED - gF)/kBT] _ 1 _________________ (158)

1+ 2exp[~(Ep —&p) kg T] 1+1exp[(ED — &)1k T]
2

The factor of ¥z serves to modify the Fermi-Dirac distribution in this case. However, this
factor is generally ignored which amounts to treating two single electron spin states of
equal energy as one state. The population density of the donor level in the state of
thermal equilibrium is given by

Np = Np {N)
or
ND

n, = ignoring the factor of ¥2)  -----mmmmmmmem- 15.9
° T 1 expl(E, —£.) /KyT] (ignoring 2 (159

Also note that,
np = Ng ----------- (1510)

Similarly, it can be shown that the population density of the acceptor level in thermal
equilibrium is given by
NA

. Ne (15.11)
1+expl(se —En)/kgT]

Po

and also,
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15.5 Extringic carrier dengities:

The case of an extrinsic semiconductor in which both donors and acceptors are present
is difficult to handle. Because of this reason we consider a pure n-type semiconductor
and calculate its carrier concentration that is contributed by donors aone. Generally,
every n-type material has a few acceptors and every p-type material has a few donors
because of practical limitations on growing 100 per cent pure crystals. But the
concentration of naturally present impurities in a pure crystal is expected to be negligibly
small compared to the concentration of the impurity doped. Therefore, the relation (15.5)
in the present case isrewritten as

n=Nj +p - (15.13)

The net electron density n has contributions of eectrons from donors and from the
valence band (see fig 15.3). The density of the latter type (n;, being intrinsic) is equal to
the density of holes (p;)). Normally NJ>> n;(or p;). For example, in Si this condition is
satisfied even at low levels of the donor concentration since the intrinsic concentration is
mere 1.5 x 10" cm™ around room temperature. Therefore for our n-type material, p; in

(15.13) may be dropped giving,

n=N} =Np— NJ [using(15.5)] ----------------- (15.14)
or n=Np —"p [sincenp = NJ]
1 .
= Np|1- [using 15.9]
1+ eXp[(ED _SF)/kBT]

— ND
1+ eXp[_(ED - SF) / kBT]

R (15.15)

As adready mentioned in the beginning of Section 15.4, the relations for n, p and np (the
law of the mass action) as derived in lesson 14 are applicable to extrinsic materials with
low doping levels. We rewrite the relation (14.18) as

_ - (Ec B gF) e
n= N(c)ex T } (15.16a)

with
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* 3/2
m, KT
N(C)=2 —2B | --memmmmmmeeeeee- 15.16b
(c) { Py J ( )
and (14.19)as
— (5F -E )
= N(V)exp ————— |- 15.17
p=N(v) T (15.174)
with
m*k T 3/2
N(V)=2 2B | cooeeeeee 15.17b
(v) ( o ? j ( )
From (15.16a), we have
exd 55| nexp(E /ksT) (15.18)
kg T N(c)
Eliminating &g in (15.15) with the help of (15.18), we get
n= No (with Ec — Ep = Eg)
T nexp(E, /kgT) e
1+
N(c)
or
e XPEKT) | N g e (15.19)
N(c)
Using the substitution,
eXp(E, Tk T) _ ) G (15.20)
N(c)
we get
D R A S O ———— (15.21)

The physically meaningful solution to the above equation is
e -1+ 1+ 4Ny X

2X
Rationalizing (15.22), we get

n=2Npfl+ 1+ 4N, X |

.......... (15.22)

Using (15.20), we hve

-1
n=2No {1+ \/1+ 4N, W ----------------- (15.23)
C

There are three limiting cases of the above expression as discussed below:

Casel. Atlow temperatures,
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Ny E )y
4( N(c)j exp(kBTj . .

This transforms (15.23) to the following form,

nzmexp(_EdJ ................. (15.25)

2k, T
At these low temperatures a large number of donors stay in the unionized state. The

range of temperatures over which this condition exists is known as the freeze-out range.
We can notice the similarities between (15.25) and (14.21) that expresses the intrinsic
carier density. Both depend exponentially on temperature since the exponential
dependence dominates the other dependence entering through N(c). In the donors' case a
much smaller quantity Eq appears in the exponential as against Ey in the intrinsic case.

This accounts for alarger carrier concentration in the n-type material.

Casell. For temperatures at which

ND Ed _________________
e

the relation (15.22) reducesto

n= ND ---------------- (1527)
i.e aconstant.

This means that at these temperatures all donors are ionized and the electron density
reaches its maximum with the excitation of e ectrons from the valence band considered
negligible in the first approximation. This is referred to as the saturation range or
exhaustion range of carriers.

Case 1.  When temperatures is still higher, the concentration of conduction electrons
contributed by the valence band becomes appreciable. Since the concentration of donor
electron in the conduction band no more increases on account of saturation, the intrinsic
electron density overtakes the density of donor electrons at some stage. In this condition
an n-type semiconductor is characterized by intrinsic behaviour and we speak of the
intrinsic range of carriers. The variations of electron density and energy as functions of

temperature are sketched in fig 15.4, identifying the three ranges.
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<+ Gradient Ey/2kg
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V Fermi energy, sF(T)T
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Energy, ¢

»
»

Reciprocal temperature, T
Fig 15.4 (a) A qualitativeillustration of the variation of electron concentration (n) in
the conduction band with change in temperature in two samples of different donor

concentrations Né and Né. (b) A qualitative illustration of the temperature

dependence of the Fermi energy e in the same semiconductor. The E; represents the
Fermi energy in theinstrinsic material. All other symbols have their usual meaning.

The calculation of electron density in the conduction band as carried out above is
based on the assumption that there are no acceptor impurities in the n-type semiconductor
under consideration. Experiments, however, confirm that traces of acceptors are always
present. Therefore, quantitative estimates made on the basis of the above theory may
differ dlightly from the experimental values.

There are several applicationsin which thereis a need to monitor the electron and hole
concentrations. Since a low doping levels the law of mass action (14.20) is valid, it is
exploited to manipulate the carrier concentration in non-degenerate semiconductors.
When the electron concentration n is increased by adding the trace of a suitable donor
impurity, the hole concentration p goes down so that the product (np) remains constant at
a temperature in accordance with the law of mass action. This way it is possible to

reduce the sum (n + p) considerably. This method of reduction is in wide practice and
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known as compensation. The sign of majority carriersis quickly determined by detecting
the sign of Hall voltage.
15.6 Fermi leve in extrinsic semi conductor

We have seen that Fermi level is situated at the middle of the band gap in an intrinsic
semiconductor as the electron and hole densities are equal. When the intrinsic
semiconductor is doped the carrier densities change, consequently the position of the
Fermi level also changes. The shift in the position of the Fermi level can easily be related
to the majority carrier density in an extrinsic semiconductor if it is assumed that the
addition of the impurities do not affect the densities of energy states in the conduction
and valence bands,

Let Ne and N, denotes the density of states in the conduction band and density of

states in the valence band, respectively. We have for an intrinsic semiconductor.
Efi - Ee
n=N_ex
KgT

p(Ev - Efi j
and p=N,ex
kgT

Here E, isthe energy associated with the Fermi level in an intrinsic semiconductor. For

an intrinsic semiconductor, we have n = p and therefore from the above expressions,

N, E.+E, - 2E;
= X -
N, kg T

Let E,, be the energy associated with the Fermi level in an n-type semiconductor having

an electron density n, we have

Ev i}
and p=N,ex
KgT
2 2E. —E_-E 2(E,. —E.
Therefore, ﬂ:ﬂ—zz NC =exp T=f T v —ex ( fn f|)
p n NV kBT kBT

Efn - Efi
KgT

Similarly for a p-type semiconductor
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p=n ex Es _Efp
! Ko T

Thus the shift in the Fermi level in the n and p types of semiconductor can be expressed

as

E, —E, =k, TIn-~

J

n

and E, —E, =k, TInLE

Fig 15.4.1 represents the shift in the Fermi level in the n and p type semiconductors.

n-type p-type
Fig 15.4.1 sShift in the Fermi level in the n- and p-types of semiconductors.

15.7 Temperature dependence of electrical conductivity:
We refer back to relation (15.5) according to which the conductivity depends on the

carrier density and the mobility as
G = o] (N + Pptp)  =-e-remsemeemeeees (15.28)

The aim of this section can be fulfilled by establishing how the concentration and the
mobility of electrons and holes vary with temperature. The temperature dependence of
carrier concentration was treated in Section (15.5). Here, we set out to determine the
temperature dependence of mobility. Then, the temperature dependence of conductivity
will be interpreted by comparing the two contributions.  The conduction in
semiconductors differs from the metallic conduction in the sense that electrons near the
Fermi level contribute to the metallic conductivity whereas in semiconductors e ectrons
near the bottom of the conduction band and holes near the top of the valence band take
part in the process. There are no charge carriers near the Fermi level in semiconductors.
In the approximation where the Fermi statistics can be replaced by Boltzmann statistics
for non-degenerate semiconductors, the Boltzmann equation is solved to get to the
expression for mobility of charge carriers. On demand of simplicity we present here only

a qualitative description of the scattering processes in which electrons and holes by and
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large behave similarly. Severa simplifications of the exact expression for mobility lead

to the result.
/,l oC T """"""""" (15'29)

where 7 is the relaxation time defined by the relation 7 = A where Ais the eectron
Vth

mean free path and vy, isthermal velocity of electron.
Since 7 is proportional to the average time between successive collisions,

1 e <V>Z ------------ (1530)

T
where ¥ denotes the scattering cross-section of electrons and holes at a scattering centre.

Relation (15.30) gives a measure of the scattering probability with (v) treated as thermal
average over al electron or hole velocities in the lower conduction band or upper valence
band. The use of Boltzmann statistics in semiconductors gives

(VA BE—— (15.31)
Phonons happen to be the prominent source of carrier scattering in crystals. It issimpler
to calculate the phonon scattering cross-section X, for acoustic phonons, (T >> 0p),

where 0p is the Debye temperature. This gives the dependence,

LocT (L stand for lattice or phonons) ~ ------------------ (15.32)
Making use of (15.30), (15.31) and (15.32), we have from (15.29)
T B (15.33)

In semiconductors, centers of ionized donors and acceptors serve as another important
source of scattering. As an electron or a hole approaches such a centre, it experiences a
Coulomb force and suffers scattering similar to Rutherford scattering. A rigorous
treatment shows that

where | stands for ionized impurity. Therefore, with the use of (15.30), (15.31) and
(15.34) in (15.29), we get

TR o B — (15.35)

For onetype of carriers, say electrons, we can write contributions of phonons and ionized

impurities to resistivity as
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1 1 1 1

p =—= and P, = —— = "mmmmmmmmmmmomes (1536)
O L ne/r[ L O-l ne/’ll
Applying the Matthiessen’ srule, the total resistivity iswritten as
b L i[i ; i} ................ (15.37)
neu nelu.
or
L (15.38)
MR K

A quadlitative display of the temperature dependence of mobility in an extrinsic

semiconductor is madein fig 15.5.
A

_ -I—+3/2 - -I——3/2

log n

phonons

ionized
defects

[
»

logT

Fig 15.5 Qualitative temper atur e dependence of the mobility contributions from charged
impurities and phonons.

The variation of conductivity o as a function of temperature is plotted for six samples
of n-type germanium in fig 15.6. The conductivity shows a maximum in the exhaustion
range where the electron concentration n becomes amost constant. The behaviour of o
in this range is governed by the characteristic temperature dependence of mobility as
shown in fig 15.5. In theintrinsic range (at high temperatures) and in the freeze-out (at
low temperatures), the variation in o is effectively controlled by the exponential
dependence of concentration n on temperature. The temperature dependence of mobility
has been derived from the curves of fig 15.6 and the Hall measurements. The donor

concentration Np in six samples ranges from 10* to 10" cm™. The mobility in the purest
crystal with Np = 10" cm™ shows ideal T ¥ dependence whereas in a sample with
increasing values of Np the mobility approaches the expected T *2 behaviour. Typical

orders of electron and hole mobilities in some important semiconductors are given in
Table 15.3.



ACHARYA NAGARJUNA UNIVERSITY 17 CENTER FOR DISTANCE EDUCATION
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Fig 15.6 Observed conductivity behaviour asa function of temperature for six samples
of n-type germanium.

Table 15.3 Typical order of carrier mobilities at room temperature in some important

semiconductors.

Crystal Mobility (cm?%V. s) Crysl Mobility (cm?%V. s)
Electrons| Holes Electrons Holes
S 1350 480 InSb 800 450
Ge 3600 1800 InAs 30,000 450
GaAs 8000 300 InP 4500 100
Gasbh 5000 1000 PbSe 1020 930
AlAs 280 _ PbTe 2500 1000
AlSb 900 400 SiC 100 10-20

15.8 Hall Effect
Suppose a semiconductor crystal carries a current of density jx aong the x-direction
under the action of a steady electric field Ey directed along the x-direction. When a
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steady magnetic field B; is applied along the z-direction, a Hall voltage devel ops between
the crystal’s faces along the y-direction due to the deflection of charge carriers by the
Lorentz force. The geometry of the experimental set-up is drawn in fig 15.7. If the
corresponding Hall electric field be denoted by Ey, the Hall coefficient is expressed as

Ey
=Y (15.39)
J X BZ
4 y
Holes (p-type) y Electrons (n-type)
B, B, X
M X M’
%/ 3 § X

Fig 15.7 Directions of the applied electric and magnetic fields (E and B
respectively) relative to the direction of current flow in two samples of a
semiconductor. The current density j is along the x-direction. Note that the
polarity of theHall voltage is oppositein p- and n-type samples.

For metals, where the current is generally carried by eectrons, Ry in small magnetic
fieldsisrelated to the election density n by

R, = e (15.40)

wherer is called the Hall factor. Itsvalueis usudly close to unity. It is exactly equa to
1 if all electrons move at the same speed as is true in respect of the Drude model, or in
respect of the degenerate electron gas in which al electrons move with Fermi velocity.
The value of r was found as 3r/8 (= 1.18) in the Lorentz model.

In semiconductors, things are somewhat different as every crystal in principle can
have both types of charge carriers. Nevertheless, the Hall factor remains close to unit for
both electrons and holes. The n-type and p-type crystals are quickly differentiated since
the sign of the Hall voltage is opposite in the two cases as may easily be made out from
fig 15.7. When both eectrons and holes are present simultaneously, a partia
recombination of electrons and holes occurs on the crystal face onto which both are
reflected. Asaresult of this, the Hall voltage is reduced and its sign refers to the sign of

majority carriers. From the measured value of Ry on the basis of (15.39), we can
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estimate the concentration of majority carriers using (15.40). However, the most general

expression for Ry in semiconductorsis found as

2r —nu’r
RH:plLtpp ILtnn _________ (15.41)
e(pu, +nu,)

where all symbols have their usual meaning.
Table 15.4 Hall coefficient and mobilities for some metals at 300 K

Metal Ry(Vm® A wb™)in107%° | | (m2v-is?
Silver -0.84 0.0056
Copper -0.55 0.0032
Gold -0.71 0.0030
Sodium -2.50 0.0052
Aluminium -0.31 0.0012
Lithium -1.70 0.0018
Zinc +0.30 0.0060
Cadmium +0.60 0.0080
159 Summary

The standard method of increasing the conductivity of an intrinsic material isto add to it
a suitable impurity or electricaly active element in small concentration. The method is
known as doping. Impurities that enhance the carrier density by contributing additional
electrons to the conduction band are called donors and those which create additional
holes in the valence band are known as acceptors.

When pure crystals of Si and Ge are doped with any element from Group 11l (e.g. B, Al,
In), p-type semiconductors are formed.

m* e*
The conduction electron concentration (n) in extrinsic semiconductor at high temperature

The energy of the impurity atom E, = -

isequa to the donor concentration (Ng).

n=n,exp[(E; —E,)/kgT]= N,
and at low temperatures

E,-E
n=(N 1/2 n llzeX 2 g )
(Ng)™""(ny) p{—szT }

Conduction occurs even in the impurity band as soon as ionized donors are available to
initiate the hopping of electrons from donor to donor. It is a well-established mechanism

of conduction in extrinsic semiconductors and is known as hopping conduction.
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The elements used for doping to convert these materials into p-type are from Group |11
(e.g. B, Al, Ga, In) with sp* electronic configuration of the outermost shell.

The case of an extrinsic semiconductor in which both donors and acceptors are present is
difficult to handle. Because of this reason we consider a pure n-type semiconductor and
calculate its carrier concentration that is contributed by donors alone. Generaly, every n-
type material has a few acceptors and every p-type material has a few donors because of
practical limitations on growing 100 per cent pure crystals. But the concentration of
naturally present impuritiesin a pure crystal is expected to be negligibly small compared
to the concentration of the impurity doped.

the conductivity depends on the carrier density and the mobility as

S o = |e[ (Nun + Prp) o
Donor impurities lead to an excess of electrons over holes and acceptor impurities lead to

an excess of holes over electrons. In an instrinsic semiconductor the number of electrons
isequal to the number of holes.

15.10 Key words

Doping — Donors — Acceptors — Pentavalent — Impurity — n-type semiconductor — p-type
semiconductor — Hopping conduction — Inter band excitation — Localized electrons —
Extrinsic carrier densities — Electron and hole mobilities.

15.11 Review questions

1. Indicate with the help of diagram how Fermi level changes as a function of
temperature in an n-type semiconductor.

2. Derive an expression relating to shift in the Fermi level and carrier density in an
extrinsic semiconductor.

3. In an n-type semiconductor the Fermi level lies 0.3 eV, below the conduction
band at 300 K. With the temperature is increased to 330 K, find the new position
of Fermi level.

4. Assuming a vaence band above which there are n, acceptor levels per unit
volume, derive an expression for the Fermi level and for the density of free holes
in the valence band as function of T.

5. If the Fermi level in a semiconductor lies more than afew KT below the bottom of

the conduction band and more than a few kT above the top of the valence band,
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show that the product of the number of free electrons and the number of free holes

~E, /KT

per cm® is given by n.n, = 2.33x10%T % where the Ey is the gap width.

Note that this holds irrespective of the presence of donors or acceptors in the gap,
as long as the condition imposed on the Fermi level is satisfied.

6. Prove that the minimum conductivity of an extrinsic semiconductor is given by

1/2

0 = 2ni (:un/J p)
7. Show that the conductivity minimum occurs when

1/2 1/2
o (ﬂ_J
Hop My

8. (a) For an n-type semiconductor, show that

n
E. =E, —k,T |n(N—°+]

d

N, —Np =n,

(b) For a p-type semiconductor, show that
P
E- =E, +kgT In(N—?)

a

9. (a) Describe any one experimental technique for determining the band gap of a p-
type semiconductor.
(b) State the conditions under which the Fermi level of an extrinsic semiconductor
can move inside either valence or conduction band.
(c) What are degenerate semiconductors? How does their conductivity vary with
temperature?

10. Discuss the Hall effect. Explain how the measurement of Hall coefficient helps

one to determine the mobility and sign of charge carriers.
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I ntroduction:

The comparative ease with which the electrical characteristic of semiconductors can
be monitored by controlling the traces of impurities being doped is simply striking.
Because of this property, semiconductors have emerged as the indispensable material
base for the development of Solid State Electronics. The dramatic and extensive
technological consequences of this property have given a tremendous boost to the
commercial interest in semiconductors.

16.1 The p-n Junction:

It is of significance to note that semiconductor devices generally exploit the
characteristics of inhomogeneous semiconductors in which the donor and acceptor
concentrations are not uniform. A common form in which they are used contains two
separate n and p type regions with an abrupt partition boundary (a junction) within a
single crystaline sample. This junction is known as the p-n junction. There can be more
than one junction in some devices. Characteristics of the p-n junction are crucia to the
fabrication and working of most of the semiconductor devices. It is an essentid
component of the present electronics circuitry ranging from a simple rectifier circuit to
transistor circuits and integrated circuit used in sophisticated appliances like modern
computer. On the other hand, optical applications such as photo cell, LEDs and injection
lasers (laser diodes) are equally important today in view of the rapidly upcoming field of
opto-electronics. In this lesson we learn about the salient features of the working of a
selected few devices.  Consider a p-n junction, for example of a Si crystal whose left
half is p-type and the right sideis n-type. A p-njunction is never made by simply joining
the two types of amaterial. In actual practice a p-n junction is formed during the crystal-
growing process, diffused or alloyed. Other methods of actual junction formation are also
used.

Nonetheless, the supposition that a piece of n-type and a piece of p-type materia are
brought into intimate contact helps in determining the electrostatic conditions present at a
junction. When the two regions are treated as isolated, the levels of Fermi energy in the
two regions are at different positions on the common energy scale [fig 16.1(a)]. Sincethe
two regions are parts of the same crystal, the Fermi energy (representing the

electrochemical potentia in semiconductors) must have the same value in both halvesin
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the state of thermal equilibrium. Near T = 0 K the position of the Fermi level is near the

acceptor level in the p-region and near the donor level in the n-region.
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Fig 16.1 (a) Relative positions of the conduction and valence band edges, the donor and
acceptor levels, and the Fermi level in a p-n junction in the state of thermal equilibrium
when p-and n-type regions are treated asisolated. (b) All the above positions when the
p- and n-type regions are brought in contact. (c) The space charge distribution at p-n
junction. When the effect of the mobile carriers is neglected, i.e. Iy Np = I;Na. (d)
Variation of the space charge electric field E acrossthe junction plane (x = 0).

Because the impurity levels are at the extremes of the gap, the Fermi level would not
have maintained a constant level unless the bending of conduction and valence band
edges occurred in the transition zone. [fig 16.1(b)]. Immediately after the junction
comes into existence, electrons from the n-region begin to diffuse into the p-region and
combine with the holes present in the vicinity of acceptors. This leaves behind the
positively charged donors in the n-region and produces negatively charged acceptors in
the p-region. The immobile ionized impurities are considered to form a charged double
layer of space charges across the junction in the doping profile [fig 16.1(c)]. The charged
donors and acceptors create an electric field across the transition region whose direction

is such asto oppose the diffusion of free charge carriers. Therefore, in the absence of any
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external field the diffusion current stops as soon as the field of ionized impurities
becomes big enough just to keep the diffusion in complete check. The electric field in
guestion is basicaly interpreted as the consequence of a macroscopic potential V(X)
varying over the transition region. In a one-dimensional model with an abrupt change
from p-type to n-type at x = 0O, the potential V(X) is related to the space charge by the

Poisson equation.
22\2/ :_—e(Ng +p,—-n,) forO<x<l(n—typeregion)
X
T 80:s -------------- (16.1)
e =;(N,§ +n,—p,) for-lIy <x<0(p-typeregion)
0¢s

where the subscripts n and p refer to concentrations in the n- and p-type regions,
respectively, and -, < x < |y defines the space charge region.

The exact solution of (16.1) is amost impossible, since the carrier concentrations
depend on position. To make the solution feasible, we simplify (16.1) by assuming that
the electric field is strong enough to keep all mobile free carriers away from the space
charge region. The variation of electric field E across the junction is shown in Fig
16.1(d). It is maximum at x = 0. Thus the density of space charge is given by simply
N, inthen-region and by N, in the p-region. This approximation is good except at the
boundary of the space charge region for a small current across the junction. In this
assumption the space charge region is depleted of free carriers and, therefore, is aso
identified as the depletion layer. The relation (16.1) is solved under the boundary

conditions:
dv
a=O ax=Iy and x=—I,
with Ocli—vcontinuous a x =0 and V(In) —V(Hp) = Vs, where Vg is the height of the
X

potential step, known as the barrier height. It isaso called the diffusion voltage.
Well outside the space charge zone, N; and N, are compensated by equaly large

free carrier concentrations n, and p,, respectively. In accordance with the type of doping,
electrons serve as majority carriers in the n-type region and holes as majority carriersin
the p-type region. There may always be present small concentration of holes in the n-
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region (p,) and of electrons in p-region (np), contributed by the naturally occurring
impurities in the host crystal.

An estimate of Vg is made in terms of carrier concentrations in the state of thermal
equilibrium. These concentrations are given by (15.16a) and (15.17a) which we rewrite
below:

— (B — &)
n, = N(c)expp ——=—=| ---------m-m-- 16.28
» = N(0) p{ T (16.22)
—(e.—EY
=N(v)exp ——=| - 16.2
P, = N(V) T (16.29)
Their relationship with the intrinsic concentration n; is then given by
n? = n, p,N(v)N(c) ex M} -------------- (16.3)
kg T

Here E_, E, E) are conduction band edges (in the n-region) and valence band edges

(in the n- and p-regions), respectively [see fig 16.2(b)].
From (16.2b), we have

EP—g. = kBTIn( P j -------------- (16.4)
N(v)
likewise,
E" gF—kBTlr{ Pn j -------------- (16.5)
N(V)

Subtracting (16.5) from (16.4) and using (16.3), we get

2
i

n
EP—EM=k,T In( Po J -------------- (16.6)

But Vg is equa to the difference between the maximum and minimum of the

macroscopic potential V(x). Hence,

n
eV, =—(E) -EJ) = kBTIn( i ”J

n?

or

kT, (PN,
Vy =2 In( r?? j ------- (16.7)

Other important properties of a p-n junction are the maximum value of the electric
field Ex and the space charge width I(=In + I). The expressions for them can be obtained
from (16.1).
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When an external steady voltage is applied across a p-n junction, the barrier step
height changes. In aforward-biased configuration it decreases to value,

VBF - VB - Vext -------------- (168)
Where Ve denotes the applied voltage.

The ‘flow of current changes’ in the band edges and the Fermi level are depicted in fig

16.2(a). p-type
p-type n-type ,
, Conduction band
Conduction band % w n-type
/ﬁW{/
W IeVBF )
] Fermi leve
Fermi level [.------- }_-ev bl LY eVer
__________ -7 ext \‘\ eVext
//Wﬁfxﬁf% Valence band 1. //
Vaence band /;’/W ‘\{(/__(__
EL&MW Electron fIQ{/ 7
Hole flow
—_—> 'Ijoleflow

€)) (b)
Fig 16.2 Qualitative behaviour of the Fermi level and the electron potential
energy at points near the p-n junction when (a) a forward bias of Ve VoIt is
applied, (b) areverse bias of V. volt isapplied.
On the other hand, for a reverse-biased connection in contrast to the forward-biased
case, the direction of the applied field does not favour the flow of mgjority carriers across
the junction, thus increasing the barrier height to

Vgr = VB + Vg -——----------- (16.9)
the electronic conduction and changes in the band scheme structure are illustrated in fig

16.2(b).

In the forward-biased configuration the current is carried by mgjority carriers and is of
the order of afew mA which is much higher than that in the reverse-biased case (~pA).
The current in areverse-biased junction islow as it is contributed by the flow of minority
carriers that are relatively very small in number and are required to cross a higher
potential barrier. The property that a p-n junction favours the flow of current in one
direction across the junction forms the basis for using it as arectifier. The knowledge of
voltage-current characteristics of a p-n junction is crucial in order to understand the

behaviour of the p-n junction for the desired application.
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It may again be reminded that there are numerous devices that make use of
homogeneous semiconductors. Perhaps, the simplest of them is a thermistor which is
used as a standard temperature measuring device.

16.2 Some examples of p-n junction:

The p-n junction based devices have acquired such a tremendous technological potential
that even their listing is quite a formidable task. We now study the salient features of
some important devices..

16.2.1 Junction rectifier

A p-n junction acts as a rectifier. A large current will flow if we apply a voltage across
the junction in one direction, but if the voltage is in the opposite direction only a small
current will flow. If an alternating voltage is applied across the junction, the current will
flow in one direction, i.e the junction has rectified the current. The biasing arrangements
and the variation of depletion region with biasing voltage is shown in fig 16.3. The
current — voltage (1-V) characteristic is shown in fig 16.4. We may see from the curve
that it depicts a nearly saturation current in the reverse bias condition and a current which

rises with the rise of potentia in the forward bias condition.

Depletion Region

Anode , Cathode
o—— p n pB—o / \
p n
, . (a)
Depletion region
p 7 n T =|I
h
— I |+ — II +
vi (b) vi
Depletion region
»l
—>||: p n T ||’
+|1=
|I
+ I I — Vr
vV, (©

16.3 The p-n junction (a) No external bias (b) Reverse bias (c) Forward bias,
Schematic representation, circuit diagram and potential diagram.
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16.4 Current voltage characteristics of a p-n junction rectifier.

Let us first consider that no external potential is applied across the junction and it isin
thermal equilibrium. In the thermal equilibrium there will be a small flow of electrons J,,
from the n region into the p region where they get anhilated by combining with holes.
This recombination current is balanced by a current J,g of electrons generated thermally
in the p region and which diffuse to the n- region

Jnp = =Jng
Otherwise electrons would pile up on one side of the barrier. A similar argument holds
for hole fluxes Jyr and Jug.
Let us now calculate the current across the p-n junction in the reverse and forward bias
cases. Assuming the Maxwell-Boltzmann statistics are valid, one can easily write the
expression for electrons having sufficient energy to surmount the junction potential

barrier as proportiona to

g o) kT — (const) ex o
ke T

Accordingly, one expects J,, to be proportional to the Boltzmann factor exp [eV/ksT].

The recombination current is reduced by the Boltzmann factor, i.e.

Similarly, for holes

Jor = Jog €Xp [€Vo/ksT]
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The Boltzmann factor controls the number of electrons with enough energy to get over
the barrier. We must remember that the holes prefer to be at the top of the potential
barrier whereas the electrons prefer to be at the bottom of the barrier. Now

3, =3y -3, =3 e o |1
kT
eV,
J,=J,-J,= Jpg{exp(kjj—l}

Thetota current density due to both the el ectrons and the holes, across the p-n junction is

thus given by

Vo | 4|_ Ny oL
|=e(Jp—Jn)=(Jpg+Jng){exp(kBT} 1}|O{exp(kBTj 1} (16.10)

Here 1o = €(Jyg + Jng) is called the maximum or the saturation current. Egn. (16.10) is
well satisfied for p-n junctions in germanium and is called the rectifier equation. From

(16.10) one can easily write the current relations for forward and reverse bias cases, i.e.

I =1, exp(iv_:’_j—l} (Forward bias)
L B

I =1, exp(— ev_?)—l} (Reservebias)  --------------- (16.11)

In the reverse bias case, however, exp (— EV_;’_j <1foreV, > 4k,T ,and clearly | — I,
B

the saturation value. It is of interest to note that the saturation current is of the order of a
few milli-amperes per sg. cm of the junction area and remains amost steady at about this
value until the voltage reaches a value sufficient to cause the breakdown of the function
as shown in fig. 16.4. The breakdown may not occur until the reverse bias voltage
reaches some hundreds of volts. In certain functions breakdown may occur even earlier.
The maximum permissible forward current in a p-n junction is many amperes per square
cm and occurs for avoltage of only afew volts.
16.2.2 Junction transistor:

A junction transistor is athree-terminal device, analogous to a vacuum triode. Like a

vacuum triode, the transistor utilizes one of the elements to control or modulate the flow
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of charges through the whole device. The three elements in the transistor are emitter,
base and collector. The names are suggestive of the functions each performs. The
emitter injects charge carriers into the base, which in turn controls the number of these
carriers that are eventually gathered up by the collector.

This action is based on the fact that the transistor is actually a sandwich of two p-n
junctions: the emitter base junction and the collector base junction. The emitter and
collector are always doped by the same impurity. They may both be p-type or both be n-
type, while the base always has opposite doping as shown in fig. 16.5. In npn transistors,
the emitter and collector are n-type and the base is p-type; while in pnp transistors the
emitter and collector are p-type and the base is n-type. Thisis a direct consequence of
the fact that a semi-conductor material is capable of sustaining a current due to the
motion of both positive as well as negative charge carriers. It should be noted that in
schematic symbols for the npn and pnp transistors the only difference is the direction of
the arrow on the emitter terminal. This arrow identifies the actua direction of the emitter
current, and is always from p-to n-material. Therefore, it is a means by which one may

identify two types of transistors.

Emitter Base Collector Emitter Base Collector

Emitter Collector i Collector
! /’\ C I%mnter /\ O

Base Base

npn type pnp type
Fig 16.5 An npn and pnp transistor with their circuit symbols.

Fig 16.5(a) and 16.5(b) shows an n-p-n transistor and its energy band model when
unbiased respectively. Fig 16.6(a) and (b) shows an n-p-n transistor biased as an
amplifier and its energy band model respectively.

Transistor amplification is possible because a small signa applied to the base of the

transistor can control a large current flow between the emitter and the collector. The
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simple common base configuration as shown in fig 16.6 is the best for analyzing
transistor amplification effect. A positive voltage called forward bias is applied to the
left hand n-p junction by a small battery of about 1.5V through a resistor R; of perhaps
50Q across which a signal can be developed. A negative voltage called reverse bias is
applied to the right hand junction by a battery, perhaps 9V, through alarge resistor R, of
some 10,000 Q, across which amplified signals can be developed. From our knowledge
of the junction, it follows that electrons will flow from the emitter into the base material;
but eectrons cannot flow from the base terminal to the collector. Now, if the base is
thick, 0.25 cm or more, these electrons would flow about the emitter circuit and will not
be sensed by the collector circuit. But if the base is thin enough, then what follows is the

principle of transistor amplification.

Conduction band

"""""""""""""""""" E|:

n / ln -
(b)

Electron energy —

Emitter Base Collector

(a
Fig 16.5(a) An n-p-n transistor, (b) Energy band model of an n-p-n
transistor when unbiased .
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Fig 16.6 (&) An n-p-n transistor biased asan amplifier,
(b) Energy band model of n-p-n transistor biased as an amplifier.

Electrons emitted into the base find themselves in a region with small electric field;
they diffuse rather randomly and may ultimately find themselvesin the strong field of the
reverse-biased junction. At this point they are swept through a collector junction and

drawn through the collector circuit, producing a voltage across the output resistor R,
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which is an amplified replica of the signal applied to the base. For a sufficiently thin
base, a large fraction of the electrons (~99% or more) emitted by the forward-bias
junction pass through the collector, and the efficiency of the deviceis high.

The gain of the transistor can be obtained as follows. Since the forward resistance of
the emitter is low compared with R;, any input signal V; developed across R; produces a
forward current i; = Vi/R;. The collector current ic, passing through the resistor R,
produces an output voltage V. = ic R.. If ic =ji.e., if the current efficiency is 100%, then
the voltage gain VJ/V; is given by RJ/Ri. We must note that the high resistance of the
reverse biased collector does not enter into the calculation; and the power generated in
the output resistor is derived from the collector-biasing battery.

A p-n-p transistor operates in the same way as the n-p-n transistor we have just
described, but the bias voltage is reversed. Since the transistor requires biasing, it does
consume some power, but the consumption is much less than that of a vacuum tube.
Heavily doped p-n junctions:

16.2.3 The Tunnel Diode:

Tunneling is awell-founded concept in quantum mechanics. The electron tunneling at
a p-n junction implies that electrons reach the other side of the junction by penetrating
through the potential wall at the junction. It should not be confused with the act of
crossing or jumping over the potentia hill. It ispurely a quantum statistical phenomenon
based on the concept that the electron has a finite probability of being found on either
side of the junction.

For tunneling to occur, the width of the space charge layer (or the depletion layer)
should be of the order of, or less than, the eectron mean free path. The width of the
space charge can be reduced to this value by doping both regions of the p-n junction
heavily. A p-n junction that is doped heavily enough to make the tunnel current greater
than the usual diffusion current under certain conditions is called a tunnel diode. The
width of the space charge layer in these diodes is usually less than 100 A. The impurity
concentrations are in the range 10*°-10%cm 3, whereas in ordinary p-n junctions they
vary between 10" and 10*%cm™.

The material of a tunnel diode behaves as a degenerate semiconductor. The Fermi

level e no more lies in the gap. Instead, it lies within the valence band of the p-region
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and the conduction band of the n-region. We say that the Fermi level lies in a hybrid
impurity-intrinsic band. Though a small width for the space charge layer is essential, it is
not a sufficient condition for tunneling. There must be an unoccupied state on the other
side of the junction into which an electron could tunnel at constant energy.

Figure 16.7(a) shows the state of an unbiased junction where the Fermi level has the
same energy in both the regions of the junction. Let us first examine tunneling in a
reverse-biased junction as shown in fig 16.7(b). When asmall reverse bias voltage Ve iS
applied, the height of the barrier step becomes much more than V. On account of this,
the Fermi level has different values in the regions and at large values of Ve a large
number of occupied states of the valence band on the p-side of the depletion region lie
opposite even to a larger number of empty states of the conduction band on n-side. The
band picture is similar to that in a meta. When It is of the order of the electron
wavelength or less, the junction has ideal conditions for electron tunneling. At higher
values of Ve the tunnel current can be quite large because of the enhanced level of
overlap between the occupied and empty states as referred above. The probability of
tunneling is given as

P, ~exp (—klt) -------------- (16.12)
where k is the el ectron wavevector.

For asimple band structure of geometry as shown in fig (16.7(b)),

EQ
I, = S (16.13)
Substituting this value of I+in (16.12), we get
—E,(2m* £)"'?
P=expg —2 0 | e (16.14)
eEn

Here E is an average value of the electric field at the junction which generally does not
deviate much from Eqa. Owing to the tunnel current, there is a quick onset of a critical
reverse voltage. This property enables a reverse-biased tunnel diode to be used as a
voltage regulator. These tunnel diodes are known as Zener diodes. The relation (16.14)
provides a good description of tunneling in a Zener diode.

Now, we proceed to describe the other important tunnel diode that is used in the

forward-biased configuration [Fig 16.7(c)]. Thisis again a heavily doped p-n junction,
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known as the Esaki diode. If one approaches the forward-biased state from the reverse-

biased condition, by decreasing Ve, the tunnel current is on decrease and becomes zero
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Fig 16. 7 () An unbiased tunnel diodein the state of thermal equilibrium. (b) A reverse-
biased tunnd diode with different values of Fermi energy on the two sides of the
junction.(c) A forward — biased tunnel diode.(d) The decrease in tunnd current on
increasing the bias voltage further refers to the region of the negative resistance of the
Esaki diode. (e) Voltage current characteristics of a tunnel diode. The portion AO
represents the rever sed-biased state; OB — current increases when forward biased; BC —
negativeresistance region when forward biased; CD —purely diffusion current.
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The decrease in current occurs because of the reducing level of overlap at lower values of
Vet between the regions of occupied states in the valence band of the p-side and the
unoccupied states in the conduction band of the n-side [Fig 16.7(b)]. When unbiased
(Vext = 0) thereisno current a T = 0. At non-zero temperatures in this condition almost
an equal small number of electrons tunnel from both sides of the junction keeping the
current at zero value. The V-I characteristics of atunnel diode are drawn in Fig 16.7(e).
The portion AO refers to areverse biased junction.

The characteristic curve beyond the point O describes the V-1 relationship in an Esaki
diode. As the forward voltage grows from zero to a certain value, the current keeps on
increasing and approaches a maximum value. During thisrise in the applied voltage, the

Fermi level ¢ dips towards the conduction band edge of the n-side (E) and &} rises

towards the valence band edge on p-side ( E”) as shown in fig 16.7(c). In the state of the

maximum overlap of interest, the maximum tunnel current results. With a further
increase in the applied voltage, the Fermi levels maintain the trend of dipping and rising
in p- and n-regions, respectively. For the present band structure, the above change in
Fermi levels is accompanied by reduction in the degree of overlap under question [fig
16.7 (d)] and therefore the reduction in tunnel current.

The main features of the forward-biased tunnel diode (the Esaki diode) are that the

tunnel current passed through a sharp maximum and then drops to zero [see fig 16.7(€)].
The current is maximum when the forward voltage is about (/[ +¢] )/2e and vanishes at

about twice this value. In the V-l characteristic curve [Fig 16.7(e)], the portion OB
represents the region of increasing current and the portion BC shows that the current
decreases even when the voltage is being further increased. Thisis an indication of the
negative resistance. We say that the tunnel diode has a negative resistance in this region.
Beyond the point C there is no tunnel current. The observed rising current is totally
contributed by the normal diffusion current. The current in practice does not drop to zero
but a valley is observed. The most likely source of this excess current lies in the losses
incurred during collisions of electrons with the lattice.

The negative resistance part of the V-1 characteristics has been exploited to use an

Esaki diode as a power amplifier or source. In conjunction with a capacitor and an
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inductance it can be made to work as an oscillator and a switch. Switching times are
limited by high capacitance C; of the thin junction. The times are usually of the order of
nanosecond (107 s). The switching time RC; can be brought down to the picosecond
range (10 % s) by heavy doping that lowers the resistance R considerably.

16.2.4 Photodiodes:

Photodiodes convert light energy incident on them to electrical energy and the effect is
termed as Photovoltaic effect. Photodiodes are used as sources of power (solar cell) and
also as photo detectors.

The principle underlying the photovoltaic effect is straight-forward. Absorption of a
photon in the region of the p-n junction leads to creation of an electron and a hole. Since
the field within the junction is from n-side to p-side, the excess minority carries thus
generated diffuse to the junction where they are carried across and become majority
carriers — the electrons generated on p-side move towards n-side and holes generated on
the n-side move towards p-side. Consequently, for the electrons and holes to recombine
the electrons must go through the external circuit. If there is one externa current path,
majority carrier excess charge will be built up on both sides of the junction, with the
result that the step in the built up potential will be reduced as shown in fig 16.8. The

open circuit voltage can never be greater than the energy gap.

+++
+++
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Er ExcessHoles

Fig 16.8 Band model picture of a photodiode(...... ) lines shows
the band edgewhen it isilluminated and (——) show the band
edgeswhen it isin darkness.

If the external circuit is closed, the current will therefore flow in the circuit. The
current in the circuit will flow so long as the semiconductor regions are illuminated i.e.

due to absorption of photons diffusion of excess electrons from n-side and excess holes
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from p-side will continue. This explains clearly how the incident light sets up the current
flow in the external circuit.

The ability of an illuminated junction i.e., photodiodes to deliver power is made use of
in a solar cell, used to convert solar energy into electrical energy. Such a solar cell has
indeed been built and operated. The considerations involved in the operation of the solar
cell are (i) power delivered (ii) efficiency of conversion. Presently large area p-n
junctions of silicon are used to convert solar photons to electrical energy. The efficiency
of these solar cellsis not as much as one would wish. The conversion efficiency of solar
cells is about 15%. The main problem is of fabricating high quality junctions of large
areas necessary to intercept the maximum amount of incident light. Extensiveresearchis
being made for the search of proper materials.

Photodiodes are also used as radiation detectors. Diodes operated as Detectors of
radiation are all reverse biased. When radiation is incident on the diode, the photo-
generated carriers in the depletion region and in the bulk semiconductors on the either
side of the depletion region move under the influence of the electric field present in the
depletion layer. The increase in reverse current is proportiona to the intensity of the
incident radiation.

16.2.5 The Injection Laser:

The laser in which the lasing action is achieved by passing a current through a
forward-biased p-n junction is called an injection laser. It is also referred to as a laser
diode. Theinjection lasers have the distinction of meeting the requirements of fibre optic
communication systems in the most convenient and effective manner. This has created
tremendous interest in their study and development.

The principle behind the emission of light from a semiconductor is that of the
recombination of electrons and holes at a p-n junction when a current is injected through
the diode. As the current is passed through a forward-biased junction, the injected
electrons and holes increase the density of electrons in the bottom of the conduction band
and holes at the top of the valence band, simultaneously in the same region of space. A
spontaneously emitted photon resulting from electron-hole recombination is fed back into
the system by cleaving or polishing the ends of the junction diode. Under the state of

population inversion the photon interacts with electrons in the conduction band to
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produce smulated emission. The amplification is accomplished by the multiple
reflections at the diode ends. At a certain value of the current, the electron and hole
densities are so large that the rate of stimulated emission becomes greater than the rate of
absorption and thus the process of amplification starts. When the current is increased
further, at a certain threshold value the amplification exceeds the cavity losses and a
coherent radiation is obtained in the output.

The threshold current density in the p-n junction based lasers is inconveniently high
(~ 50,000 A cm™). This is drastically reduced in practical lasers that employ a double
heterojunction. A heterojunction has two different semiconductor materials on its two
sides. In a double heterojunction a lasing semiconductor is sandwiched between two
wider-gap semiconductors of opposite doping. In a heterojunction laser developed by
Kresel and Butler, the active layer is an undoped Gay.x Alx As (x = 0.05 — 0.1) which is
embedded between n- and p-type layers of Gay.y Aly As (y = 0.3 —0.4). The n- and p-
type layers have the same band gap and the same refractive index. The band gap of the
active layer is lower and characterized by a higher value of the refractive index. This
ensures that the radiation emitted in the active layer is confined within this layer because
of the total internal reflection occurring at its interfaces with the n- and p-type materids.
Furthermore, the electrons from the n-side and the holes from the p-side that enter the
active layer are not alowed by the potential barriers at the junctions to escape into the p-
and n-sides (regions), respectively. This confinement of the light and the carriers results
in amplification and wave guidance. For the high efficiency, materias only with the
direct band gap are selected for fabrication. One of the biggest advantages with this
heterostructure is that the frequency of the laser output can be finely monitored by

varying the composition of the compound. For the present heterostructure there are
two quasi-Fermi levels e;and ¢ referred to the conduction and valence band edges. The
¢f inthe optically active layer is on level with the & in the n-region and &Y withel in
the p-region. The population inversion is achieved by applying a forward voltage that
exceeds the voltage equivaent of the band gap of the active layer. Once the electrons
and holes enter the active layer from n- and p-type regions respectively, they remain
confined in the active layer as explained in the preceding paragraph. The emission of

radiation occurs in the plane of the active layer when an electron from the conduction
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band combines with a hole in the valence band as shown in fig 16.9. The process of
stimulated emission and amplification proceeds the same way as in a p-n junction based
device. The frequency of the emitted radiation is temperature dependent. A typical
GaAs laser emitsin the near infrared around 8380 A.

Ga,_yAlyAs

-

Fig 16.9 Double heter ojunction GaAs-Al laser.

In the above device structure the carriers and the light are confined only along one
direction. The confinement can aso be provided in the latera direction by surrounding

the opticaly active layer with higher band gap materials on all sides, leaving a window
for the output

|
—— n-GaAlAs
- n-GaAs substrate
p-GaAlAs
Contact
, = NGaAs
] n-GaAlAs
Oqu/)ut ~1um

Fig 16. 10 Design structure of a buried Heterojunction laser.

. Such a heterostructure laser is known as the buried heterostructure laser and shown in
fig 16.10. The required threshold current densities (2000 — 4000 A cm ) are achieved in

this structure for a significantly reduced value of current (< 50 mA), whereas for a stripe-
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geometry laser with a standard size cavity the threshold current shoots a little over one
ampere.

The heterostructures described above are fabricated by the successive deposition of
multiepitaxial layers on an appropriate crystalline base (called the substrate). For GaAs
laser, Kressel and Butler used a Si-doped n-type GaAs crystal as the substrate. The
molecular beam epitaxy (MBE) and the metal organic chemical vapour deposition
(MOCVD) techniques are used for the epitaxial growth because the level of precision
obtained with them is rated as the highest toady. The injection lasers as described in this
section are by no means the examples of most recent and versatile lasers, some of which
have very complicated structures such as multiple quantum well structures. Our object
was limited to show that the semiconductor devices have given birth to an altogether new
field (called Photonics) whose promise to effectively replaced Electronics in near future
to alarge extent is exemplified by the great efficiency achieved in the field of fibre optic
communication. Though till in its infancy, the subject has a great deal of potential for
the future.

16.3 Thermoelectric effects:

Semiconductors have thermoelectric response many times stronger than metals. The
three main thermoel ectric parameters, namely the thermoelectric power S, the Thomson
coefficient ur and the Peltier coefficient IT in semiconductors may be positive or
negative, depending on whether the semiconductor is of p-type or n-type. We may recall
that these parameters can have only negative sign in ideal conductors. Consider a
semiconductor rod whose one end is hot and the other cold. Asfar as the algebraic sign
is concerned, the case of an n-type semiconductor is similar to that of ideal conductors.
But electrons at the hot end in a p-type semiconductor occupy acceptor levels on being
excited from the valence band. This enables electrons at the cold end near the top of the
valence band to lower their energy by moving into holes created in the valence band at
the hot end. Thus the hot end becomes negatively charged and the cold end positively
charged. Hence in a p-type semiconductor the parameters S, ur and IT are all positive.
These arguments lead to a quick method of determining whether a specimen is of n-type
or p-type. All that is needed is to measure the sign of the voltage across the given

specimen whose one end is hot.
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Now, we first consider the above mentioned semiconductor rod in an open circuit,
ensuring that a constant temperature difference is maintained between its ends. In this
condition a constant difference of potential is observed between its end. This potential
difference can be interpreted to be associated with an electric field,

Next, we consider a semiconductor rod kept at a constant temperature in a closed circuit.
If an electric current isforced into it a one end from a certain external source, the current
density in an n-type semiconductor may be written as

jo = N(-€)(~4)E = NEUE  —-mrroremees (16.16)

where L is the electron mobility in the direction opposite to that of the electric field E
from the external source.

It is appropriate to measure the electron energies relative to the Fermi energy g
because the two materials in contact have a common Fermi level. Therefore, the average

energy transported by electronsis equa to

(Ec—gp) + ngT --------------- (16.17)

where E; denotes the energy at the conduction band edge.

The heat current density jq associated with the electric current density je is given by

io =—n(EC —&¢ +ngTjueE --------------- (16.18)
an electric current density jx through a conductor along its length at constant temperature

always has a heat current density jq associated with it such that

JQoc jx Or jo = mjx
where nt is called Peltier coefficient. This relation can be adopted to the present case as
jQ =Ileje
Therefore, the Peltier coefficient of an n-type semiconductor is

3
EC — &g +EkBT

I, =- S (16.19)

Similarly, for a p-type semiconductor, we have
jh = peuhE --------------- (16.20)

o= p(gF ~E, +§kBT]th ------------ (16.21)
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and

e —E, +§kBT
I, = - A — (16.22)

The Peltier coefficient can be easily determined by measuring the absolute

thermoel ectric power to which it islinked by the Kelvinrelation IT = ST. Thell versus T
plots for n-type and p-type specimens of silicon are displayed in fig 16.11. The
significant observation is that the specimens behave as intrinsic semiconductors above
600 K.
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Fig 16.11 Variation of the Pdtier coefficient ( = ST, with S as the absolute
thermoelectric power) of n-type and p-type specimens of silicon as a function of
temperature.

Being many times intense than in metas, the thermoelectric effects in semiconductors
are of added interest. For example, the thermoel ectric powers of semiconductors are two
orders of magnitude larger than those for non-ferromagnetic metals. The reasons
ascribed to this huge quantitative difference in response are mainly twofold. Firstly, the
carrier density of semiconductors is sensitive to temperature owing to which the hot end
has more conduction electrons or holes per unit volume, depending on whether the
material is of p-type or n-type. Secondly, and more importantly the presence of a
forbidden energy gap in semiconductors proves to be a mgor cause of the observed
behaviour.

To elaborate on the second reason we examine the quantity of Peltier heat evolved or
absorbed at a metal semiconductor junction. Let a current be flown from an n-type

semiconductor to ameta in contact forming a junction as shown in fig 16.12(a). Inan n-
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type semiconductor the mgjority carriers (electrons) are in the conduction band placed
well above the Fermi level e.  On the other hand, most of the electrons in a metal are
near the Fermi level. Because of being in contact, the Fermi energy would be at the same
level in the meta and the semiconductor. Figure 16.12(a) clearly indicates that the
average energy of conduction electrons in the electric current decreases as the same
electric current enters the metal. The difference of electron energiesin the two regionsis
lost in the form of heat at the junction. Similarly, when a p-type materia is in contact
with a metal, heat would be absorbed for the shown direction of electric current because
the mgority carriers (holes) in the semiconductor would occupy energy states in the

valence band that are much below the Fermi level (the approximate level of electric

current in metal). n-type
semiconductor p-type % n-type
Metal .
; Conduction band
Heat 1] Conduction band | current Conduction band - P b Current
«———— Heat AR '
o o o SF \ H
I S A - D S e (e Fermi
& energy energy
Vaenceband Valence band Valence band
Junction Junction

(@) (b)
Fig 16.12 (a) Pdltier effect at a metal-semiconductor junction. Heat is evolved at the
junction when an electric current flows from an n-type semiconductor to a metal. (b)
Peltier effect at a p-n junction. Relatively large amount of heat is evolved at the
junction in the case of an electric current flowing from the n-region to the p-region.

Application:
It is obvious from the above discussion that a thermocouple junction can function as a
heat pump or a refrigerator when an electric current is forced through the thermocouple.
Under the flow of an electric current the thermocouple pumps heat from one junction to
the other. We show below that a p-n junction can serve as a better heat pump or
refrigerator than any common thermocouple junction consisting of two semimetals or
even ajunction such as that shown in Fig 16.12(a).

Consider a p-n junction through which an electric current flows as demonstrated in fig
16.12(b). On the n-side the majority carriers are at much higher energy levels than the

Fermi level whereas on the p-side the maority carriers occupy energy states that are
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much below the Fermi level. Hence, with the flow of electric current in this condition
from the n-region to the p-region arelatively far more energy would appear in the form of
heat at the junction, as compared to that in ajunction shown in fig 16.12(a).

In principle, a Peltier heater can be more efficient than an electrical resistance heater.
For the requirement of each kW of heat, an electrical resistance heater must consume one
kW of electrical power that is dissipated. On the other hand, an ideal Peltier heater needs
electrical power only to pump the heat energy from one junction (cold) to the other (hot)
like a refrigerator or heat engine and thus operates at a relatively much smaller power.
But in practice the Peltier pumps are not as efficient as the conventional mechanica heat
pumps. The inefficiency is attributed partly to the heat loss through the thermocouples
from the hot to the cold side and partly to the Joul e heating of the thermocouples.

16.4 Quantum Hall effect:

Although the treatment of Hall effect given in Lesson 15 is based on purely classical
considerations, it gives a good account of the electrical transport in metas and
semiconductors. But the classical magnetoconducting scenario undergoes a spectacular
transformation under quantum conditions of temperature and magnetic field in a two-
dimensional conductivity channel. K. von Klitzing, Dorda and Pepper observed that such
a channel is formed at the oxide interface in a meta-oxide-semiconductor (MOS)
transistor when a gate voltage is applied between the metal and the semiconductor, as
shown in fig 16.13. The fascinating aspect of their observation is that the Hall resistance

py, varies with the magnetic field according to the following rule.

whereiisaninteger (=1, 2,3, ...... ).
The phenomenon expressed by this rule, where the Hall conductance is quantized in
units of */h, is called the Integral Quantum Hall Effect (IQHE).

T

Metal
SO,

Ly

Silicon

Fig 16.13 A metal-oxide-semiconductor (MOS) transistor.
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In the original experiment a constant current of 1 uA was forced to flow between the
source and the drain in the presence of a magnetic field of 18 teslaat 1.5 K. The results
of this experiment are graphicaly displayed in fig 16.14 and the experimental geometry
isillustrated in fig 16.15(a).

3.5 35

Surface channel
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Fig 16.14 The IQHE voltage V, and the Hall voltage V as functions of the gate voltage
Vg TheMSO transistor set-up for the QHE measur ementsis shown above the plots.

The Hall field versus magnetic field plot in this case is not a straight line (as in the
classical Hall effect). Instead, it shows plateaus with steps in between at certain values of
the magnetic field [see fig 16.15b].

First we show how the observed minima in the longitudina voltage V, can be
explained and relation (16.23) be derived, using only a crude model. Then, we give a
gualitative analysis of rea two-dimensional systems in the framework of a genera
theory.

Consider a surface current density Jy in the x-direction defined as the current crossing

aline of unit length in the y-direction on the oxide interface (the xy-plane):

[FE 1 I —— (16.24)
If nisthetotal electron density per unit area of the xy-plane.
jX = ne\/d ““““““““““ (1625)

with vy as the drift velocity of electronsin the x-direction.
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(b)

(©)

Fig 16.15 (a) The IQHE geometry. (b) The IQHE plateaus in the Hall field
for afixed system current j,. (c) Density of statesin a two-dimensional real
system in a strong magnetic field.

In an alternative description of the Hall effect, the current in a specimen with mobile
charge carriers is produced when the specimen is placed in a region of mutually crossed
(perpendicular) electric and magnetic fields. The flow of current in a direction
orthogonal to both the fields is detected on closing the circuit. If the electric field (Ey)
and the magnetic field B act along y- and z-directions, respectively

jx = oxxEx + oxyEy = OyEy  ----mmmmmmmeme-- (16.26)

(sinceEx =0)
and

L (16.27)
Here o,y denotes the conductivity tensor in the plane of the two-dimensional channel.
Interpreting the resistivity py, as the Hall resistance p.

v, E,L
p=w By B (16.28)
| JxLy ne

X

As follows from relation (16.24), py represents the resistance of a channel of unit

thickness. In the commonly used geometry for the Hall effect, a current is flown along
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the x-direction in the presence of a magnetic field along the z-direction and the Hall
voltage Vy measured along the y-direction in the specimen. The description contained in
relation (16.28) is consistent with this experimental geometry.

We now know that the areas of the successive electron orbits in the k-space in the
presence of amagnetic field B differ by an amount 2reB/h. Considering a square of side

L on the xy-plane, the number of statesin this area are estimated as

(@j{i} O (16.29)
2

h h
It gives the number of electron levels that coalesce into a single magnetic level as soon as
even a small magnetic field is switched on. This magnetic level defines a Landau level
whose energies in the xy-plane are quantized as (i + ¥2) ho. with o, = eB/m* ( the
cyclotron frequency). Relation (16.29) gives essentially the measure of degeneracy of a
Landau level. 1n the present context we define the degeneracy per unit area of the xy-
plane as

D(B) = % ----------------- (16.30)

Let the applied magnetic field be so strong that hawe >> kgT. It isthen reasonable to
talk in terms of completely filled or completely empty Landau levels. Suppose B; is the
critical field at which no level is partly filled and | is the magnetic quantum number of
the highest occupied level. When the electron density on the oxide interface is adjusted
by varying the gate voltage so that the Fermi level coincides with level i,

) -m-mmmm e (16.32)

Under these conditions electrons can undergo neither elastic nor inelastic collisions.
The éastic collisions would involve scattering of electrons from one state to the other in
the same Landau level. But thisis not permitted by the Pauli principle, since al possible
final states of equal energy are occupied. The inelastic collisions can be possible with the
scattering of electrons to a vacant Landau level by absorbing the required energy from
some source, most likely phonons. But in the experimenta conditions of law temperature

and hae >> kgT as established here, there are hardly any phonons whose energy could

compare with the large energy interva hw.. Therefore, the inelastic collisions are too
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ruled out and the electron mean free paths are greatly enhanced. This results in the
occurrence of the voltage minimain V, (or the longitudinal resistance minima).
Placing the value of D(B) from (16.30) in (16.31), we obtain (16.9):

Py = Lz (in ohms)
ie

Analysisin real systems

The experimental evidence for the Hall resistance being accurately quantized at h/ie?
ohms might apparently suggest that IQHE is independent of purity and crystalinity,
simply because the theory predicting this quantization does not take these aspects into
consideration. But the presence of impurities or microcrystalinity produces disorder,
rendering the crystal potential irregular as a result of which the sharp levels in ideal
systems are broadened into bands in real systems [fig 16.15(c)]. This affects the Hall
resistance to such an extent that its linear variation changes to develop plateaus. In a
two-dimensional system that concerns the present discussion al the electron states are
predicted as localized at any disorder. To the credit of this prediction the IQHE actually
approaches this limit as the magnetic field goesto zero. Therefore, it islogical to believe
that there can exist both the extended and localized types of carrier states in aband. As
per the latest concept of localization, the extended and localized states cannot coexist at
the same energy. The localized states occupy the region of the lowest density of states
forming the mobility gap and do not contribute to the flow of electronic current. The
extended states, on the other hand, appear around the peaks of the density of states [see
fig 16.15(c)].

In light of his thought experiment on a two-dimensional system, Laughlin has
interpreted the IQHE in rea systems as a consequence of the principle of gauge
invariance. By analogy with the flux quantization in a superconductor (where the unit of
charge is 2e), the flux quantization in the IQHE (with e as the unit of charge) is
discussed. For acertain increase 6B in the magnetic field, there is an addition of one flux
guantum that enhances the degeneracy of each Lamdau level by one. Suppose i denotes
the magnetic quantum number of the highest completely filled Landau level. If al
electrons cannot be accommodated up to this level at absolute zero, the Fermi level e

will coincide with thelevel (i + 1)which isonly partidly filled.
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With an increase of one flux quantum, each of the Landau levels will have one
additional level in its subband. Consequently, the level (i + 1) will be vacated, since the
electrons in this level can now be accommodated in the newly created lower energy
levels (i in total). Over afixed range 0B (equivalent to one flux quantum), during which
the Fermi level remains in a level, a plateau in the Hall resistance is observed. The
increase B equal a magnitude for which at the stage under consideration all the states in
the level (i + 1) are vacated and the Fermi level drops to coincide with the level i. Thus
for each increase of 6B, ajump to the next plateau takes place. The next plateau refers to
alevel with the next lower magnetic quantum number [see fig 16.15(c)].

It is important to assert the role of disorder and locaization in the IQHE for real
systems. Given next isabrief discussion conducted in this approach.

The Hall electric field in an ideal systemis

E,(B)= 1,BLRy =VyB, = e e (16:32)

where Ry denotes the Hall coefficient.
In a disordered system the degeneracy of states and the electron densities may be split
as
D(B) = D5(B) + D*(B) ----------mmmme- (16.33)
n=nB) + n*(B) --------------- (16.34)
where E and L refer to the extended and localized states, respectively.
Then, the Hall field in a disordered system may be expressed as

£,(B) = DE(B);’d Bh (16.35)

Where v4(B) stands for the drift velocity in the disordered system.
As observed in atypical IQHE experiment, the current density jx carried by electrons
in the extended states must remain unchanged at the value nevy. Hence,
v,(B) = (ELjvd ---------------- (16.36)
n=(B)
It implies that n® electrons per unit area carry the current (of density nevg) with a
higher drift velocity to compensate for the loss of current because of the localization of n*

electrons per unit area.
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The D5(B) in a particular band always increases with B, though non-monotonically. It
increases by one, only when a 6B-increase of B creates an extended state in this band.
We can check that this occurs with probability 1/(v + 1), where

D-(B
e
From (16.21) we see that ¢,(B) can remain unchanged (forming a plateau) with B

whenever vy(B) decreases, provided

D5(B) vq4(B) = a constant

But it should be observed that v4(B) increases as well as decreases with B depending on
where the Fermi level ¢ lies in the mobility gap, we will have either (i) vq(B +6B) <
va(B), when an extended state is produced and DF increases in the subbands below &¢ or
(ii) va(B +B) = vy(B), in between the above events where the Hall field &,(B) remains
unchanged and the plateau occurs.

On the other hand, when gf falls in the band of extended state we always have v4(B +6B)
< vy(B) because D decreases on account of the downward movement of . For a
complete treatment, the reader is referred to calculations made elsewhere.  The
calculations show that a plateau in the Hall field ey(B) is formed within an accuracy of a
few partsin 10°D(B)/(v + 1).

In the extreme quantum conditions, i.e. at extremely low temperatures and extremely
high magnetic fields a QHE has been observed for fractional vaues of i in relation
(16.23). In thislimit the lowest Landau level is only partialy occupied and the IQHE is
not expected. Some of the fractional values of i for which the Hall resistance has been

observed to be quantized are 33'55'E and % At these occupancies the longitudinal

Hall resistance py is found to vanish. This phenomenon is caled the Fractional
Quantum Hall Effect (FQHE).

16.5 Summary

Semiconductors have emerged as the indispensable material base for the development of
Solid State Electronics.

Semiconductor devices generally exploit the characteristics of inhomogeneous

semiconductors in which the donor and acceptor concentrations are not uniform. A



ACHARYA NAGARJUNA UNIVERSITY 31 CENTER FOR DISTANCE EDUCATION

common form in which they are used contains two separate n and p type regions with an
abrupt partition boundary (ajunction) within asingle crystalline sample. Thisjunction is
known as the p-n junction

Characteristics of the p-n junction are crucia to the fabrication and working of most of
the semiconductor devices. It is an essential component of the present electronics
circuitry ranging from a simple rectifier circuit to transistor circuits and integrated circuit

used in sophisticated appliances like modern computer.

n2

Unbiased p-n junction Barrier step height V, = kBeT In(%]

When an external steady voltage is applied across a p-n junction, the barrier step height
changes. In aforward-biased configuration it decreasesto value,

Ver = VB — Vext
Where Ve denotes the applied voltage.
For a reverse-biased connection in contrast to the forward-biased case, the direction of
the applied field does not favour the flow of mgority carriers across the junction, thus
increasing the barrier height to

VBr = VB + Vext
The property that a p-n junction favours the flow of current in one direction across the
junction forms the basis for using it as arectifier.

In ajunction rectifier the current voltage relationship has the form
I — I O(eeVO/kBT _1)

when V —is the bias voltage. When this voltage is large in forward direction Vo > 0 the
current is large and increases rapidly with the voltage. But for reverse bias Vo < 0 and

eeV0 I kgT

<1 and | =-lg Thecurrent isnow small, and indent of voltage.

A junction transistor comprises of two junctions connected back-to-back. One, called the
emitter, isforward biased and the other, called the collector, is reverse biased.

When an electric signa is applied at the emitter, a corresponding carrier pulse passes
through the base and the collector, and the amplified signal is picked up at aload resistor
inserted into collector circuit.

Photo diodes convert light energy into electrical energy and are used as sources of power

(solar cell) and also as photo detectors.
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A p-n junction that is doped heavily enough to make the tunnel current greater than the
usual diffusion current under certain conditionsis called atunnel diode.

The material of atunnel diode behaves as a degenerate semiconductor. The Fermi level
er no more liesin the gap. Instead, it lies within the valence band of the p-region and the
conduction band of the n-region.

This property enables a reverse-biased tunnel diode to be used as a voltage regulator.
These tunnel diodes are known as Zener diodes.

The main features of the forward-biased tunnel diode (the Esaki diode) are that the tunnel
current passed through a sharp maximum and then drops to zero.

The laser in which the lasing action is achieved by passing a current through a
forward-biased p-n junction is called an injection laser. It is also referred to as a laser
diode. Theinjection lasers have the distinction of meeting the requirements of fibre optic
communication systems in the most convenient and effective manner. This has created
tremendous interest in their study and development.

Semiconductors have thermoel ectric response many times stronger than metals.

In a p-type semiconductor the parameters S, ur and I'T are al positive.

A p-n junction can serve as a better heat pump or refrigerator than any common
thermocouple junction consisting of two semimetals.

Magnetoconducting scenario undergoes a spectacular transformation under quantum
conditions of temperature and magnetic field in a two-dimensional conductivity channel.

Under quntum conditions the Hall resistance p,, varies with the magnetic field according
to the following rule.

whereiisaninteger (=1, 2,3, ...... ).

The phenomenon expressed by this rule, where the Hall conductance is quantized in
units of €?/h, is called the Integral Quantum Hall Effect (IQHE).
16.6 Key words
Depletion layer — Barrier height — Forward bias — Reverse bias — Tunnel diode — Esaki
diode — Zener diode — Injection laser — Stimulated emission — Electron recombination —

Hetero structures — Buried hetero structure laser — Photonics — Thermo e ectric effects —
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Thermo electric power — Thomson coefficient — Peltier coefficient — Integral Quantum
Hall effect — Flux quantization — Fractional Quantum Hall effect

16.7 Review questions

1. Describe the effect on space charge width at a p-n junction when the junction is a)
forward biased b) when reverse biased.

. Describe transistor action with the help of band diagram.

w N

. Describe the volt-ampere characteristic of Tunnel diode.

IN

. Explain the mechanism whereby a p-n junction when illuminated delivers electrical

energy to acircuit.

ol

. Explain why Isaki diodes do not show high electrical conductivity in spite of
having very large carrier concentrations.

Describe briefly Hall effect, Integral Quantum Hall effect and fractional Hall
effect.

o

16.8 Text and reference books

1. Elements of Solid State Physics by J.P. Srivatsava (PHI)

2. Solid State Physics by M.A. Wahab (Narosa)

3. Elements of Solid State Physics by A. Omar (Pearson education)
4. Solid State Physics by S.O. Pillai (New Age)

5. Solid State Physics by C. Kittel (Asia Publishing House)

6. Solid State Physics by S.L. Kakani and C. Hemrgjani (S.Chand)
7. Solid State Physics by Saxena Gupta Saxena (Pragati Prakashan).
8. Solid State Physics by C.J. Dekker (Macmillan)



